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Description 

Helicons are low frequency electromagnetic waves that can propagate in plasma in a high 

magnetic field.  To produce helicons in metals at reasonable magnetic fields requires reducing the 

conductivity by lowering the temperature.  The student employs the simplest technique for 

achieving low temperatures, immersing the probe in liquid helium (i.e. a dip experiment), and 

uses a superconducting solenoid to produce the high magnetic field.  The student then 

characterizes helicons by measuring the resonance frequency and resonance width. 

Introduction 

Can electromagnetic waves propagate in metals?  Most people would say emphatically 

not, since the free electrons, which give rise to the characteristic high conductivity of a metal, 

screen out the electromagnetic field - hence the high reflectivity of metals to light.  The 

electromagnetic waves are damped exponentially inside the metal, with a penetration length 

given by the skin depth: 

  

d =
2r

wm
  (SI units), 

Of course, at frequencies higher than the plasma frequency,  

  

wp = 2pf p =
nee

2

me0

  (SI units, radians/second), 

a metal becomes transparent because the conduction electrons cannot respond quickly enough to 

cancel out the electromagnetic wave.  In classical terms, the displacement current dominates over 

the conduction current.  In most metals this happens in the ultraviolet. 

Helicon waves propagate with little damping as long as the electron cyclotron frequency, 

  

wc = 2pfc =
eB

m
   (SI units, radians/second), 

is much greater than the average frequency of electron scattering, i.e. 

  

w c >> 1
t

  

where the relaxation time, , is the mean time between electron collisions. 

For the pure sample of indium we use in this experiment, when scattering of electrons by 

lattice vibrations is eliminated by cooling to liquid helium temperature, the conductivity is so 

high that even at a low frequency of 1 kHz the skin depth is only about 50 m (0.005 cm).  

However, if a large static magnetic field is applied, the behaviour is quite different because of the 

alternating Hall electric field.  The Hall field has the following interesting features. 

a. It is perpendicular to the conduction current generated by the alternating field. 

b. Because of (a) it is non-dissipative. 

c. It is much larger than the conduction (dissipative) electric field. 

These features result in a propagating wave with the following properties. 
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a. The wavelength is much shorter than the free space wavelength which is 3  107 cm at 1 

kHz.  Thus standing waves can be set up when the wavelength matches the dimensions of 

the indium sample, which in this experiment is  1 mm.  This means that the velocity of 

the waves in the sample is only about 100 cm/s, much less than the normal speed of 

electromagnetic waves in vacuum (c = 2.99792458108 m/s). 

b. The waves are circularly polarised so that they can be detected by the induced electric 

field in a coil wrapped around the sample with its axis perpendicular to that of the coil 

exciting the electromagnetic waves. 

These propagating waves in a conducting medium in a static magnetic field were first 

observed in the ionosphere and were called “whistlers” or “helicons”.  The static field for 

whistlers is the earth's magnetic field (~0.5 G), which is much smaller than the field (~0.5 T) 

required in a metal.  The conductivity of the ionosphere is also much less than that of a metal 

because the number of charge carriers is much smaller (~1022/cm3 in metals, ~106/cm3 in the 

ionosphere).  Nevertheless, the important feature, that the alternating Hall electric field should 

dominate the conduction electric field, is common to both systems. 

Helicons are used in the study of metals: 

a. to measure the Hall coefficient (and the magnetoresistance from the width of the standing 

wave resonance) when it is difficult to make electrical contacts to the sample (e.g. alkali 

metals). 

b. To introduce electromagnetic waves into a metal in order to study other phenomena such 

as nuclear magnetic resonance. 

