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INTRODUCTION 
A superconductor is a material that is both perfect conductor with zero resistance and a 

perfect diamagnet1 expelling any magnetic field.  Superconductivity was first discovered in pure 
metals, which have transition temperatures, TC, to the superconducting state of a few Kelvin.  
Much later, some binary alloys, such as Nb3Sn, were found to have much higher values of Tc, of 
order 20 K, and these are the superconductors now used in strong magnets.  For many years after 
this, attempts to make materials with still higher TC led nowhere.  Then in 1986, Bendorz and 
Muller reported a much higher TC in a ceramic based on CuO.  Since then the field has flourished, 
with transition temperatures of newly discovered materials rising to the current record of 133 K 
(−140°C) at ambient pressure, and 203K (-70°C) at 90 GPa (105 atmospheres) pressure2.  For their 
discovery, Bednorz and Muller were awarded the Nobel Prize in physics in 1987. 

There are two set-ups for this experiment – “Make your own” and “Kit” – with different 
procedures.   Make sure you know which version you are assigned to. Much of this write-up is 
relevant to both, but if a part applies only to one or the other, it is tagged with an “M” or a “K”. 

For “Make your own”, you will prepare your own thin (few mm thick) samples of the 
“123” copper (or cupric) oxide superconductor YBa2Cu3O7 (commonly known as “YBCO”).  Here 
the “7” is nominal; the precise value 7-δ is critical as it controls the number of superconducting 
carriers in the sample.  The preparation involves mixing metallic oxides followed by a solid-state 
reaction, otherwise known as the “shake and bake” technique.  These samples are then tested for 
levitation and their resistivity studied as a function of temperature.  

With the “Kit”, you have several pre-made samples of YBCO and BSSCO (Bismuth 
strontium calcium copper oxide) superconductors, and you may study both resistivity and 
magnetization in these materials.  Resistance measurements are sensitive to the one-dimensional 
path of least resistance, while magnetic susceptibility measure the volume characteristics of the 
sample.  Until such time as this write-up is further updated, instructions will be provided by the 
supervising professor and the Colorado Superconductor manual.  A “sand” cryostat is used for 
these measurements, which allows more gradual warming of the samples, but more care must be 
taken to avoid being splashed by liquid nitrogen during the initial cool-down.   

Theory 
Superconductivity is a quantum phenomenon that can occur in a normal metal if 

conduction electrons locally distort the atomic lattice in such a way that there is a short range 
effective attractive force between electrons. If this attractive force is stronger than the Coulomb 
repulsive force between a pair of electrons, weakly bound “Cooper pair” electron-electron states 
can form.  These pairs form when thermal energies (~kT) are less than the pair binding energy 
2Eg, where Eg is the energy gap between an electron in a Cooper pair state and a normal 
conducting ground state.  Since Cooper pairs are bosons with integer spin, they form a Bose-

                                                
1 Note that perfect diamagnetism (interior field B=0) does not follow from zero resistivity, which only implies 

dB/dt=0. 
2 A.P. Drozdov et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, 

Nature 525 (2015) 73-76; http://dx.doi.org/10.1038/nature14964. 
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Einstein condensate quantum state that can’t be scattered by the defects and excitations that cause 
normal electrical resistance, so the material has zero resistivity. 

The energy gap Eg(T, H) depends on temperature (T) and magnetic field (H), and a 
material only becomes superconducting below a critical temperature, TC. According to standard 
BCS theory, the Cooper pair binding energy is 2Eg(T, H)≈7/2kTC. 

Superconductors expel magnetic fields through the Meissner effect, but a sufficiently high 
field can destroy the superconducting state.  The magnetic field sufficient to force a bulk 
superconductor to revert to its normal state at temperature T is known as the critical field, Hc(T): 

   (1) 

Type I superconductors have a single critical field Hc, but Type II superconductors have 
two apparent critical fields, Hc1 & Hc2, with (Hc1 Hc2)1/2 ≈ Hc. Below Hc1, all magnetic field is excluded 
as for a Type I superconductor. Above Hc1 but below Hc2, the superconductor is in a mixed state 
where magnetic field exists in “vortex” filamentary normal regions within the superconducting 
material. The material is completely normal above Hc2.  All known high temperature 
superconductors (e.g. the ones studied in this experiment) are Type II. 

