From the femtouniverse toward the real world, via anomalies and twists

various works over the years ('18-'23) with

Mohamed Anber (Durham)

Andrew Cox, F. David Wandler (Toronto)

From the femtouniverse toward the real world, via anomalies and twists

 $= R^{1,3}$

Erich Poppitz

various works over the years ('18-'23) with

Mohamed Anber (Durham)

Andrew Cox, F. David Wandler (Toronto)

- importance of symmetries in QFT
- 't Hooft anomalies since 1980's: e.g. preons, Seiberg dualities
- new developments!

THIS TALK

higher-form/discrete: Gaiotto, Kapustin, Komargodski, Seiberg 2014-...
"GKKS+"

TWO PARTS

MAIN: mixed 0-form/1-form anomaly "new" vs "old"

IN THE FORM anomalies, nonpertubative semiclassical dynamics of COMMENTS: and the large volume ("real world") limit

1. pure 4d YM, any G, $\theta = 0$ or π

parity at $\theta = 0$, π

2. 4d N=1 SYM, any G, or G with n_f massless adjoint Weyl, or...

discrete chiral
$$Z_{2Nn_f}^{(0)}$$
 for $G = SU(N): U(1) \rightarrow Z_{2Nn_f}$

in each case, 1-FORM CENTER, e.g. $Z_N^{(1)}$ for SU(N), act on Wilson loops in each case, 0-FORM involves 2π shift of θ angle (in YM, only at $\theta=\pi$) explicitly:

1. pure 4d YM, any G, $\theta = 0$ or π

$$\left(\int_{0}^{3} dx \, K^{\circ} = \frac{1}{8\pi^{2}} \int_{0}^{1} \operatorname{tr}\left(A_{\Lambda}F - \frac{i}{3}A^{3}\right)\right)$$

parity at $\theta = 0$, π

$$\hat{P}_{\pi} = \hat{V}_{2\pi} \hat{P}_{0} \qquad \hat{V}_{2\pi} = e^{i \, 2\pi \int d^{3}x \hat{K}^{0}}$$

2. 4d N=1 SYM, any G, or G with n_f massless adjoint Weyl, or...

discrete chiral $Z_{2Nn_f}^{(0)}$

conserved non-gauge invariant U(1) charge

$$\hat{Q}_5 = \int d^3x \hat{J}_5^0 = \int d^3x \hat{j}_f^0 - 2n_f N \int d^3x \hat{K}^0$$

$$\hat{X}_{\mathbb{Z}_{2n_f}^{(0)}N} = e^{i\frac{2\pi}{2n_fN}}\hat{Q}_5 = e^{i\frac{2\pi}{2n_fN}}\int d^3x \hat{j}_f^0 \hat{V}_{2\pi}^{-1}$$

1. pure 4d YM, any G, $\theta = 0$ or π

$$\left(\int_{0}^{3} dx \, K^{o} = \frac{1}{8n^{2}} \int_{0}^{1} \left(fr\left(A_{n}F - \frac{i}{3}A^{3}\right) \right)$$

parity at $\theta = 0$, π

$$\hat{P}_{\pi} = \hat{V}_{2\pi} \hat{P}_{0} \qquad \hat{V}_{2\pi} = e^{i \, 2\pi \int d^{3}x \hat{K}^{0}}$$

2. 4d N=1 SYM, any G, or G with n_f massless adjoint Weyl, or...

discrete chiral $Z_{2Nn_f}^{(0)}$

conserved non-gauge invariant U(1) charge

$$\hat{Q}_5 = \int d^3x \hat{J}_5^0 = \int d^3x \hat{j}_f^0 - 2n_f N \int d^3x \hat{K}^0$$

$$\hat{X}_{\mathbb{Z}_{2n_fN}^{(0)}} = e^{i\frac{2\pi}{2n_fN}}\hat{Q}_5 = e^{i\frac{2\pi}{2n_fN}}\int d^3x \hat{j}_f^0 \frac{1}{\hat{V}_{2\pi}^{-1}}$$

GKKS+ have shown that these symmetries have a mixed anomaly

usually considered in the Euclidean path integral:

gauge center -> find that discrete symmetry disappears

THIS TALK: MIXED ANOMALY IN HILBERT SPACE ON TORUS

- desire to understand a new observation from different view points

Hamiltonian was particularly useful in 2d, work w/ Anber 1807, 1811

- lattice is usually a torus
- this study reveals connections to "old" work, somewhat unknown/unappreciated!
- last but not least: allows for simple understanding of anomaly, e.g. w/out " $\mathcal{P}(B^{(2)})$ "