Skin Effect and skin depth 
For a non magnetic, ( = 0), medium of high conductivity where Ohm's law applies and 

we can neglect the displacement current, Maxwell's equations give 

          (1) 

and 

          (2) 

If we take the curl of equation (1) and use equation (2) and the relation 

        (3) 

plus the fact that  = 0 if  = 0 then we obtain 

          (4) 

Consider a situation where we have an electric field polarized in the x direction, with a 

time dependence e−it and propagating in the z direction into the body of a good conductor as in 

Figure 1.  For the moment we set 

  

Bo = 0. 
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Inside the metal, the electric field 

  

E  and the current density 

  

J have the same time dependence 

e−it  as the incident wave so 

    

  

¶J

¶t
= -iwJ       (5) 

Since the electric field is travelling in the z direction, using equation (5), equation (4) becomes 

    

  

d2E

dz2
= -iwmoJ      (6) 

Taking q = 2/ to be the wave vector, a solution of (6) is 

    

  

E(z,t) = E oe
i(qz-wt )     (7) 

if 

    

  

d2E

dz2
= i2q2E = -iwmoJ    (8) 

or 

    

  

q2E = iwmoJ      (9) 

But since Ohm's law applies then 

    

  

E = rJ      (10) 

Equations (9) and (10) can be true simultaneously only if 

    

  

r =
iwmo
q2

      (11) 

or 

    

  

q2 = iwmos      (12) 
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where  = 1/ and hence 

       (13) 

so that there are real and imaginary parts for q and they have equal magnitudes.  The imaginary 

part of q corresponds to an attenuation, and we call this  so that 

         (14) 

is the distance for E(z) to drop to Eo/e in the conductor.  We call  the skin depth of the 

conductor. 

Helicons 

We now allow 

   

Bo  in the Figure 1 to be non-zero and follow the approach of Maxfield. 

In the presence of a magnetic field, in addition to the electric field, the charge experiences 

an additional field due to the Lorentz force.  Ohm's law 

  

(E = rJ), has an additional term and is 

now written 

          (15) 

where  is the drift velocity.  Since 

          (16) 

where n is the carrier density and RH the Hall coefficient is defined by 

    

  

RH =
1

ne
      (17) 

then the modified Ohm's law of equation (10) becomes 

    

  

E + RH J ´ B = rJ      (18) 

Just as before when we had to solve equations (9) [the relationship between 

  

E  and 

  

J if 

  

E  has 

the form assumed in equation (7)] and (10) [Ohm's law] simultaneously, we now have to solve 

the simultaneous equations (9) and (18) [Ohm's law modified].  A standard means of solving such 

a set of equations is make the substitution 

    

  

E ± = Ex ± iEy      (19a) 

    

  

J± = Jx ± iJy      (19b) 

Note that these substitutions correspond to representing a linearly polarized wave as the sum of 

right and left circularly polarized waves as illustrated in Figure 2.  
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If we write equation (18) in terms of its components it becomes 

    Ex = Jx − RH JyB0     (20a) 

    Ey = Jy + RH JxB0     (20b) 

    Ez = Jz      (20c) 

We define, (see Appendix II) 

    

  

u =
RHB0

r
      (21) 

where u is called the tangent of the Hall angle (the angle between 

  

E  and 

  

J) i.e. 

    

  

u =
Hall electric field

conduction electric field
    (22) 

Using equations (21), [the definition of u], and (20) in equation (19) we obtain E+. 

    E+ = (Jx − uJy) + i(Jy + uJx) 

         = [Jx(1 + iu) + iJy(1 + iu)] 

         = (1 + iu)(Jx + iJy) 

    E+ = (1 + iu)J+ 

We obtain E− in a similar way so that 

    E± = (1 ± iu)J±     (23) 

It should be remembered that (23) is really a set of two equations 

    Ex + iEy = (1 + iu)(Jx + iJy)    (24a) 

    Ez − iEy = (1 − iu)(Jx − Jy)    (24b) 

Equation (23) is a modified form of equation (18) which is itself a modified form of Ohm's law.  