Between Hc1 and Hc2, a Type II superconductor resists changes in the number of vortex 
filaments it contains, so it can be levitated or suspended in a magnetic field. See Ma et al. for 
more information on the forces on Type II superconductors in non-uniform magnetic fields. 
Figure 10 of Brandt3 shows how the magnetization of a short cylinder depends on the aspect ratio 
(diameter/length) and exhibits hysteresis, i.e. differs for H increasing and decreasing. 

Whether a superconductor is Type I or II depends on the ratio k = lL/x. lL is the London 
penetration depth which parameterizes how external magnetic fields are exponential damped 
below surface of a superconductor. x0 is the intrinsic coherence length over which the 
superconducting electron density cannot vary significantly, and is related to the typical separation 
of the electrons in a Cooper pair. A superconductor is Type II when the penetration depth is 
greater than the coherence length. The critical field values are related to k: 

 Hc1 ≈ Φ0/(π λ2) ≈ Hc/k, Hc2  ≈ Φ0/(π ξ2) ≈ kHc (2) 
where Φ0=hc/(2e) is the minimum quantum of flux inside a superconductor. 

Resistivity and magnetization measurements give complementary information on a 
superconducting sample. For example, the resistance will be zero as long as there is a 
superconducting path through the sample, even if most of the sample is normal, either because 
the sample is inhomogeneous or because it is a Type II superconductor in the mixed state.  
Magnetization measurements are sensitive to what volume of the sample is superconducting, 
although the relationship is only linear below Hc1. 

For a further introduction on superconductors, see the Superconductivity Chapter in 
Kittel, and for more details see Poole et al., Sharma, or Tinkham. 

                                                
3 E. H. Brandt, The Vortex Lattice in Conventional and High-Tc Superconductors, Brazilian Journal of Physics 32 

(2002) 675-684; http://www.scielo.br/pdf/bjp/v32n3/a02v32n3. 
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Safety Reminders 
• Barium Carbonate is poisonous. Before working with BaCO3, you must read its Material 

Safety Data Sheet (MSDS) available in the cabinet or online. 
• Eye protection, dust mask, and vinyl gloves must be worn when grinding the powders, any 

spilled powder must be cleaned up and properly disposed of. You must wash your hands when 
finished. 

• Eye protection, gloves, and proper footwear, e.g. no sandals, must be worn when working with 
cryogenic liquids or dewars. 

• Before pouring or using liquid nitrogen, always assess what might happen to you or other 
students if there was a spill. For example, you do not want to be in a situation where knocking 
over a small cryostat on the table would pour liquid nitrogen onto a student’s lap 

• When pouring liquid nitrogen (LiN) into a small dewar, it is best to place the small dewar on 
the floor so that any spills or splatters will be far away from your eyes and from clothes that 
might absorb and hold spilled LiN against your skin causing more severe burns. 

• When pouring LiN into a sand cryrostat on the table with the sample already embedded in the 
sand, the liquid nitrogen may initially bubble vigorously with increased risk of splashes, so be 
particularly careful. 

• If the helium gas tank were to fall over and have its valve knocked off, it would turn into a 
deadly torpedo capable of smashing through concrete walls. The helium gas bottle must 
always be properly secured in its cart. 

• Compressed gas can propel dust or ends of hoses at high velocities, so eye protection must be 
worn when turning on the helium gas. Make sure all hoses are properly attached and not 
damaged before slowly turning on the helium. If you are not familiar with gas bottle 
regulators, ask your TA, Instructor or Technologist for guidance. 

NOTE: This is not a complete list of every hazard you may encounter. We cannot warn against 
all possible creative stupidities, e.g. juggling cryostats.  Experimenters must use common sense 
to assess and avoid risks, e.g. never open plugged-in electrical equipment, watch for sharp edges, 
don’t lift too-heavy objects, ….   If you are unsure whether something is safe, ask the supervising 
professor, the lab technologist, or the lab coordinator. When in doubt, ask! If an accident or 
incident happens, you must let us know.  More safety information is available at 
http://www.ehs.utoronto.ca/resources.htm.  

EXPERIMENTAL 
Currently, students who bake their own samples can only make resistivity measurements, 

while students using the kit samples may focus on magnetization. 

