$$
\text { Hight } \% 48
$$

Q1 a) The rates power for $10 \mathrm{~cm} \mathrm{of}^{\text {Meg }} \mathrm{g} / \mathrm{cm}^{3}$ solus ion is $+1,6 \cdot 45^{\circ}$

The rotary power for i m of $10 \mathrm{~g} / 100 \mathrm{~cm}$?
solution is this

1) Hecht 8.65

$$
I_{i}=I_{i} \sin ^{2}\left(\frac{\Delta Q}{2}\right)
$$

and $\Delta \Phi=2 \pi n_{0}^{3} \frac{r_{63}}{\lambda_{0}} V$

So

The voltage which provides maximum (-ningsmistor is the halt-won voitoog, winch canc the Pockets cell to rotate the incident polsorition Trough 90°.

For $I_{t}=0, V \neq(0)$, we reed $\frac{\Delta F}{2}=7$

$$
\begin{array}{rl}
=\Delta \quad \Delta \psi=2 \pi \\
2 \pi & =2 \pi n_{0}^{3} r_{b 3} \\
\lambda_{0} & V \\
& =2 \pi \quad V
\end{array} \begin{aligned}
& n_{0}^{3} r_{6} \\
&=\frac{\lambda_{0} .461 \times 10^{-a}}{(1.52)^{3} 8.5 \times 10^{-12}} \\
&=182.94 \mathrm{~V}
\end{aligned}
$$

To provide max It $_{\text {I }}$ at zero voltage, the input output polarises of the cell should be onentet in the same direction. Then at $V_{\frac{1}{r}}$ the output mound be

Problem 2
a) Hecht Q 4.55

$$
n=\sin (90) / \sin (48)=1.35
$$

Q2 b)
We don't know the angle of incidence on AC - but we know we want the minimum possible index of refraction, meaning we need the maximum angle of incidence at $B C$, meaning we need the maximum angle of incidence at $A C$ (looking at the diagram) - so we are incident at 90 degrees, and

Q2 b)

A beam traversing $A C$ will be bent into the prism at angle $\theta_{r_{A}}=\sin ^{-1}\left(\frac{1}{n_{p}}\right)$
The angle of incidence at $B C$ must be at least the critical angle to give TIR

$$
\begin{aligned}
\theta_{i B} & =\theta_{c} \\
& =\sin ^{-1}\left(\frac{1}{n_{p}}\right) \\
& =\theta_{r_{A}}
\end{aligned}
$$

and, fou the diagram

$$
\theta_{i t}=9 \theta-\theta_{r_{A}}
$$

Hence, $\theta_{\text {ra }}$ mut be at most 45° so that $\theta_{\text {is }}$ con be greater than it

$$
\begin{aligned}
45 & =\sin ^{-1} \frac{1}{n_{p}} \\
n_{p} & =\frac{1}{\sin 45}=1.41
\end{aligned}
$$

c)

Hecht Q 4.61
Solution from Hecht page 663:
The beam scatters off the wet paper and is mostly transmitted until the critical angle is attained, at which point the light is reflected back toward the source.
$\tan \theta_{C}=(R / 2) / d$, and so $n_{i j}=1 / n_{i}=\sin \left[\tan ^{-1}(R / 2 d)\right]$.

Problem 3
Mooney's rhomb

2 reflections identical angle, at max symmetry (vertical, of drawing) then on each

Thus

$$
\frac{\pi}{4}=\Delta=\delta_{p}-\delta_{s} \quad \text { (want } \frac{\pi}{2} \text { net) }
$$

$$
0.4142=\tan \frac{\pi}{8}=\tan \frac{\Delta}{2}=\frac{\cos \theta \sqrt{\sin ^{2} \theta-n^{2}}}{\frac{1}{\sin ^{2} \theta}}
$$

$$
\begin{aligned}
\tan ^{2} \frac{\pi}{8} & =\frac{\cos ^{2} \theta\left(\sin ^{2} \theta-n^{2}\right)}{\sin 4 \theta} \\
& =\frac{\left(1-\sin ^{2} \theta\right)\left(\sin ^{2} \theta-n^{2}\right)}{\sin 4 \theta}
\end{aligned}
$$

