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ODR Fitter

The program odr_fit_ extended.py uses Orthogonal Distance Regression to fit a mathematical model to
two-dimensional data with uncertainties in both x and y. Both random and systematic uncertainties are
allowed, and the uncertainties do not have to be Gaussian. The program should run on any version of Python
2.7+ or 3+ that has numpy, scipy, and matplotlib installed.

Orthogonal Distance Regression
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What you must do
Initialize fit

To do your own fit, modify the code section labelled #### Mandatory User Definitions to define:

1. func : the model you are trying to fit (i.e. y=func(z, p)),
e x are the data values of “independent variable
e p are the parameters that the fit optimizes,
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2. data_file : the name of the data file read in by numpy.loadtxt,
3. p_guess : the initial guesses for the fit parameters.
o If the guess if poor, the fit may not converge to the best values.

Data Format

Data filse normally have one data point on each line in the format z,0,,y, oy; the values can be separated
by whitespace or commas. A fifth optional scale parameter for each point is discussed later in the section
on Systematic scaling. Datafile lines beginning with “#” are treated as comments (with an exception for
systematic uncertainties, see below). A simple data file might look like:

#x dx y dy
11.9 0.1 26.1 0.1
8.9 0.1 9.3 0.1
6.3 0.1 2.9 0.1
14.0 0.2 42.0 0.2

Systematic uncertainties can be reported by adding lines beginning with # a_x, da_x, b_x, db_x = or
# a_x, da_x, b_x, db_x =. Here is example of a full data file (gauss_ ODR.txt):

## x calibration uncertainties (assuming x_true = a_x + b_x * x_measured)
# a_x, da_x, b_x, db_.x = 0, 0.05, 1.0, 0.006
## y calibration uncertainties (assuming y_true = a_y + b_y * y_measured)
# a_y, da_y, b_y, db_y = 0, 0.05, 1.0, 0.006

#x dx y dy
11.9 0.1 26.1 0.1
8.9 0.1 9.3 0.1
6.3 0.1 2.9 0.1
14.0 0.2 42.0 0.2
8.0 0.1 7.0 0.1
12.7 0.1 32.8 0.2
10.2 0.1 16.8 0.1
18.2 0.2 46.4 0.2
20.8 0.1 31.3 0.2
17.8 0.2 49.4 0.2
17.0 0.2 50.6 0.2
19.8 0.2 38.0 0.2

This assumes linear systematics without correlations between x and y, but the code could be modified if the
systematics are non-linear.

Optional changes to code

You are, of course, welcome to modify the code in any way you wish, but a few more common changes can be
modified in the #### Mandatory User Definitions code section:

1. x_label, y_label : labels for plot axes
2. Number_of_MC_iterations : number of Monte Carlo iterations. 100 is a good choice to start so the
code will run quickly, but a > 1000 is better for final fits.
3. Decide whether you want some optional fitted curves on the output plot:
e plot_initial_guess : fit function with initial guesses
e plot_MC_fits : with Monte Carlo mean, median, or extreme parameters
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4. The probability distributions associated with uncertainties that are used to generate Monte Carlo
data values by “smearing” the observed or fit values. The default assumption is that the reported
uncertainties (o, 0,) is the standard deviation of a gaussian distribution, but a uniform distribution
(where y & 0, defines the full range of uncertainty of y) is sometimes appropriate (e.g. reading error of
a digital instrument), and other distributions are sometimes more realistic.

e smear_x_data : random x

e smear_y_data : random y

e smear_scale_x : systematic x scale
e smear_scale_y : systematic y scale
e smear_x_offset : systematic x offset
e smear_y_offset : systematic y offset

5. Whether systematic uncertainties are correlated, e.g. if the same instrument is used to measure both x

and y:
e correlated_offset : any systematic offset error is the same for = & y
e correlated_scale : any systematic scale error is be the same for z & y
6. The values of the uncertainties can be set in the code, e.g. if they appear to have been misevaluated.
e x_sigma, y_sigma : random uncertainties
o dx_offset, dx_scale, dy_offset, dy_scale : systematic uncertainties

Output from program

On the following pages is the text output from a Gaussian fit to the above data file. Both x and y were measured
with the same instrument so any calibration scale error will be the same for both, so correlated_scale=True
is set in the code. The output first identifies the data file, prints out the ODR model function, and lists any
systematic uncertainties. It then lists the fitted parameters, their estimated uncertainties, the initial guesses,
and the parameter correlation matrix. An quasi-x? is calculated from the uncertainty normalized orthogonal
distances of the data points from the fit line, and confidence level estimated assuming the quasi-y? actually
has a x? distribution.

