Foundations in Quantum Optics - Modern Optics
 PHY485/1485F
 University of Toronto
 Problem Set \#3

1. Polarization changers
a) Hecht Q 8.48
b) Hecht Q 8.65
2. Reflections
a) Hecht Q 4.55
b) Hecht Q 4.56
c) Hecht Q 4.61
3. Mooney rhomb

At right is a diagram of a Mooney rhomb, which is used to produce circularly polarized light, following relative phase changes produced by total internal reflection. Take an index of refraction $n=1.65$ for the glass of this rhomb. Show that the apex angle A of should be designed to be about 60 degrees. You may find some interest (this is not a hint) in this paper: http://www.iop.org/EJ/article/1464-4258/6/4/020/joa4 4 020.pdf

4. X-ray mirrors - Certain kinds of microscope work in the x-ray range by using grazing-incidence mirrors. The figure at right shows a basic Kirkpatrick-Baez microscope together with a variant that increases collection efficiency.
These depend on the dielectric function of a metal:

$$
\frac{\varepsilon(\omega)}{\varepsilon_{0}}=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega v}
$$

where ω is the frequency of light or x-rays, ω_{p} is the plasma frequency:

$$
\omega_{p}=\sqrt{\frac{N_{e} e^{2}}{m \varepsilon_{o}}}
$$

and v is the collision frequency of electrons in the metal. N_{e} is the electron density, e is the charge of an electron, and m is the mass of an electron. Typical plasma frequencies in a metal are roughly $10^{15} \mathrm{~s}^{-1}$, around the frequency of visible and near-ultraviolet; typical collision frequencies are on the order of $10^{15} \mathrm{~s}^{-1}$, about the same as infrared light.
The Fresnel formulae we derived in class still applies, although the index of refraction and transmitted angles become complex-valued (Ref: Fowles § 6.6).
a) Show that for electromagnetic radiation above a certain frequency, it becomes possible to produce something approximating total internal reflection on going from vacuum into a metal, i.e., that though the metal is more dense physically, it is less dense optically. Note that absorption makes this imperfect (how imperfect?).
b) For x-rays of energy 10 keV , what angle of incidence is necessary to make a good reflector of the type above?
c) At what angle should a flat metal mirror be set in order to reflect only extreme-ultraviolet radiation of energy below 50 eV ? This can be used to make a sort of low-pass filter.
Formation of Optical Images by X-rays, Journal of the Optic Society of America, 38 (1948) 766, P. Kirkpatrick and A. V. Baez
[NB: be prepared to approximate equations appropriately, using series expansions, or to solve by computer-plotting.]

5. Thick lens formula

In class, we determined the focal length of a very thin lens, assuming its thickness was essentially zero. Show using ray matrix methods that the focal length of a lens of thickness d is:

$$
\frac{1}{f}=(n-1)\left\{\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right\}
$$

Show that the A, B, and D elements of the ray matrix are also not their ideal values of 1,0 , and 1 .

