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The linear wave equation for sound waves, as for light waves, is:
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For sound waves, this can be used to solve for the scalar pressure-amplitude p(x,y,z;t) of the
acoustic wave, or for the oscillation-amplitude 

r
x (x,y,z;t), or velocity-amplitude   

r
v(x,y,z;t),

which are vector fields.  Since the oscillation and velocity can be found from the pressure field,
we usually solve for that.

The velocity and oscillation amplitudes can be found from the pressure gradient, which gives the
force term for the equation of motion of the gas in which the sound propagates.  The waveguide
surfaces can exert a force perpendicular to the face, but nothing in the sliding direction parallel to
the surface.  So the two boundary conditions for this second-order differential equation are that
the first derivative and second derivative of the pressure must be zero along the directions
parallel to the surfaces.

Take the direction along the waveguide to be z, and take the transverse directions to be x
(Lx = 5cm) and y (Ly = 15cm).  A general plane wave can be written as:

p r t p i t k ro(
r r r
, ) exp= - ◊ +( ){ }w f [2]

Where w is the frequency of the wave, and 
r
k  is the wave-vector, having magnitude 2p/l (where

l is the wavelength) and a direction perpendicular to the surfaces of constant phase, i.e., in the
direction of propagation.  The magnitude alone of the wave-vector is known as the wavenumber.
The argument w ft k r- ◊ +( ) is called the total phase.  (Note that this is phasor notation.)

Show that this solution to the wave equation in the waveguide has the general form:

p x y z t p k y k z t k zo y z z( , , , ) cos( )cos( )cos( )= - +w f [3]

where f is arbitrary, provided that the constants kx, ky, satisfy:
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The kz is then determined from the relation for these perpendicular components:
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which becomes
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Only the last term in equation [3] evolves in time.  The total phase, (wt – kz z + f ), is constant if
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Thus we see that surfaces of constant phase move down the waveguide at speed w/kz , which is
therefore called the phase speed, vf.  The positive and negative signs correspond to waves
moving in opposite directions.

Equation [4] points out that the different solutions we can have, for a wave propagating in a
waveguide, can be labelled by an ordered pair (m, n) of the indices.  These different ways of
propagating are termed modes of the waveguide, even as there are normal modes of oscillation of
a stretched wire or rectangular drum-head.

It’s easy to construct these modes geometrically, for a given wavenumber k.  Propagating a plane
wave obliquely down the waveguide at an arbitrary angle q from the z-axis, reflections at each
wall can be constructed.  After reflection from two opposite-facing walls, the reflection joins the
source wave, again propagating in the original direction.  If the reflection joins the source wave
on the next (or subsequent) cycle exactly in-phase, there can be constructive interference;  any
other possibility will mean that multiple reflections trailing behind will eventually cancel out the
wave entirely.  You can picture this easily, using the LabVIEW program “Mode Conditions.vi’
on the lab PC for this experiment, or through links on the website for the Photonics Lab, which
permits you to change the wavenumber and angle of propagation.

Returning to our development, our original plane wave in equation [2] propagates in the most
ordinary way with a phase speed equal to the free-space wave speed cs.  Putting this in the phase-
speed formula, we have cs = w/k, which we can put into [6] to get:
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For a given mode, is there a wavelength (wavenumber) for any arbitrary frequency?  See that in
[8], there is a minimum value of w, for any mode (m, n), and for frequencies lower than this, kz is
imaginary.  The meaning of an imaginary wavenumber can be seen if we go back to the fuller
phasor notation for [3], which is:

p x y z t p k y k z i t k zo y z z( , , , ) cos( )cos( )exp ( )= - +{ }w f [9]

If the frequency has too low a value, it leads to an imaginary wavenumber, and for this
wavenumber there is no longer a propagating solution — only an exponentially growing solution
or an exponentially decaying solution.  Although both cases are needed for a general solution
over a finite length, the growing solution will normally pose energy problems as it propagates off
to infinity.  Therefore, in general terms there is a cutoff frequency for a given mode, and below
this frequency the solution dies evanescently.  this cutoff frequency is given by:
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(Note that the two signs of w and likewise of kz do not combine to give four solutions;  only two
are unique, and correspond to right-going and left-going waves.  This can be seen from the fact
that cos(wt – kz z + f ) is an even-valued function.)

We can plot w vs. kz for different modes, as in Fig. 1 below:
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The lowest mode, (0,0), propagates as
does a wave in free-space:  it exhibits
no dispersion .  The other modes,
however, show different phase speeds
for different frequencies of wave.