This initial ODR result ignores any systematic uncertainties. Small systematic offset uncertainties could be
included in the fit via the covariance matrices of the input data, but scale (normalization) errors are more
problematic', so the evaluation of the effect of systematics is left for Monte Carlo estimation.

The data are consistent with the Gaussian model. The median Monte Carlo uncertainties are significantly
larger than the the original ODR uncertainties, reflecting the relatively large systematic uncertainties.

In general, the Monte Carlo parameter medians are more robust than the means which are sensitive to just
a few (or even one) extreme values, so the median fit values should be taken as the best estimates of the
parameters and their uncertainties. The code can easily be modified to print out 95% CI (or any other)
uncertainties, or a histogram of the distribution of Monte Carlo parameters could be added.

Figure 1 shows the plot output of the above nice fit. The original ODR fit (in blue) and curves plotted with
the mean and median Monte Carlo parameters all fit the data very closely. The cyan dotted curve shows the
single Monte Carlo fit (out of 1001 in total) with the largest y value, so you can see an extreme example of
the possible range of variance at the 1/1001 chance level.

LOn the use of the covariance matriz to fit correlated data, G. D’Agostini, Nucl. Instrum. Methods Phys. Res. A 346 (1994)
306-311; doi:10.1016/0168-9002(94)90719-6. (also http://inspirehep.net/record/361137/files/desy93-175.pdf).
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Fitting 12 Data points from file gauss_0ODR.txt to following Model function
def gaussian(x,*p)
from numpy import exp

mu = plo] #  Peak position
sigma = p[1] # Peak width
y_mu = p[2] # Peak height scale

return y_muxexp (- (x-mu)**2/(2*sigma**2))

Systematics
correlated_offset = False
correlated_scale = True

x_true = 0.0+0.05
y_true = 0.0+0.05

(1.0+0.006) *x_measured
(1.0+0.006) *y_measured

+ o+

*x*x*% ODR has finished with: Sum of squares convergence

Estimated parameters, uncertainties, and starting guesses

plo] = 16.643 +/- 0.05991 Guessed: 15
pl1] = 4.2778 +/-  0.042811 Guessed: b5
pl2] = 50.686 +/- 0.27017 Guessed: 10
ODR Correlation Matrix
([ 1. 0.73326796 -0.34473356]
[ 0.73326796 1. -0.46575296]
[-0.34473356 -0.46575296 1. 1]
Quasi Chi-Squared/dof = 1.23347, Quasi CDF = 26.88333%

**xx Running Monte Carlo CDF Estimator ¥k
1001 successful MC simulations in 2.15797 seconds.

Fraction of Monte Carlo quasi-chi-squared values larger than value for ODR fit:
Monte Carlo CDF = 26.2}

MC Fit parameters Average + Standard Deviation; Median and 68.3% interval

plol = 16.6486 +/- 0.122837 ; 16.6485 + 0.121426 - 0.120198
pl1] = 4.27964 +/- 0.0479119 ; 4.27985 + 0.0484368 - 0.0483026
pl2] = 50.7412 +/- 0.394779 ; 50.7204 + 0.41728 - 0.357883
Monte Carlo Correlation Matrix
[[ 1. 0.70209012 0.55616856]
[ 0.70209012 1. 0.25758756]
[ 0.55616856 0.25758756 1. 1]

Check For Bias in MC Fit parameters
(Monte Carlo median)/(fit value) - 1
pl0] Bias : +0.0001806 +/- 0.0002921 ( 0.62 SD)
pl1] Bias : +0.0001247 +/- 0.0004407 ( 0.28 SD)
pl2] Bias : +0.0002257 +/- 0.0002149 ( 1.05 SD)"°°



Orthogonal Distance Regression Fit to Data
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Figure 1: Nice ODR output plot example.
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Figure 2: ODR fit to same data as Fig. 1 but with a poor initial guess for the parameters.



Effect of a poor initial guess

The initial guess of the Gaussian parameters for the fit shown in Figure 1 was p=(15,5,10) (which produces
the green dashed curve). Figure 2 shows what happens if the the initial guess for the peak position is changed
from 15 to 12, i.e. p=(12,5,10). The fit converges to parameter values that produce a curve far from the
data. The fit presumably found a local minimum of the summed orthogonal distances (as a function of p)
and could not find its way to the global best fit. (The black lines from the red data points to the blue curve
show the Orthogonal Distances that the fitting program was trying to minimize. These are also plotted in
Figure 1 but are too small to see.)

