Physics 485/1860F
Modern Optics: Foundations of Quantum Optics
Department of Physics
University of Toronto

Term Test 28 October 2004

STUDENT-SUPPLIED AID SHEET
 (hand-prepared, one side 8 1/2" x 11")
 NON-PROGRAMMABLE CALCULATOR
 DO ALL FIVE QUESTIONS
 DURATION OF TEST: 2 HOURS

[20] 1) Define these terms, and explain as succinctly as possible (usually three sentences or less) the meaning or significance of each of the following, in an optics context:
i) Jones calculus
ii) frustrated total internal reflection
iii) lateral (transverse) coherence
iv) coefficient of finesse of a Fabry-Perot interferometer; reflecting finesse (as used by Fowles)
[20] 2) Polarization
a) Light linearly polarized along \hat{x} and light polarized along \hat{y} together form a basis $\{\vec{\alpha}, \vec{\beta}\}$ for all polarization states. Show that is an orthogonal basis in the Jones calculus.
b) Show that light right-hand circularly polarized and light left-hand circularly polarized form an equally valid, and orthogonal, basis $\left\{\vec{\sigma}^{+}, \vec{\sigma}^{-}\right\}$in the Jones calculus.
c) Use the Jones calculus formalism to show that two quarter-wave plates and a linear polarizer can be combined in the right order and orientation to make a circular polarizer.

[20] 3) Coherence time and coherence length

Consider a 'quasimonochromatic' source as follows: a source has sinusoidal variation of field in time, with a well-defined angular frequency ω. However, the phase ϕ is randomized at regular intervals τ_{0}. Thus the oscillation is a regular sinusoidal oscillation at angular frequency ω for a time τ_{0}, and then it is a similar oscillation but with a different, unrelated, phase for time τ_{o}, and so on.

(question 3 continues...)

Show that the degree of coherence of this source is the following:

$$
|\gamma(\tau)|= \begin{cases}1-\frac{\tau}{\tau_{o}} & \tau<\tau_{o} \\ 0 & \tau \geq \tau_{o}\end{cases}
$$

[20] 4. Coherence and Spectroscopy
a) An idealized laser simultaneously emits three equal-amplitude monochromatic plane waves with frequencies $\omega_{0}, \omega_{0}+\Omega$, and $\omega_{0}-\Omega$. What is the power spectrum and self-coherence function of this source? Show that although the laser output spans a frequency bandwidth of 2Ω, the coherence time τ_{c} is infinite.
b) Assuming $\omega_{\mathrm{o}}=10^{16} \mathrm{~s}^{-1}$ and $\Omega=10^{10} \mathrm{~s}^{-1}$, what must be the finesse of a 0.5 m air-filled Fabry-Perot interferometer so as to resolve the peaks in the power spectrum?
c) What is the minimum free spectral range needed in order to use a Fabry-Perot interferometer to properly characterize the spectrum in (b)? What conditions does this impose on the design of the Fabry-Perot?
[20] 5. Fabry-Perot Interferometer
Consider two parallel partially reflecting mirrors, and plane-parallel light incident at an angle θ measured from the surface normal.
a) Sketch the path of a light ray incident at roughly 20° : its multiple reflections between mirrors and the multiple transmitted and reflected paths. Illustrate the path-length difference between successive output rays. In a separate diagram, repeat for an incidence of approximately 60°. Illustrate how this path-length difference is less for the higher angle of incidence.
b) Derive the simple formula for δ, the path-length difference between successive transmitted rays, and point out analytically the reduction of path-length difference for increasing angles of incidence, shown heuristically in (a).
c) Using the definition $\Delta=\delta+\delta_{\mathrm{r}}$ derive the formula:

$$
E_{T}=\frac{E_{o} t^{2}}{1-r^{2} e^{i \Delta}}
$$

and subsequently the formula

$$
I_{T}=I_{o} \frac{T^{2}}{(1-R)^{2}} \frac{1}{1+F \sin ^{2} \frac{\Delta}{2}}
$$

Identify/define all terms used, including δ_{r}. Illustrate the significance of F, drawing I_{T} for 3 different values of F, with Δ ranging over at least twice the free spectral range.
[100] TOTAL

