
Spot Tracker
Author: Donald J Woodbury
©University of Toronto, 2011

Distribution Information

This distribution contains two main files: SpotTracker.py and the supporting Tools file.
This program is written for python 2.6 or higher, with support from the numpy, scypy,
Python Imaging library and Tkinter modules. The remainder of this documentation was
written for the Brownian.py program, which is nearly identical to that which is included
here. Only two modifications were made to adapt the program for the optical Tweezers
experiment. First, the sign was flipped in the “points_below_threshold” function to make
it track the bright points (points above the threshold) instead of dark ones. Finally, the
function allowing the user to see all tracks within the image was removed since it
requires additional supporting files and does not seem applicable to the Optical Tweezers
experiment.

Instructions for running the Program

To launch the program, the user must open and run the file Brownian.py. When this is
done, a window should appear, prompting the user to select the image sequence to be
analyzed.

The user may select either an animation file (Tiff or Gif) or an image sequence. If an
image sequence is selected, the user should first ensure that the images are named in such
a way that the frame number is indicated at the end of the file name (e.g. Image1.jpg) and
then select the first frame in the sequence they wish to analyze. The program will then
search that same folder for images that follow the same naming structure and order them
based on the frame number. Once the image sequence is selected, the Tkinter window
should populate with the first image, labels and scrollbars.

The user must then specify the three parameters that govern the way the algorithm
processes images. The first scrollbar allows the user to scroll through all of the images in
the sequence and stop on the first frame they wish to have analyzed. The second scrollbar
specifies the maximum brightness a pixel may have for it to be considered as part of the
spot being tracked. Since the program converts all images to 8-Bit greyscale, pixel
brightness ranges from 0 to 255. Finally, the last scollbar specifies the area around the
spot that the program will search for the spot in the new frame. Once these parameters are
set, the user may click on the spot they wish to be tracked and tracking will begin
immediately.

Once tracking is finished, the window will be refreshed to display the all frames in the
image sequence where the spot was detected. The two scrollbars for the threshold and
maximum distance should disappear, and a new menu at the top of the window should
replace the label instructing the user to select the spot in the image. At this point the user
may either scroll through the images to see where the spot was detected or they may use
the functions in the file menu to save the track data to a text file, save the images or plot
the results.

When saving the track to a file the user will first be prompted to select the location and
name of the file (which should end in .txt) and then to specify the frame rate. The result
will be a tab delimited file, each row containing the time, x position and y position, in
that order. Next, the user may choose to save the image sequence, with the spot indicated
on each frame, to a folder. In this case, when the Save Images option is selected, the user
will again be prompted to choose the name and location of the images to be saved. When
this is done, all of the images in the sequence will be saved to the selected folder in the
format “Basename_framenumber.jpg”. Finally, a plotting option is offered. When this is
selected, the user will be prompted to write titles and labels for the graph before a Pylab
plot of the spot’s position is launched. This plot is very limited in that it does not display
error bars or any analysis, but it is meant to provide an instant visual of the spot’s motion.

One option that has been included in this program is the ability to display the tracks from
all spots in the image sequence. This feature is included only for the purpose of being an
informative visual and includes no quantitative analysis methods. A warning for selecting
the “View All Tracks” option: this is a very computationally intensive algorithm and may
require several seconds to load. The speed at which it is able to process the images is
highly dependant on how many points have been detected, so if the analysis is not
complete after 30 seconds or so, it is possible that either the images are unsuitable for this
kind of analysis or that the threshold is set too high. Selecting view all tracks again will
revert the window back to displaying the single spot detected.

Finally, if the user wishes to either change parameters and perform the analysis again,
analyze a different spot or open a new image sequence altogether, the two methods
“Reset” and “Open…” have been included. Selecting Reset, will simply reset the window
to the state it was in before the spot was tracked, allowing the user to adjust settings or
select a new spot to track. Selecting “Open…” will effectively restart the program from
the beginning allowing the user to select an entirely different image sequence.

About the spot tracking algorithm

In brief, when the user selects the location of the spot in the first frame the program will
search within a square (with side length of twice the maximum distance the spot may
travel between frames) around that spot for pixels of intensity below the given threshold.
The locations of all of these pixels are then averaged and their centroid is then taken to be
location of the spot in that frame. To locate the spot in the next frame, the same process is
repeated, searching a box around the previous spot location for dark pixels. This process
has the effect of being very computationally efficient and not reliant on there being only
one spot in the image sequence. If two spots come close enough to each other to both fall
in the box being searched however, it is possible that the program will give false readings
or even loose the spot track all together. If this limitation proves to be a major hindrance
for real world spot detection applications, the algorithm may be modified without too
much complication to better suit the specific application.