MAIN RESULT anomaly has immediate consequences for spectrum of \hat{H} : exact degeneracies of "electric flux" states in appropriately twisted Hilbert space at any size torus

N.B.: different from 'topological order' (e.g. Z_2 in superconductors), where torus degeneracy only in "topological scaling limit," neglect tunnelling at $V<\infty$

outline

- 1. mixed 0-form/1-form anomaly in torus (T^3) Hilbert space
 - old: 1980's+... T^3 "femtouniverse" w/ twists
 - new: anomaly interpretation
- 2. consequence for spectrum of \hat{H} : exact degeneracies of "electric flux" states at any size T^3
- 3. implications for infinite volume phases, semiclassics, and connection to Euclidean discussions
- will skip derivations see Cox, Wandler, EP, 2106.11442 (nicely explained!) -
- and focus on discussing the implications (mostly on example of SU(N) at $\theta=\pi$)

constant-twist (Γ_i) - gauge (the good one!) the gauge invariant data:

$$m_k \in Z \pmod{N}, k = 1,2,3$$

"spatial 't Hooft twists $SU(N)/Z_N$ bundle"

example:
$$m_3=n_{12}=1$$
 $\Gamma_1\Gamma_2=e^{i\frac{2\pi}{N}}\Gamma_2\Gamma_1$, $\Gamma_3=1$

= turned on static topological 2-form Z_N gauge background in 1-2 plane [Kapustin, Seiberg '14]

example: $m_3=n_{12}=1$ $\Gamma_1\Gamma_2=e^{i\frac{2\pi}{N}}\Gamma_2\Gamma_1$, $\Gamma_3=1$

winding Dirac surface of "'t Hooft loop"

_ lattice: unit
center vortex in
0-3 plane

turned on static topological 2-form Z_N gauge background in 1-2 plane [Kapustin, Seiberg '14]

quantizing in fixed \overrightarrow{m} background = in spatial 2-form flux gauging $Z_N^{(1)}$

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+...

Witten '82, '00: use for $tr(-1)^F$

- center-symmetry: $\hat{T}_{l,\;l=1,2,3}$ act on winding loops $\hat{T}_l\hat{W}_k\hat{T}_l^{-1}=e^{i\frac{2\pi}{N}\delta_{kl}}\,\hat{W}_k$

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+...

Witten '82, '00: use for $tr(-1)^F$

- center-symmetry: $\hat{T}_{l,\;l=1,2,3}$ act on winding loops $\hat{T}_l\hat{W}_k\hat{T}_l^{-1}=e^{i\frac{2\pi}{N}\delta_{kl}}\,\hat{W}_k$
- $\hat{T}_l \text{ commute with Hamiltonian, generate I-form } Z_N^{(1)}; \hat{T}_l \text{ eigenvalues } e^{i\frac{2\pi}{N}e_l} \in Z_N$

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+...

Witten '82, '00: use for $tr(-1)^F$

- center-symmetry: $\hat{T}_{l,\;l=1,2,3}$ act on winding loops $\hat{T}_l\hat{W}_k\hat{T}_l^{-1}=e^{i\frac{2\pi}{N}\delta_{kl}}\,\hat{W}_k$
- $\hat{T}_l \text{ commute with Hamiltonian, generate I-form } Z_N^{(1)}; \hat{T}_l \text{ eigenvalues } e^{i\frac{2\pi}{N}e_l} \in Z_N$
- all eigenvectors of \hat{H} also labeled by Z_N "electric flux" \vec{e} (change \vec{e} : act w/ W. loop)

$$\hat{T}_{l} | \psi_{\vec{e}} \rangle = | \psi_{\vec{e}} \rangle e^{\frac{2\pi i}{N}e_{l}}$$

boundary conditions on T^3

eigenvalues of \hat{T}_l , generating 1-form Z_N

 \overrightarrow{e} (mod N) ... discrete "electric flux"

't Hooft '81; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+...

Witten '82, '00: use for $tr(-1)^F$

- center-symmetry: $\hat{T}_{l,\;l=1,2,3}$ act on winding loops $\hat{T}_l\hat{W}_k\hat{T}_l^{-1}=e^{i\frac{2\pi}{N}\delta_{kl}}\,\hat{W}_k$
- $\hat{T}_l \text{ commute with Hamiltonian, generate I-form } Z_N^{(1)}; \hat{T}_l \text{ eigenvalues } e^{i\frac{2\pi}{N}e_l} \in Z_N$

$$\hat{T}_l |\psi_{\vec{e}}\rangle = |\psi_{\vec{e}}\rangle e^{\frac{2\pi i}{N}e_l} \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

boundary conditions on T^3

 \overrightarrow{m} (mod N) ... discrete "magnetic flux"

