








4. (a) Construction:  need a birefringent crystal, cut from bulk material so that it presents 
its two axes, exhibiting different indices of refraction, transverse to the axis chosen for 
the crystal length, and perpendicular to each other.  Thus one can choose the polarization 
of E at different angle α between the two axes.  In this way the E-field vector will 
decompose over two components, one along each axis.  Label these axes by their indices:  
typically no (ordinary) and ne (extraordinary). 
Since the indices are different, waves with polarizations along each axis will travel at 
different phase-speeds, and the optical path-lengths differ for each polarization although 
they travel the same physical distance L through the crystal.  Thus they acquire different 
net phase during their travel, and acquire a phase-difference between the two of: 
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For a half-wave plate (HWP), the length L is cut so as to make this phase-change a value 
π (i.e., 1/2*2π).  Thus: 
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i.e., the optical path-length difference is one-half wave: 
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Similarly, for a quarter-wave plate (QWP) the phase change is π/2 (i.e., 1/4*2π) and the 
optical path-length difference is one-quarter of a wave: 
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(This much detail is not required, it’s just meant to be helpful) 
To rotate through an arbitrary angle θ, we use a HWP.  If the E-field vector is brought in 
at an arbitrary angle α to one of the axes, then after propagation 
the two components will have a relative phase-difference of π — 
one will be multiplied by (–1) relative to the other.  Without loss 
of generality, this is a mirror image of the polarization in the axis 
from which α was measured (see diagram).  
Thus going from α to – α gives a net angle-change of θ = 2 α.  
Thus, to rotate by θ, bring the polarization in at an angle θ /2. 
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In Jones calculus, HWP: 
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vector rotated by α from x-axis: 
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Then the HWP operation: 
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Thus θ = α – (–α) = 2 α. 
4.  b)  For the Pockels effect, we fix L and adjust 
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but EL = ΔV, where E is a constant (uniform) field. 
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 (regardless of crystal length)

 
Use:  set two crossed polarizers (90° rotation between them) to make a normal 
OFF=CLOSED state (no transmission).  Now add the PC in between, eventually to defeat 
the crossed polarizers:  Set the PC fast and slow axes at α=π/4 relative to polarizers, i.e., 
θ =π/2 for the rotation of the polarization after the PC if it is made to be a HWP by the 
right voltage. 
Length:  is irrelevant (but one usually chooses a convenient length to be about the same 
as the crystal width). 
For ΔV:  For the best ON=OPEN state, make the PC a HWP — all the light will then be 
transmitted.  So  
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i.e.,  
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for λ0 = 1 µm, 
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Note that shorter wavelengths require reduced voltage — a physical shift of distance λ0/2 
between the phase fronts is a smaller and easier to create for shorter λ0, with wavefronts 
closer together. 