It is Ohm's law (or its modified form) that we have to solve with equation (9). We rewrite (9) in 

terms of E± and J±, so equation (9) which in terms of its components is 

    q2Ex − i0Jx = 0     (25a) 

    q2Ey − i0Jy = 0     (25b) 

Becomes, if we multiply (25b) by I and add it to (25a) 
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    q2(Ex + iEy) - i0(Jx + iJy) = 0   (26) 

or 

    q2E+ − i0J+ = 0     (27) 

We obtain E− in a similar way (by subtracting) so that 

    

  

q±

2E ± = iwm0J
±     (28) 

where q+ is the q obtained when E+ and J+ are used.  Equation (23) [essentially Ohm's law] and 

equation (28) [essentially the relationship between 

  

E  and 

  

J if 

  

E  has the form given in equation 

(7)] can be true simultaneously only if 

    

  

q±

2 =
iwm0

r(1± iu)
      (29) 

To have a propagating wave we must have |Re(q)| >> |Im(q)| which means that q2 must be 

positive and largely real.  For q2 to be largely real, u must be large compared to 1.  Recalling 

equation (21), the definition of u, this means that the magnetic field 

  

B0 must be large and the 

resistivity  must be small.  If u >> 1 then equation (29) becomes 

    

  

q±

2 = ±
wm0

ru
= ±

wm0

RHB0

      (30) 

For q to be real and thus have a wave propagating without attenuation, q2 must be positive.  

Recalling the definition of RH in equation (17) we see that the sign of u has the same as the 

charge carriers.  Thus waves of right helicity† propagate for positive carriers with 

         (31) 

and waves of left helicity  propagate for negative charge carriers with 

         (32) 

Remember that the q+ and q− of (31) and (32) are just wave vectors (q = 2/) and the subscripts 

merely serve to identify the helicity of the wave with which they are associated. 

Both waves will be excited if the incident wave is linearly polarized.  For indium, where 

the carriers are holes, the wave of right helicity (+) propagates whereas the wave of left helicity 

(−) is strongly attenuated.  Thus the helicon is a circularly polarized electromagnetic wave, where 

electric and magnetic vectors rotate about the magnetic field (the direction of propagation) in the 

same direction as the cyclotron resonance rotation. 

Before taking any data, reading the paper by Merrill et al. in Appendix II is 

recommended. 

                                                 
† It is a matter of convention whether waves of right helicity are considered right or left circularly 

polarized. Engineers, quantum physicists and astronomers tend to use the convention that right helicity 

corresponds to right circular polarization, but many optics textbooks use the opposite convention. 
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We shall concentrate on the resonant modes corresponding to standing waves that are set 

up when the thickness d of the metal sample is an integral number N of half wavelengths, i.e. 

       (33) 

or 

    

  

fres =
w

2p
=
N 2p

2d2

ru

mo
=
N 2p

2mod
2
RHBo   (34) 

Equation 34 is in S.I. Units, and corresponds to Eq. 2a from Merrill et al. when 

 << RHB0.  Each resonance produces a peak in the response of the sample to the exciting 

alternating field, but the pickup coil will give a peak response only for the odd harmonics due to 

flux cancellation for even harmonics.  The successive harmonics can be observed by keeping the 

magnetic field constant and varying the frequency, giving a curve like Figure 3 of Merrill et al.. 

Note that equation 2c in Merrill et al. is incorrect; when correctly derived from equations 

2a & 2b, it may be written in S.I. units as: 

          (35) 

 

Safety Reminders 

• Eye protection, gloves, and proper footwear, e.g. no sandals, must be worn when working with 

cryogenic liquids or dewars. 

• When pouring liquid nitrogen (LiN) into a small dewar, it is best to place the small dewar on 

the floor so that any spills or splatters will be far away from your eyes and from clothes that 

might absorb and hold spilled LiN against your skin causing more severe burns. 