$$
\begin{gathered}
\tan ^{2} \frac{\pi}{8} \cdot \sin ^{4} \theta=\sin ^{2} \theta-n^{2}-\sin ^{4} \theta+n^{2} \sin ^{2} \theta \\
s=\sin ^{2} \theta
\end{gathered}
$$

$$
s^{2}\left(1+\tan ^{2} \frac{\pi}{8}\right)-\left(1+n^{2}\right) s+n^{2}=0
$$

$$
\begin{aligned}
& S=\frac{\left(1+n^{2}\right) \pm \sqrt{\left(1+n^{2}\right)^{2}-4}}{2} \\
& \theta=0.4192,0.7478
\end{aligned}
$$

$$
\begin{aligned}
\theta & =0.7043^{\circ} \text { or } 1.045 \text { radians } \\
& =40.35^{\circ} \text { or } 59.86^{\circ}
\end{aligned}
$$

$$
=40.35^{\circ} \text { or } 59.86^{\circ}
$$

$$
\begin{aligned}
& A=\pi-2 \theta \\
\Rightarrow & A=99.3^{\circ} \text { or } 60.3^{\circ}
\end{aligned}
$$

$2 A+2 B=2 \pi$

$$
\begin{aligned}
& \theta+\alpha=\pi / 2 \\
& 2 \alpha+B=\pi \\
B= & \pi-2 \alpha \\
= & \pi-2(\pi / 2-\theta) \\
B= & 2 \theta \\
A= & \pi-B \\
= & \pi-2 \theta
\end{aligned}
$$

Problem 4

X-ragminors $\quad \mathcal{N}^{2}=\varepsilon=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \nu}$

$$
r_{s}=\frac{\cos \theta-\sqrt{n^{2}-\sin ^{2} \theta}}{\cos \theta+\sqrt{n^{2}-\sin ^{2} \theta}}
$$

Note fist how it work with $n \in \mathbb{R}$: when $n^{2}-\sin ^{2} \theta=0$, then $r_{s}=\frac{\cos \theta}{\cos \theta}=1$ when $n^{2}-\sin ^{2} \theta<0$, then

$$
r_{s}=\frac{\cos \theta-i \beta}{\cos \theta+i \beta}
$$

so us long as the radical is imaginary, numerator $\&$ denominator have the same magmilide, thea $\left|r_{s}\right|^{2}=1$. It t camel

Now with $n \in \mathbb{C}$

$$
\begin{aligned}
r_{S} & =\frac{\cos \theta-\sqrt{\left(1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \nu}\right)-\sin ^{2} \theta}}{\cos \theta+\sqrt{\left(1-\frac{\omega_{p}^{2}}{\omega^{2}+1 \omega \nu}\right)-\sin ^{2} \theta}} \\
& =\frac{\cos \theta-\sqrt{\cos ^{2} \theta-\frac{\omega_{p}^{2}}{\omega^{2}(1+i v / \omega)}}}{\cos \theta+\sqrt{\cos ^{2} \theta-\frac{\omega_{p}^{2}}{\omega^{2}(1+i v / \omega)}}}
\end{aligned}
$$

in our case $\frac{\nu}{\omega} \ll 1$ so

$$
r_{s}=\frac{\cos \theta-\sqrt{\cos ^{2} \theta-\frac{\omega_{p}}{\omega^{2}}(1-i v / \omega)}}{\cos \theta+\sqrt{\cos ^{2} \theta-\frac{\omega_{p}^{2}}{\omega^{2}}\left(1-i^{2} / \omega\right)}}
$$

when $\cos ^{2} \theta=\frac{\omega_{p}^{2}}{\omega^{2}}$ thus corresponds to the onset of TIR in the case of a conductor/plama without collisions $(v=0)$. Beyond this point the radicals are imaginary and $\left|r_{s}\right|^{2}=1$ even Though this is not a deeledric.
b) x-rays $10 \mathrm{kcV}: ~ \hbar \omega=10 \mathrm{keV} \quad \hbar=6.57 \times 10^{-16} \mathrm{eV}-\mathrm{s}$

$$
\begin{aligned}
& \omega=1.5 \times 10^{19} \mathrm{~s}^{-1} \\
& \omega_{p}=10^{15} \mathrm{~s}^{-1} \\
& v=10^{13} \mathrm{~s}^{-1}
\end{aligned}
$$