Systematic uncertainties
To see the effect of the systematic uncertainties we can set them to zero by changing the input data file so
that

# a x, da_x, bx, dbx=0, 0, 1, 0
# a_y, da_y, b_y, db_.y =0, 0, 1, O

(Simply deleting these lines also works.) If we rerun the fit on the modified file (gauss_ ODR_ no_ systematics.txt),
we see that the Monte Carlo fit parameters are now consistent with the initial ODR, uncertainties, i.e.

Estimated parameters, uncertainties, and starting guesses

plo]l = 16.643 +/- 0.05991 Guessed: 15
pl1] = 4.2778 +/-  0.042811 Guessed: 5
pl2] = 50.686 +/- 0.27017 Guessed: 10

MC Fit parameters Average + Standard Deviation; Median and 68.3% interval

plo]l = 16.642 +/- 0.052245 ; 16.642 + 0.05156563 - 0.053513
plil = 4.2762 +/- 0.037367 ; 4.2764 + 0.03715 - 0.03839
pl2] = 50.724 +/- 0.23134 ; 50.711 + 0.23992 - 0.21328

Although the difference is small, it does appear that the initial ODR uncertainties are slight overestimates,
but this is not important since the contribution from the systematic uncertainty is so large.

Non-gaussian uncertainties

Not all uncertainties are associated with a normal Gaussian probability distribution. For example, if there is
neglible noise in the signal and the random uncertainties are just the reading error of a digital meter, then
these uncertainties are associated with a uniform random distribution. For example, if the meter reading was
354, we might report the result as 354 4 0.5 since expect the “true” value to be somewhere in the range 353.5
to 354.5, with uniform probability inside that interval and zero probability outside.

If the data random uncertainties of both x and y describe the full range of a uniform uncertainty, we should
change

smear_x_data = gaussian_distribution # Random x
smear_y_data gaussian_distribution # Random y

to

smear_x_data = uniform_distribution # Random x
smear_y_data uniform_distribution # Random y

Rerunning the ODR fit with the systematics still turned off produces:
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Fitting 12 Data points from file gauss_0ODR_no_systematics.txt to following Model function
def gaussian(x,*p)
from numpy import exp

mu = plo] #  Peak position
sigma = p[1] # Peak width
y_mu = p[2] # Peak height scale

return y_muxexp (- (x-mu)**2/(2*sigma**2))

*x*x*% ODR has finished with: Sum of squares convergence

Estimated parameters, uncertainties, and starting guesses

plo]l = 16.643 +/- 0.05991 Guessed: 15
pl1] = 4.2778 +/-  0.042811 Guessed: 5
pl2] = 50.686 +/- 0.27017 Guessed: 10
ODR Correlation Matrix
([ 1. 0.73326796 -0.34473356]
[ 0.73326796 1. -0.46575296]
[-0.34473356 -0.46575296 1. 1]
Quasi Chi-Squared/dof = 1.23347, Quasi CDF = 26.88333%

***xx Running Monte Carlo CDF Estimator ¥
1001 successful MC simulations in 1.9493 seconds.

Fraction of Monte Carlo quasi-chi-squared values larger than value for ODR fit:
Monte Carlo CDF is less than 0.1%
and is consistent with 0.0%
For a better limit run with more iterations!

MC Fit parameters Average + Standard Deviation; Median and 68.3J, interval

plo] = 16.6419 +/- 0.0313624 ; 16.641 + 0.0337829 - 0.0314054
pl1] = 4.27715 +/- 0.0219635 ; 4.27735 + 0.0219851 - 0.0225303
pl2] = 50.6921 +/- 0.13023 ; 50.6929 + 0.131281 - 0.136698
Monte Carlo Correlation Matrix
([ 1. 0.7266205 -0.29216103]
[ 0.7266205 1. -0.39443881]
[-0.29216103 -0.39443881 1. 1]

Check For Bias in MC Fit parameters
(Monte Carlo median)/(fit value) - 1
pl0] Bias : -3.278e-05 +/- 7.655e-05 ( -0.43 SD)
pl[1] Bias : -9.318e-05 +/- 0.0002147 ( -0.43 SD)
pl2] Bias : +0.0001557 +/- 0.000117 ( 1.33 SD)

We see that the Monte Carlo parameter uncertainties are now roughly half the size of those reported by
the initial ODR fit which assumes the uncertainties are standard deviations, and the Monte Carlo CDF is
consistent with zero. This is unsurprising. The standard deviation of a uniform unit distribution is 1/1/12,



so in the linear limit we expect the ODR fit to overestimate the uncertainty by ~ +/12/2 ~ 1.7. If the
uncertainties really do correspond to a uniform distribution with sharp edges, then every error bar in the
residual plot should touch the fit line, and if even one misses the CDF will be zero.