• Sealed cryogenic containers build up pressure from the evaporating gas, so eye protection 

must always be worn when opening the valves on the liquid helium dewar. You must ask for 

instruction from the supervising professor, the Demo, or the Lab Technologist, when first 

using a liquid helium dewar.  Never leave the dewar with all valves closed for long periods; 

the safety valve should prevent an explosion, but such a blow-out is not desirable. 

NOTE: This is not a complete list of all possible hazards; we cannot warn against all possible 

creative stupidities, e.g. juggling cryostats.  Experimenters must use common sense to assess and 

avoid risks, e.g. never open plugged-in electrical equipment, watch for sharp edges, ….   If you 

are unsure whether something is safe, ask the supervising professor, the lab technologist, or the 

lab coordinator. If an accident or incident happens, you must let us know.  More safety 

information is available at http://www.ehs.utoronto.ca/resources.htm.  

http://www.ehs.utoronto.ca/resources.htm
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Suggested Exercises 

 
Figure 3.  The 5-pin wire which connects to the coils in the probe. 

 

1. The indium foil is surrounded by the pickup coil, and the whole assembly is held in the drive 

coil. An example from a disassembled old third probe is available in a little transparent 

plastic box.  At room temperature, check the continuity of the drive and pickup coils with an 

ohmmeter.  These coils should have resistances between 100 and 200 Ω at room temperature.  

Also, observe low amplitude pickup due to the coils not being exactly perpendicular. 

WARNINGS:   

• To avoid burning out the drive coil, never turn on the frequency generator unless the 

drive coil is immersed in liquid nitrogen or liquid helium. 

• Do not turn on the superconducting coil’s power supply unless the coil is immersed 

in liquid helium; it won’t work, and might damage the coil. 

2. Check the continuity of the superconducting coil with an ohmmeter. The experiment formerly 

used a magnetoresistor to measure the magnetic field, but as of Feb. 15, 2011, the 

magnetoresistors in both probes are broken, so students must measure the current through the 

superconducting magnet, and then refer to the graph in Appendix I to infer magnetic field. 

3. Precool the lower portion of the helicon probe in a dewar of liquid nitrogen (until major 

boiling stops) before lowering it carefully into the helium storage dewar.  A laboratory 

supervisor should assist you in this operation. 

4. Repeat the checks on electrical continuity after the probe has been lowered into the helium 

storage dewar.  

5. Measure the amplitude of the signal from the pickup coil as a function of magnetic field for 

several frequencies, such as: 100, 150, 200, 400, 1000, 2000, … Hz. 
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6. Measure the amplitude of the signal from the pickup coil as a function of frequency for 

several values of the magnetic field.  Start with higher magnetic fields since they give better 

results.  Initially focus on the range from 50 to 300 Hz to determine the n = 1 resonance.  

Verify the existence of n = 3 resonance as in Figure 3 of Merrill et al. in Appendix II.  You 

may find higher order resonances as well.   Once you think you have found a peak, it is best 

to reduce your frequency interval and go over the peak again, so that you characterize the 

maximum. 

7. For each value of the magnetic field, determine fres and Q = fres/∆f for the resonances by the 

method demonstrated in Figure 2 of Merrill et al. in Appendix II.  The rationale behind this 

method is given in Appendix IV. 

8. Using the results of the previous exercise, find the resistivity, , and the Hall coefficient, R, 

for indium at 4.2 K.  Place limits of error on your measurements of  and R. 

9. The indium foil has a purity of 99.9999% has dimensions 8.5 mm  9 mm  thickness where 

thickness may be calculated from the following table of measured values. 

Measurement Thickness (inches) 

1 0.0315 

2 0.0315 

3 0.0320 

4 0.0318 

5 0.03175 

6 0.0318 

7 0.0315 

8 0.0315 

9 0.0319 

10. Compare your experimental value of RH with published values (see Kittel).  Also compare it 

with the value obtained assuming one free electron per atom for indium.  Indium has a 

tetragonal crystal structure with 4 atoms per unit cell and lattice parameters:  c = 0.495 nm, 

and a = 0.459 nm. 

