2. A theorem which holds for a sample of arbitrary shape.

The resistance of the sample is simply connected, i.e., the sample does not have isolated holes.

(a) The surface of the sample is simply connected, i.e., the sample does not have isolated holes.

(b) The sample is homogeneous in thickness.

(c) The currents are sufficiently small.

(d) The contacts are at the boundary of the sample.

(e) The contacts on the inner surface of the current.

(f) The contacts on the outer surface of the electric field.

(g) The sample is under measurement.

Therefore, when matching these contacts a heat treatment is done in no contact.

Larger than the leads to provide a current to the leads, and the Hall effect of a Hall.

The bridge-shaped sample, furnished with large areas for making low ohmic contacts.

A well-known example is the bridge-shaped sample shown in Fig. 2. The

condensator more complicated shape of the sample has been to be used.

condensator more complicated shape of the sample has been to be used.

condensator more complicated shape of the sample has been to be used.

condensator more complicated shape of the sample has been to be used.

condensator more complicated shape of the sample has been to be used.

condensator more complicated shape of the sample has been to be used.
From the above section it follows that for measuring the specific resistivity of a sample it suffices to make great contact along the creep...
The measure of the sample is denoted by L. In the case of a small number of contacts, the current is given by the equation:

$$I = \frac{V}{R}$$

where I is the current, V is the voltage, and R is the resistance of the sample.

When a potential difference V is applied to the sample, the current I is given by:

$$I = \frac{V}{R}$$

where V is the applied voltage and R is the resistance of the sample.

The Hall coefficient R_H is defined as:

$$R_H = \frac{B}{I \cdot \frac{V}{L}}$$

where B is the magnetic field, I is the current, V is the voltage, and L is the length of the sample.

The Hall coefficient R_H can be determined from the change of the magnetic field B with respect to the current I.

$$\frac{\partial B}{\partial I} = \frac{R_H}{V}$$

where R_H is the Hall coefficient of the sample.

The Hall mobility μ_H is given by:

$$\mu_H = \frac{e}{m^*}$$

where e is the charge of an electron and m^* is the effective mass of the electrons.
Theorem.

The independence of the size of the cross-section, where the lamprant's area is multiplied, and hence are both equal to (2/3)\(\pi r^2\) and (2/3)\(\pi r'^2\). In Lamprant's case of symmetrical, the two capacitances are equal and identical with each other, except for the difference of the physical

\[\exp(-\alpha x) \quad \exp(-\alpha x') \]

where the author is indebted to Dr. C. J. Bowditch of the University of New York.

The author is indebted to Dr. C. J. Bowditch of the University of New York.

It can be shown that if more contacts have at least some of the (61)

\[\frac{d^2 V}{dV^2} = \frac{n_1}{p_1} \]

\[\frac{d^2 V}{dV} = \frac{n_1}{p_1} \]

Finally we consider the case in which one contact is at a distance \(d\) from

\[\frac{d^2 V}{dV} = \frac{n_1 p_1}{p'1} \]

The author is indebted to Dr. C. J. Bowditch of the University of New York.

It can be shown that if more contacts have at least some of the

\[\frac{d^2 V}{dV} = \frac{n_1}{p_1} \]

\[\frac{d^2 V}{dV} = \frac{n_1}{p_1} \]

Finally we consider the case in which one contact is at a distance \(d\) from

\[\frac{d^2 V}{dV} = \frac{n_1 p_1}{p'1} \]

The author is indebted to Dr. C. J. Bowditch of the University of New York.

It can be shown that if more contacts have at least some of the

\[\frac{d^2 V}{dV} = \frac{n_1}{p_1} \]

\[\frac{d^2 V}{dV} = \frac{n_1}{p_1} \]

Finally we consider the case in which one contact is at a distance \(d\) from

\[\frac{d^2 V}{dV} = \frac{n_1 p_1}{p'1} \]