Asymmetric uncertainties

Even if the input data uncertainties are symmetric about the data values,? the uncertainties of the output
parameters may not be. For example, consider this output from a power law fit to a data file (power_data.txt)
with gaussian uncertainties and no systematics:
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Fitting 12 Data points from file power_data.txt to following Model function
def absolute_power (x,*p)
# A "peak like" (hence the minus sign) absolute power function

mu = plo] # Central position
nu = p[1] # Power exponent
y_mu = p[2] # Normalization

return y_mu*abs (x-mu)**nu

***x*x ODR has finished with: Sum of squares convergence

Estimated parameters, uncertainties, and starting guesses

plo] = 0.20045 +/- 0.13953 Guessed: 0O
pl1] = -1.5997 +/- 0.89354 Guessed: -1
pl2] = 0.47992 +/- 0.23242 Guessed: 1
ODR Correlation Matrix
([ 1. 0.90884147 0.22292667]
[ 0.90884147 1. 0.5666132 ]
[ 0.22292667 0.5666132 1. 1]
Quasi Chi-Squared/dof = 1.22822, Quasi CDF =  27.20293%

*%*xx Running Monte Carlo CDF Estimator ¥k
1001 successful MC simulations in 3.34612 seconds.

Fraction of Monte Carlo quasi-chi-squared values larger than value for ODR fit:
Monte Carlo CDF = 25.9

MC Fit parameters Average + Standard Deviation; Median and 68.3% interval

plo]l = 0.141039 +/- 0.194061 ; 0.196883 + 0.0907961 - 0.188061
pl1]l = -1.98581 +/- 1.27211 ; -1.62672 + 0.618818 - 1.23818
pl2] = 0.824935 +/- 2.0448 ; 0.534004 + 0.245712 - 0.174193
Monte Carlo Correlation Matrix
[C 1. 0.94660266 -0.56915545]
[ 0.94660266 1. -0.46866823]
[-0.56915545 -0.46866823 1. 11

2The input data uncertainty smearing functions can, of course, be recoded to be asymmetric if needed.
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The uncertainties of the Monte Carlo medians have large asymmetries which are not obvious from
the standard deviation uncertainties of the Monte Carlo means or the initial ODR fit parameters.

Orthogonal Distance Regression Fit to Data
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Systematic scaling

It is best to take all the data using just one range, but if this is not the case, then a scale factor can
be appended to each data point that will be used to scale the systematic offset. For example, consider a
multi-range voltmeter that has a 1% calibration offset uncertainty that is expected to be proportional on
different ranges. i.e. If the systematic offset is -0.07 Volts on the 10 volt range, it will be -0.7 Volts on the 100
volt range. Here is the data file with systematics and scale factors.

## x calibration uncertainties (assuming x_true
# a_x, da_x, b_x, db_x

=0,

0.05,

1.0, 0.006

## y calibration uncertainties (assuming y_true =
# a_y, da_y, b_y, db_y = 0, 0.05, 1.0, 0.006

#x
11.9
8.9
6.3
14.0
8.0
12.
10.
18.
20.
17.
17.
19.8

O 00 00NN N

dx

O OO O OO O OOOooOo

N

NN, NP PP NNRPR P>

y
26.1

9.3

2.9

42.0
7.0
32.
16.
46.
31.
49.
50.
38.0

P> Wb 0

dy

O OO O OO OO OO OoOo

N

NNNNENENRPR - -

NNNNERENR RPN B P e

a_x + b_x * x_measured)

a_y + b_y * y_measured)

For this particular data file (gauss ODR, with scale.txt), the effect of the data point scale factors is negligible
because they do not affect the systematic scale uncertainties which turn out to be dominant in this example.


https://www.physics.utoronto.ca/~phy326/python/gauss_ODR_with_scale.txt

In this example, both x and y have the same correlated systematics and scale factors. The code can, of
course, be modified for more complex relationships among the systematics.
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