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A METHOD OF MEASURING SPECIFICG
RESISTIVITY AND HALL EFFECT OF DISCS
OF ARBITRARY SHAPE

by L. J. van der PAUW

Summary

537.723.1:53.081.74-538.632:083.9

A method of measuring specific resistivity and Hall effect of flat
samples of arbitrary shape is presented. The method is based upon a
theorem which holds for a {lat sample of arbitrary shape if the contacts
are sufficiently small and located at the circumference of the sample.
Turthermore, the sample must be singly connected, i.c., it should not

have isolated holes.

Résumé

On présente une méthode pour mesurer la résistance spécifique et
Peffet Hall d’un échantillon plat de forme quelconque. La méthode est

fondée sur un théordme qui es
paralltle, si les contacts sont s
périphérie de I’échantillon. Enfin 1I'¢
connexe, c-a-d. sans trous isolés.

Zusammenfassung

t appliquable si Iéchantillon est plan-
uffisamment petits et se trouvent a la
chantillon doit &tre simplement

Ts wird eine Methode zur Messung des spezifischen Widerstandes und

des Halleffektes einer planparall
gegeben. Die Methode griindet
ist wenn die Kontakte geniigen

elen Probe willkiirlicher Form an-
h auf eine These, die anwendbar
d klein sind und sich am Rande der

Probe befinden. SchlieBlich soll die Probe einfach zusammenhingend
sein, d.h. sic darf keine Locher haben.

1. Introduction

In many cases the specific resistivity and the Hall effect of a conducting
material are measured by cutting a sample in the form of a bar. Current
contacts A and B and voltage contacts C, D, E and I are attached to the
bar as shown in fig. 1. The specific resistivity is then derived from the
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1 h Fig. 1. The classical shape of a mm.:c_m for measuring the specific resistivity and the Hall effect,



potential drop between the points C and D or E and F and from the dimen-
sions of the sample. On the other hand, the Hall voltage can be measured
between the points C and I§ or D and F. The current contacts must be far.
away from the points C, D, E and I'in order to ensure that thelines of flow are
sufficiently parallel and are not changed on application of a magnetic field,

For the measurement of the specific resistivity and Hall effect of semi
conductors a more complicated shape of the sample has often to be used.

A well-known example is the bridge-shaped sample shown in fig. 2. The |

: Vp—Vbetween the contacts 1) and C per unit current through the ocsnmc__m
A and B. The current enters the sample through the oc:nmﬁ A and _oﬁwnm it
‘through the contact B. Similarly we define the resistance Rycpy. [t will be
shown that the following relation holds:

exp (— Ry cp dfo) + exp (— 7lpepa dlo) =1, (1)

~where g is the specific resistance of the material and d is the thickness of the

sample. , . |

To prove eq. (1) we shall first show that it ror.ﬁ for a particular .mrm%n
of the sample. The sccond step is to prove that if it holds for a wmazn:r..n
shape it will hold for any shape. For our particular .mrmwc. we choose a semi-
infinite plane with contacts P, Q, R and S along its Uo.::%:.%u spaced at
distances a, b and ¢ respectively (see fig. 4). A current j enters the sample

7 . 7
\'\“h a \o b rpR ¢ S
DA i

N.um 4. A sample in the form of a semi-infinite plane with four contacts along its boundary
for which eq. (1) is proved first. ,
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Fig. 2. The bridge-shaped sample, furnished with large areas for making low-ohmic contacts

large areas at the ends have the task to provide low-ohmic contacts. Further
more, when making these contacts a heat treatment is often necessary
which in this case can be done without heating that part of the sample
which is under measurement. :

It will be shown that the specific resistivity and the Hall effect of a flat
sample of arbitrary shape can be measured without knowing the current
pattern if the following conditions are fulfilled:

(a) The contacts are at the circumference of the sample.
(b) The contacts are sufficiently small.
(c) The sample is homogeneous in thickness.

(d) The surface of the sample is singly connected, i.e., the sample does not
have isolated holes.

93599

;wﬂwrm contact P and leaves it at the contact Q. From ,&oEoEmQ theory it
follows that oo

j (a + c
Vo— Vi = A PR R

ad ba + b+ )

(@ +0) (b + nv«. @)

Frans = 0™ B 4 b1 o)
2. A theorem which holds for a flat sample of arbitrary shape . . HB the same way, we have
We consider a flat sample of a conducting material of arbitrary shape :

e . (a+D)(d+ec) 3)
with successive contacts A, B, C and D fixed on arbitrary places along the Ropsy = — In R 7t
circumference such that the above-mentioned conditions (a) to (d) are ful- o
. i a1 oreover,
filled (see fig. 3). We define the Homumnmwoa R,p cp as the potential difference , ba b+ ) + e = (o + b 6+ o). W
c .,m.w.cup the eqs (2), (3) and (4) eq. (1) follows immediately.
'Using the same arguments it can also be shown that
5 Wwo.ww = Nmm.mou
B
A 93598

Fig. 3. A sample of arbitrary shape with four small contacts at arbitrary places along the

circumference which, according to this paper, can be used to measure the specific resistivity
and the Hall effect.
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The last four relations, however, are of a much more general nature than (1)
and follow also from the reciprocity theorem of passive multipoles.