"flux" label is due to 't Hooft does not necessarily imply nonzero gauge field strength! (dynamical issue, twist of b.c.)

eigenvalues of \hat{T}_l , generating 1-form Z_N

 \overrightarrow{e} (mod N) ... discrete "electric flux"

't Hooft: center-symmetry generator "along" \overrightarrow{m} has fractional $T^3 o G$ winding

argument takes too long to give in a short talk

remind you of this: will skip derivations - see Cox, Wandler, EP, 2106.11442 (nicely explained!) -

and focus on discussing the implications (mostly on example of SU(N) at $\theta=\pi$)

't Hooft: center-symmetry generator "along" \overrightarrow{m} has fractional $T^3 o G$ winding

a picture (J. Greensite's demand) to illustrate fractional winding (

(holds in our "good" constant- Γ_i gauge)

$$SU(2), \ \vec{m} = (0,0,1), \ \hat{T}_{3}(x_{1}y_{1}z): \ \vec{T}^{3} \rightarrow S^{3} = SU(2)$$

$$S^{3} = y^{M} \in \mathbb{R}^{4}$$

$$y_{1} = \cos \pi z \qquad \sup_{x \in \mathbb{R}^{3}} (\cos x^{2} \cdot x_{1}^{2}) \qquad \sup_{x \in \mathbb{R}^{3}} (\cos x^{2} \cdot x_{2}^{2})$$

$$y_{2} = \sin \pi z \times \sin \pi x \times 4f(y)f(1+y)$$

$$y_{3} = \sin \pi z \times \cos \pi x \times 4f(y)f(1+y) \qquad a \sin \theta \text{ (full range)}$$

$$y_{4} = \omega_{5}\pi z \times 2f^{2}(1+y_{3}) - f^{2}(y_{3})$$

las y ∈ O₁ 1 ~ cos O

(explicit form of $\hat{T}_3(x,y,z)$ from Wandler, EP '22)

angle ψ , full range

't Hooft: center-symmetry generator "along" \overrightarrow{m} has fractional $T^3 \to G$ winding #

immediate consequence for
$$\hat{V}_{2\pi} = e^{i \; 2\pi \int d^3x \hat{K}^0}$$

$$\hat{P}_{\pi} = \hat{V}_{2\pi} \hat{P}_0$$

$$\hat{X}_{\mathbb{Z}_{2n_f}^{(0)}N} = e^{i\frac{2\pi}{2n_fN}}\hat{Q}_5 = e^{i\frac{2\pi}{2n_fN}}\int d^3x \hat{j}_f^0 \hat{V}_{2\pi}^{-1}$$

't Hooft: center-symmetry generator "along" \overrightarrow{m} has fractional $T^3 o G$ winding #

immediate consequence for $\hat{V}_{2\pi} = e^{i \; 2\pi \int d^3x \hat{K}^0}$

$$\hat{T}_l \; \hat{V}_{2\pi} = e^{i2\pi\frac{m_l}{N}} \; \hat{V}_{2\pi} \; \hat{T}_l \qquad \qquad \text{same as algebra in charge-N 2d Schwinger [Anber, EP '18]}$$

$$\mathbf{SU(N)} \; \mathbf{YM} \; \mathbf{at} \; \theta = \pi \qquad \qquad \mathbf{SU(N)} \; \mathbf{massless} \; \mathbf{QCD(adj)} \qquad \qquad \\ \hat{T}_j \; \hat{P}_\pi = e^{\frac{2\pi i}{N} m_j} \hat{P}_\pi \; \hat{T}_j^\dagger \qquad \qquad \hat{T}_j \; \hat{X}_{\mathbb{Z}^{(0)}_{2n_f N}} = e^{-i\frac{2\pi}{N} m_j} \; \hat{X}_{\mathbb{Z}^{(0)}_{2n_f N}} \; \hat{T}_j.$$

$$\hat{P}_{\pi} = \hat{V}_{2\pi} \hat{P}_0$$

$$\hat{X}_{\mathbb{Z}_{2n_f}^{(0)}N} = e^{i\frac{2\pi}{2n_fN}}\hat{Q}_5 = e^{i\frac{2\pi}{2n_fN}}\int d^3x \hat{j}_f^0 \hat{V}_{2\pi}^{-1}$$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

at
$$\theta = \pi$$

vs.
$$\theta = 0$$

$$[\hat{T}_3, \hat{H}_{\theta=\pi}] = 0 , \quad [\hat{P}_{\pi}, \hat{H}_{\theta=\pi}] = 0 , \quad \hat{T}_3 \hat{P}_{\pi} = e^{i\frac{2\pi}{N}} \hat{P}_{\pi} \hat{T}_3^{\dagger} - \hat{T}_3 \hat{P}_0 = \hat{P}_0 \hat{T}_3^{\dagger}$$

$$\hat{T}_3 \hat{P}_0 = \hat{P}_0 \hat{T}_3^\dagger$$
 deformed dihedral D_N (2N elements)