Recipe for “Bake your own” (M) 
1. Weigh out about 1 g of Y2O3 and, separately, the appropriate amounts of BaCO3 and CuO.  

Using the molecular weights of these compounds, very carefully4 calculate the correct 

                                                
4 Mistakes in this calculation are by far the most common reason for failed, i.e. non-superconducting, samples. 
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amounts to get YBa2Cu3 as the final product.  Note that Carbon and Oxygen may react with 
the air and leave or enter the sample during baking. 

2. Grind these materials in a mortar, doing the BaCO3 first, and mix and grind together until no 
black or white streaks are left in the mix. 

3. React the mixture at 900° C to 930° C in air for 15 hours in an alumina crucible.  Take 3 
hours to ramp up to 900° C.  This ensures that the CO2 will evolve before the solid-state 
reaction takes place.  Then slowly ramp to 930° C over 15 hours.  After the oven has cooled 
down remove the sample, grind and repeat the reaction for another 15 hours soaking at 
930°C. 

4. Press the powder into pellets using the hydraulic press.  Note that the powder will compress 
by about a factor of two.  Hold the pellets at about 2000 lbs of pressure for 5 minutes before 
releasing the pressure.  If the pellet breaks when extracted, hold the pressure longer and 
perhaps increase the pressure to 2500 lbs. 

5. Sinter the pellets in flowing oxygen following this procedure:  3 hours to ramp up to 930° C, 
hold there for sintering for 10 hours.  Slowly cool to 700° C over 8 hours, hold here for 6 
hours then cool to 400° C over 10 hours.  Finally turn off the furnace.  This procedure will 
ensure that the oxygen concentration will saturate at approximately YBa2Cu3O6.95, the desired 
composition. 

6. You should now have some high TC superconducting samples! 

Test if sample is superconducting 
To test whether a sample – either one you’ve made or one provided to you - try to levitate 

it, cooled with liquid nitrogen, on top of a powerful magnet.  If it floats - success!  It floats 
because a superconductor expels all magnetic field from its interior:  B = 0 (Meissner effect).  
This corresponds to a diamagnetic moment on the pellet which is opposite to the magnet’s 
polarity therefore repelling it. 

If the sample does not actually float above the magnet with a space between it and the 
magnet, either the sample is not superconducting or the repulsion force is not great enough to 
overcome gravity.  If this is the case, make an effort to explore the magnetic properties of the 
sample at liquid Nitrogen and room temperatures.  Even a partial Meissner effect will correspond 
to zero resistivity in this type of superconductor (Type II). 

 Resistivity 
The resistivity of a thin sample – either one you’ve made or one provided – can be 

measured as a function of temperature and the superconducting transition observed. 

Attaching leads to “bake your own” sample (M) 
Attach the sample to the resistance probe with double sided tape.  Glue the thermocouple 

onto the sample with Duco cement.  Then attach the 4 leads to the sample with silver paint and/or 
epoxy.  A 4-wire resistance measurement normally uses two outer leads to provide an alternating 
current.  The voltage across the two inner leads should be proportional to the current across the 
two outer leads, with the same period and phase.  This method allows for sensitive resistance 
measurements and eliminates systematic errors caused by thermal emf and resistance of the leads 
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and connections themselves.  Use small amounts of silver paint and Duco cement in order to 
minimize the electrical pad size. 

Four probe method 
Use the 4-wire method of measuring resistance and monitor the resistance and 

temperature as the probe is slowly cooled down to liquid nitrogen temperature.  Prepare a plot of 
the results which should reveal TC, the point at which R ® 0.  An AC current is preferable, and a 
typical circuit is shown in Figures Figure 1 & Figure 2.  If a DC current is used one must reverse 
the current and take two measurements at each temperature in order to subtract out the thermal 
EMFs.  If you use AC and a step-ohm resistance box, do not use high frequencies as the circuitry 
of the box may exhibit reactance.  Keep f≤100 Hz. 

Suggested Resistivity measurements 
Measure the resistance in the normal state up to room temperature.  What temperature 

dependence is observed?  Is this typical of metals? Figure 1b of Rodriguez5 shows how resistivity 
vs temperature can depend on the sample annealing time. 

What happens to the resistance just above TC?  Can this be explained in terms of 
fluctuating superconductivity in the normal state? You may want to look at the paper by Eagles6 
or consult a text on superconductivity such as Tinkham (Chapter 8). 