We shall now proceed with the second step and show that eq. (1) holds
quite generally. To that end we make use of the well-known technique of
conformal mapping of two-dimensional fields *). We assume that the semi-
infinite sample considered above coincides with the upper part of the com-
plex z-plane, where z = x +- iy.

We introduce a function w == f(z) = u(x,y) -+ iv(x,y), where u and v
are both real functions of x and y. The function f(z) is chosen in such a way
that u represents the potential field in the sample. The functions u and v
satisfy the Cauchy-Riemann relations:

ou . ov 9
ox @v\ ©)
ou ov )

o9, (10)
oy 0x

If we now travel from an arbitrary point T, in the upper half-plane to
another point T, in the upper half-plane (see fig. 5), the net current which
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Fig. 5. The same sample as in fig. 4, coinciding with the upper part of the complex z-plane.

traverses our path from right to left is given by

d P
.\.‘_.,N.HH = \Hw: ds,
@

1

where E, is the normal component of the field strength. This expression is
readily verified to be equal to
d [ a [ d
ou ou ov ov

i = (= an o a n!\TAa.l;n!Ax.y
J Ty, 0 .H\ A oy + o v\v ¢ ] \or + o ly p Vg, — Vg,
Hence if we travel along the real axis from —oo to -} co the value of v
remains constant until we pass the point P. When passing the point P

*) L. V. Bewley, Two-dimensional fields in clectrical engineering, The MacMillan Com-
pany, New York, 1948,

along a small half-circle in the upper half-plane the value of v will increase
by pj/d. Similarly when passing the point Q the value of v will decrease by
oj/d. We consider now a sample of arbitrary shape, lying in a different
complex plane which we shall call the t-plane (sce fig. 6), where t = r -} is.

C

t-plane
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Fig. 6. A sample of arbitrary shape, lying in the complex t-plane.

By a well-known theorem, it is always possible to find an analytic
function #(z) such that the upper half-plane in the z-plane is mapped onto
the sample in the t-plane. There are some restrictions as to the shape of
the sample in the ¢-plane which are, however, not of physical interest. In
particular, let A, B, C and D in the t-plane be the images of the points P, Q,
R and S respectively in the z-plane. Furthermore, let k(t) = I + im be
identical with f(z) = f(2(t)) = k(t). Hence by definition m remains con-
stant when travelling in counter-clockwise direction along the boundary of
the sample in the ¢-plane; it only increases by pj/d when passing the point
A and it decreases by the same amount when passing the point B.

From the theory of conformal mapping it follows that if m in the t-plane
is interpreted in the same way as v in the z-plane, then [ will represent the
potential field in the t-plane. Consequently if a current j* enters the sample
at the contact A and leaves it at the contact B and if we choose j'o'/d" =
jo/d, where o’ and d’ are the specific resistivity and the thickness of the
sample in the t-plane, then the voltage difference V;,—V will be equal to
the voltage difference Vg—Vy. Hence (d/p) Rypcp is invariant under con-
formal transformation. The same is true for (d/p) Rycps. From this it
follows that eq. (1) is of general validity.

.

3. Practical applications

From the above section it follows that for measuring the specific resistivi-
ty of a flat sample it suffices to make four small contacts along its circum-



ference and to measure the two resistances R,y cp and Ryep, (see fig. 3)
and the thickness of the sample. Equation (1) determines uniquely the
value of ¢ as a function of R,y cps Rpepa and d. In order to facilitate the
solution of g from eq. (1) we write it in the form

ad (Rypep + Rye,pa) Aw\é,ncv
0 e = f b

“Thz 2 ()

\mmn.c>

where [ is a function of the ratio Rypcp/Rpeps only and satisfies the
relation

HN.P?OC - Nwwn.U\w

exp (In 2
_ABLY T PR \. arccosh WEN . AHMV
Rypcp + Rpepa 2 )
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Fig. 7. The function f used for determining the specific resistivity of the sample, plotted as
a function of Rap,cn/Rec,pa -

In fig. 7 a plot is given of f as a function of Rypcp/Rycps- If Rypcp and -

Rpcpa are almost equal, f can be approximated by the formula

2

fal— Amﬁébc — ﬁaohi% In2 Ax;,nﬁ - Nwob&» wcu 2)* . (In vam

Rupco + Rpcoa Rypcp + Rpcpa/ ¢ 4 12

The Hall mobility can be determined by measuring the change of the
resistance Rypp,c when a magnetic field is applied perpendicular to the

sample. The Hall mobility is then given by

d ARy ac

M = 35

B 0

]

(13)

where B is the magnetic induction and ARy, s the change of the resistance
Ryp.ac due to the magnetic field.