$\sqrt{\frac{\nu}{2 \omega}}=5.8 \times 10^{-4}$
Then $\left|r_{s}\right|^{2}=0.998$ at $\cos \theta=\frac{\omega_{p}}{\omega}=3.3 \times 10^{-5}$

$$
\begin{aligned}
& \theta \text { is near } \pi / 2 ; \text { write } \cos \theta=\cos (\pi / 2-\delta)=\sin \delta \\
& \text { Crazing angle } \delta
\end{aligned} \begin{aligned}
\delta & \sin \left(3.3 \times 10^{-5}\right) \\
& =6.7 \times 10^{-5} \text { radians } \\
& =0.003 \text { degrees } \\
& =1.38 \text { arc-seconds }
\end{aligned}
$$

Compare for 1 keV

$$
=0.03 \text { degrees }
$$

$$
=13.8 \text { arc }- \text { seconds }
$$

Both quite mall
grazing angle:
dijpult to get high - Piciencies.
c)

```
\hbar\omega}=50\textrm{eV
    \omega}=7.5\times1\mp@subsup{0}{}{16}\textrm{s
```

$\delta=13 \mathrm{mRad}$
$=0.8$ degrees. Any longer wavelength will also reflect, at this angle, no this makes a low pars filta. K-edge obreption filter make a ligh-pass filter. so in the right combinations x-ray bandpass filters can be constivited.

Problem 5

A thick lens can be broken down into 2 curved interfaces and one free propagation region. This is modeled using ray matrices as follows:

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{cc}
1 & 0 \\
(n-1) / R_{2} & n
\end{array}\right]\left[\begin{array}{ll}
1 & d\rceil \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\left(\frac{1}{n}-1\right)
\end{array}\right] / R_{1} \quad 1 / n \right\rvert\,\right\rfloor=\left[\begin{array}{cc}
1 & 0 \\
(n-1) / R_{2} & n
\end{array}\right]\left[\begin{array}{cc}
1+d\left(\frac{1}{n}-1\right) / R_{1} & d / n \\
\left(\frac{1}{n}-1\right) / R_{1} & 1 / n
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+d\left(\frac{1}{n}-1\right) / R_{1} & d / n \\
(n-1) / R_{2}+d(n-1)\left(\frac{1}{n}-1\right) /\left(R_{1} R_{2}\right)+n\left(\frac{1}{n}-1\right) / R_{1} & d(n-1) /\left(n R_{2}\right)+1
\end{array}\right] \\
& C=(n-1) / R_{2}+d(n-1)\left(\frac{1}{n}-1\right) /\left(R_{1} R_{2}\right)+n\left(\frac{1}{n}-1\right) / R_{1} \\
& =(n-1) / R_{2}+d(n-1)\left(\frac{1}{n}-1\right) /\left(R_{1} R_{2}\right)-(n-1) / R_{1} \\
& =(n-1)\left[\frac{1}{R_{2}}-\frac{1}{R_{1}}-\left.\frac{d(n-1)}{n R_{1} R_{2}}\right|_{]}\right. \\
& \frac{1}{f}=-C=(n-1)\left[-\frac{1}{R_{2}}+\frac{1}{R_{1}}+\frac{d(n-1)}{n R_{1} R_{2}}\right] \text { is the focal length formula. }
\end{aligned}
$$

Also, $A \neq 1, B \neq 0$, and $D \neq 1$ (unless $d=0$ which in that case is the thin lens approximation).