Make an absolute measure of the resistivity at room temperature.  This can be done with 
the van der Pauw method7.  Here one places the 4-wire leads around the edge of the sample of 
uniform thickness, d.  Label the leads A, B, C and D.  Passing a current through A to B and 
measuring a voltage across C and D yields a resistance RAB, CD.  Repeat this for another combination 
of current/voltage leads.  Then solve the following equation for the resistivity r of the material 
under investigation. 

 exp (-pRAB, CDd/r) + exp(-pRBC, DAd/r) = 1 (3) 
As van der Pauw showed this method yields the resistivity for any sample shape of uniform 
thickness as long as the leads are mounted on the edge. 

How does your value of the resistivity compare to that of copper?  Are high-TC 
compounds good metals?  Extrapolate the normal state resistivity to T = 0.  What does this value 
tell you about the material you have made? 

                                                
5 J.E. Rodriguez, YBCO samples as a possible thermoelectric material, Physica Status Solidi 2 (2005) 3605–3608; 

http://dx.doi.org.myaccess.library.utoronto.ca/10.1002/pssc.200461769. 
6 D.M. Eagles, Analysis of Resistance Data on a Good Ceramic Sample of YBa2Cu3O7-x, Jpn. J. Appl. Phys. 32 (1993) 

1077-1081; http://m.iopscience.iop.org/article/10.1143/JJAP.32.1077/pdf. 
7 L.J. van der Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips 

Res. Repts. 13 (1958) 1-9, http://socrates.berkeley.edu/~phylabs/adv/ReprintsPDF/SHE%20Reprints/01-
Measuring%20Discs.pdf; A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary 
shape, Philips Tech. Rev. 20 (1958) 220-224, http://electron.mit.edu/~gsteele/vanderpauw/vanderpauw.pdf. 
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Figure 1: A schematic overview of a possible layout for simultaneous measurements of 

temperature and resistivity. See Figure 2 for “Lock-in Amplifier Circuit” details. 

 
Figure 2: A possible Lock-in Amplifier circuit to measure the resistivity of the sample. A n 

introductory video on the use of Lock-in is available at 
https://www.youtube.com/watch?v=oKmXaLlvr6c. 

Magnetization (K) 
The Colorado Superconductor kit has one or two high TC samples wrapped in copper 

coils. As discussed in the Colorado Superconductor guide, measuring the AC impedance of the 
coil provides information on the magnetic susceptibility of the sample. As with resistivity, we 
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want to generally study how the susceptibility of the sample changes as a function of 
temperature, and measure TC in particular. One challenge is that the samples are quite large, and 
the temperature is only measured (by a thermocouple) at the bottom of the sample (assuming the 
sample is vertical).  If there is any temperature gradient across the sample, then the susceptibility 
will also vary accordingly, which smears out the relation between susceptibility and temperature.  

Carefully measure the susceptibility of the kit sample as a function of temperature and 
frequency using the sand cryostat. You will need to decide what frequency to use; you may be 
able to theoretically reason whether higher or lower frequencies are better, but it is strongly 
recommended that you experimentally try different frequencies.  To improve the measurement, 
one could try to measure the temperature variations across the sample, try to create a larger 
uniform temperature volume around the sample, or try to wrapping a coil around a smaller 
sample.  Here are some suggestions, but it is not known at the present time (January 2016) how 
well how well any of them will work. Your Professor or Demo may have helpful suggestions, so 
talk to them. 
• Try using another thermocouple (i.e not the one attached to the sample) to estimate how large 

and problematic the temperature variation across the sample might be. 
• Place the sample inside a nitrogen gas filled test-tube dipped in liquid nitrogen (i.e. the 

method used by the “make your own” students). This may produce less temperature variation 
across the sample. 

• Small, thin discs of YBCO created by students should be available. Check that the disc is 
superconducting (i.e. it shows the Meisner effect on the test magnet) before trying to wrap it 
in some configuration.  A wide variety of wire is available from the lab technologists. A non-
magnetic form, e.g. plastic, can be used around the disc.  Try measuring the AC impedance of 
your coil. (One advantage of “rolling your own”, is that you may be able to compare the 
impedance of the coil with and without the sample inside.) 
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