Equation (13) is based upon the following argument: If we apply a
magnetic field perpendicular to the sample the equations

divj=0, (14)

Il

0, (15)

curl j =

where j represents the current densily, remain valid. Furthermore if the
contacts are sufficiently small and at the circumference of the sample the
outer lines of flow, which must follow the circumference of the sample, fully
determine our boundary conditions. Hence the lines of flow do not change
when a magnetic field is applied. However, the effect of the magnetic field
on the electric potential is such that between two arbitrary points an
additional potential difference AV is built up which is equal to
ruBjo

e

d

AV = (16)

where j is the current which passes between the two points. Equation (13)
follows immediately from (16).

In order to estimate the order of magnitude of the error introduced if
the contacts are of finite size and not at the circumference of the sample we
derived an approximation formula for a few special cases. In all cases we
assumed that the sample had the form of a circular dise with contacts
spaced at angles of 90°. Furthermore we assumed that the area over which
the contact is made is an equipotential area. We shall denote by Ap/e
and Apy/uy the relative errors introduced in the measurement of the
specific resistivity and the Hall mobility, respectively.

In fig. 8a is presented the case in which one of the contacts is of finite
length d; it is assumed to lic along the circumference of the sample. The

T

B B B

a b . £ 93603

Fig. 8. Some special cases for which the error in the measurement of g and g7 due to the
finite length or the finite distance to the circumference of one contact has been calculated.

other contacts are infinitely small and located at the circumference.
The diameter of the sample will be denoted by D. In this case for a small
value of d/D and of ;B the following relations may be shown to hold:



de s , (14)
0 T 16D%In2
Har 7*D

In fig. 8b is shown the case in which the contact is made in the direction
perpendicular to the circumference. In this case the error introduced will be
as in the foregoing case, but with d twice as large:

Ap — d? 16
o T ame’ (16)
A —4d
Abm . (17)
137 72D

Finally we consider the case in which one contact lies at a distance d from
the circumference (see fig. 8¢). In this case we obtain

Ao &z 18
o 2D?In2° (18)
A 2d

= (19)
H

Tt can be shown that if more contacts have at the same time some of the
above-mentioned defects the errors introduced are to a first approximation
additive.

The influence of the contacts can be eliminated still further by :&:m a

“clover-shaped” sample, as shown in fig. 9. This sample has many advan-

D C
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Fig. 9. The “clover-shaped” sample where the influence of the contacts has been reduced
considerably.

tages compared with the bridge-shaped sample. It gives a relatively large
Hall effect at the same amount of heat dissipation, which is of importance
when measuring materials of low electric mobility. It has a greater
mechanical strength and smaller samples can be measured which is of
importance, for example, when measuring silicon crystals made by the
floating-zone technique.

Eindhoven, September 1957

Note added in proof

In sec. 2 we derived a relation between the resistances Ryycp, Rpepa
and g/d if all contacts are at the circumference of the sample and infinitely
small. If the contacts are all of finite size there will be in general six in-
dependent finite resistances, for example the resistances Rypaps Racacs
Ryp.aps Rucnes Ryppp and Rep cp. We assume that the contacts are areas
of constant potential. Tt can be shown that, if the contacts are located at
the circumference of the sample, also in this case there must be a relation
between these six resistances and p/d which determines p/d uniquely as a
function of these six resistances. If there is only one contact of finite size,
A say, it can be shown that

N nd md nd
£+ €Xp AM mﬁ»w,ncv + exp Alml hanb»v — exp —ﬂ

Am;.nc + wwo.gv

2nd
-— €Xp AM .NN>¢-U>V = 0.

The author is indebted to Dr C. J. Bouwkamp of this laboratory for
pointing out to him that, if more than one contact is of finite size, the rela-
tion between the independent resistances and the specific resistivity of the
sample involves elliptic or hyper-elliptic functions rather than elementary

- functions.
 Professor Bouwkamp has also drawn the author’s attention to a recent
| 8 paper by Lampard *), who deals with the calculation of internal cross capa-
citances of cylinders under certain conditions of symmetry. Lampard’s
' result can be generalized as follows. Let fig. 6 of this paper represent the
 cross-section of a cylindrical capacitor, cut into four parts insulated from

one another at the points A, B, Cand D. Let C,p¢p denote the internal cross
_ capacitance of parts AB and CD, in electrostatic c.g.s. units per unit length

' of cylinder. Similarly, let Cycp, denote the internal cross capacitance of
. 'BC and CD. Then we have

exp(—4 7% Cppcp) + exp(—4 7% Cyepa) 1,

,. ~_which is identical with eq. (1) of this paper except for the different physical
£ interpretation.

' In Lampard’s case of symmetry, the two capacitances Cypcp and
Cpcps are mutually equal, and hence are both equal to (In2)/4z?
independently of the size or shape of the cross-section, which is Lampard’s
theorem.

“*) D.G. Lampard, Proc. Instn elect. Engrs, Part C, Vol. 104, No. 6, Sept. 1957, p. 271.