11. From what you can find out about the behaviour of indium as an electrical conductor at 

4.2 K, give a reasonable argument for the sign of RH. 

12. Following Ashcroft and Mermin, c can be estimated from relations quoted in Chapter I.  

Assuming that Figure 1.4 of Chapter I holds for indium, show where the conditions for the 

helicon experiment would be represented on a plot of −1/(RHne) versus c. (Note: In the 

non-S.I. electrostatic units used by Ashcroft & Mermin, RH=1/(nec)., with e in statcoulombs.)  

13. Compare your experimental value of 4.2 for indium with values given in both Swenson and 

also White and Woods. 

Questions 

1. Show that the imaginary part of q in equation (13) results in attenuation. 
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2. The high purity indium used in this experiment has an electrical conductivity at 4.2 K of 

about 1.25  1012 (m)-1.  Using this information, calculate the skin depth in indium at a 

frequency of 100 Hz for a temperature of 4.2 K. 
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APPENDIX I: Magnetic Field vs Current 

 

 

These data were taken in March 1998 by Thomas Szkopek, using a magnetoresistor [not 

operational as of Feb.2011], operating at 4.2 K.  The fit was performed by Jason Harlow in 

Feb.2011.  We expect a linear relation between B and I, but the residuals of this fit are not 

random: the measured values are systematically above the fit by up to 150 G in the region I = 5 to 

17 A, and systematically below the fit by up to 200 G for I = 17 to 26 A.  Therefore, any 

magnetic field which is inferred from the current is uncertain by at least ±100 Gauss.  

 

Appendix II: "A Helicon Solid-State Plasma Experiment for the Advanced Laboratory" by 

J.R. Merrill, D. Pierce and D. Giovanielli, 1970 American Journal of Physics Vol. 38 Pg. 417 - 5 

pages; http://dx.doi.org.myaccess.library.utoronto.ca/10.1119/1.1976357. 

Appendix III: "Helicon Waves in Solids" by B.W. Maxfield, 1969 American Journal of 

Physics Vol. 37 Pg. 241 - 29 pages; http://dx.doi.org.myaccess.library.utoronto.ca/10.1119/1.1975500. 
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APPENDIX IV 
 

Rationale Behind Analysis of Experimental Data 
 

 When circularly polarized standing waves are set up in the indium plate a voltage Vp is 

induced in the pickup coil by the time dependent field.  T, which is called the standing wave 

permeability, represents the peak value of the time dependent flux through the pickup coil.  The 

subscript T indicates that the pickup coil axis is perpendicular (transverse) to the external 

magnetic field, Vp is proportional to  the angular frequency of the time dependent field (due to 

the time derivative in Faraday's law) and also to T which is itself a function of frequency.  T, of 

course, is maximum for frequencies for which standing waves are set up.  Vp is given by 

    Vp() = iGT()Id     (IV-1) 

Where G is a geometrical factor depending on the number of turns in the drive and pickup coils 

and the sample volume, Id is the current in the drive coil and i = (−1)1/2.  Simplifying (IV-1) we 

write 

    Vp( f ) = KfT( f )      (IV-2) 

Where f is the frequency and K is a constant. 

 Although we measure Vp we wish to find the resonant frequency for T.  The maximum in 

T occurs at a frequency for which a straight line through the origin is tangent to Vp.  The proof is 

as follows. 

 Call fr the frequency for which T is a maximum.  Taking the derivative of equation (IV-

2) with respect to frequency we obtain 

       (IV-3) 

and hence 

       (IV-4) 

But by definition 0)( =
¢

rT
fm .  Therefore 

        (IV-5) 

Consider the straight line 

    Vp(f) = KT(fr)f     (IV-6) 

This is a straight line through the origin with slope KT( fr ).  But according to equation (IV-6) it 

is also a tangent to Vp( f ) at fr where fr is the frequency for which T( f ) is a maximum.  This 

completes the proof. 
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