Since the phase speed is given by w/kz,
it is shown by the slope of a line from
the origin to a point on any curve.  So,
mode (0,0) has a single, well-defined
phase speed, equal to the speed of
sound in free space.  Mode (0,1) is
asymptotic to (0,0) at large kz, as are
the other curves, in fact, and the phase
speeds all go to the same value as k
gets large (short wavelengths).

But note that as kz goes to zero (i.e., as
the frequency approaches the cut-off
value), the phase speed of all higher
modes goes to infinity!

Behaviour of pulses    Phase-fronts for
waves of different frequencies move
forward at different speeds, in this
system.  Of course, a plane wave with
a well-defined frequency exists for all
times, and cannot be turned on or off;
you will know already from Fourier
analysis (or from Heisenberg’s

uncertainty principle) that, for any wave, shaping a carrier wave with an envelope that turns on
or off to make a pulse of finite duration will lead to not just one frequency but a spread of
frequencies.  As this pulse propagates in a particular waveguide mode, then, the various
component plane waves will propagate at different phase speeds, and change their phase
relationship to each other, depending on the shape of the curve in Fig. 1 for that particular mode.
Consequently, the pulse will re-shape itself as it propagates, and become something else.

Consider a pulse whose spectrum has a centre frequency wo.  A simple example would be a
symmetric pulse-amplitude envelope, like a gaussian pulse, imposed on a carrier-wave of
frequency wo.   We can take the w–k dispersion curve to give k(w) rather than w(k) (as you’ll see
if you turn Fig. 1 on its side) and make a Taylor-series expansion around that frequency:
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Fig. 1:  w–k dispersion curve;  note modes, labelled in

order of increasing cut-off frequency. [needs fix]
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For a gaussian pulse, we can write the electric field Eo(t) and its Fourier transform in the time
variable ˜ ( )Eo w :
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The Fourier transform in time is invertible — it contains all the information that Eo(t) does, and
is an equally good representation of the electric field.  So if we let the pulse propagate in z, we
can do that equally well letting the Fourier transform evolve in z.  Our Fourier transform was in
time, so the behaviour in theindependent variable z is just as it was in equation [2], and we have
the chance to recognize that the wavenumber k (sometimes called the propagation constant b)
depends on the frequency w.  Using our Taylor-series expansion:
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This is a complete answer of how a pulse will alter, propagating in a system that has dispersion.
It is, however, convenient to convert this Fourier transform back into the time-domain to see how
the waveform in time E(z,t) propagates in space:
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where  
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This can be integrated formally, but it’s easy enough to do by inspection, noticing that the
integral is much the same as the one we will have done in [13] to get the electric field into the
frequency domain, but with these changes Go ´ –1/[4G(z)], t ´ (w-wo) and wo ´ (t – k¢ z):
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This we can see as a carrier wave, in the first term, and a gaussian envelope in the second term.

But now, surfaces of constant phase (constant = ftotal = t – z/vf) — the phase fronts — move no
longer at the speed of the wave in free space, but at the new phase speed vf given by equation
[19].
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Likewise, the pulse envelope no longer moves at the speed of the wave in free space, but instead
at the group velocity vg, also given in [19].

Something more interesting still can be learned by collecting the phase and amplitude terms
separately in the exponentials in [18]:
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The second term is the amplitude term, and determines the pulse shape;  the first phasor term has
unit amplitude and gives the field oscillations.  It’s argument is the total phase of the evolving
wave.  The instantaneous frequency of the wave is the rate of change of this total phase, which is
not wo.  Instead, in this case the instantaneous frequency is:
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So, at one fixed position z in space, as the pulse travels past the frequency isn’t constant — it
changes linearly in time.  For our acoustic waveguide experiment, this makes a sliding tone, like
the chirp of a bird’s song, which you can possibly detect by ear, and certainly measure with the
equipment provided.  By analogy, this is termed a frequency-chirped pulse.

The value of the chirp is easy to find, and depends on the group velocity dispersion (GVD),
given by k≤(wo).
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Write G(z) = a(z) – i b(z) in its real and imaginary parts;  then rationalize the denominator:
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Equating the real and imaginary parts of [22] and [23], we can identify:
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So the instantaneous frequency is given by
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And from the other term of equation [22], the half-width of the pulse, measured at 1/e of the
maximum, is:
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The FWHM can then be calculated:
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This is very interesting:  for this gaussian pulse, the pulsewidth now depends on the distance z
propagated.  The pulse starts with its original duration, but then as it propagates at the group
velocity it stretches out further and further.  For an animated illustration of this, see the
demonstration on the lab webpage (TravelChirp.mov).

In summary, note that k(wo) determines the phase velocity, k¢(wo) determines the group velocity,
and k≤(wo) determines the spreading of the wavepacket, the group velocity dispersion.
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