 $\hat{P}_{\pi}:|E,e_3\rangle \rightarrow |E,1-e_3| (\mathrm{mod}N)$ for all E

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{P}_{\pi}:|E,e_3
angle
ightarrow |E,1-e_3| (\mathrm{mod}N)
angle$$
 for all E

even N: "anomaly" all states doubly degenerate!

$$N = 2$$
 $\theta = 1$ $0 = 0$ $0 =$

odd N: "global inconsistency"

THIS IS GENERAL:

any YM at $\theta=\pi$, if center of even order, $Sp(2k+1), E_7, Spin(2k)$: double degeneracy; if center of odd order: global inconsistency (no anomaly on T^3 : Sp(2k), Spin(2k+1))

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs.
$$\theta = 0$$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

$$\hat{T}_3\hat{P}_\pi = e^{i\frac{2\pi}{N}}\hat{P}_\pi\hat{T}_3^\dagger \qquad \qquad \begin{array}{c} & \xrightarrow{} & \hat{T}_3\hat{P}_0 = \hat{P}_0\hat{T}_3^\dagger \\ & \text{deformed} & \text{dihedral } D_{2N} \end{array}$$

COMMENT 1:

What about real infinite- T^3 world?

focus on even N: no state mapped to itself, all states doubly degenerate!

if confinement? $\theta=0$ expect $e_3=0$ flux to have finite E at $L\to\infty$, others $E_{flux}=\sigma L$

$$|e_3=0\rangle$$

$$|e_3=0\rangle$$

$$|e_3=0\rangle$$

$$|e_3=0\rangle$$

$$\begin{array}{c|cccc}
 & & & & & \\
 & \downarrow & & & & \\
 & \downarrow & & & \\
 & \downarrow & & & \\
 & \downarrow & \downarrow & \\
 &$$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m}=(0,0,1)$ at $\theta=\pi$

at
$$\theta = \pi$$

vs. $\theta = 0$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

COMMENT 1:

What about real infinite- T^3 world?

focus on even N: no state mapped to itself, all states doubly degenerate!

if confinement? $\theta=\pi$ e.g. $|e_3=0\rangle$ and $|e_3=1\rangle$ states of finite E at $L\to\infty$ clustering: if center preserved, parity broken: $|0\rangle, |1\rangle$ parity breaking vacua

as in dYM [Unsal, Yaffe 2008+... coming up],..., lattice [Kitano et al 2021]?

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs.
$$\theta = 0$$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^{\dagger}$$

COMMENT 1:

What about real infinite- T^3 world?

focus on even N: no state mapped to itself, all states doubly degenerate!

if no confinement? $\theta=\pi$ e.g. $|e_3=0\rangle$ and $|e_3=1\rangle$ states of finite E at $L\to\infty$ clustering: if parity preserved, center must be broken still double degeneracy at any volume

Example: 4d Georgi-Glashow $SU(2) \to U(1)$ w/ real triplet vev $v \gg 1/L$; IR-free CFT at $\theta = \pi$, at any L!

two vacua exchanged by
$$\hat{T}_3$$
-center $e_{3=0}$

SU(N) YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at $\theta = \pi$

vs. $\theta = 0$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

COMMENT 2:

The Euclidean connection? connect to GKKS+

$$Z[k_3, m_3] \equiv \operatorname{tr}_{\mathcal{H}_{\theta=0, m_3}^{phys.}} (e^{-\beta \hat{H}_{\theta=\pi}} \hat{T}_3^{k_3})$$

twist by
$$\hat{T}_3^{k_3}$$
 - path integral configurations w/ $Q_{top.} = \frac{k_3 m_3}{N} + n$, summed over $n \in \mathbb{Z}$.

SU(N) YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at $\theta = \pi$

vs. $\theta = 0$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

 $\hat{T}_3 \hat{P}_0 = \hat{P}_0 \hat{T}_3^\dagger$ deformed dihedral D_{2N}

COMMENT 2:

The Euclidean connection? [GKKS+]

$$\begin{split} Z[k_3,m_3] &\equiv \mathrm{tr}_{\mathcal{H}^{phys.}_{\theta=0,m_3}}(e^{-\beta \hat{H}_{\theta=\pi}}\,\hat{T}_3^{\,k_3}) \quad \text{insert} \quad \hat{P}_\pi\,\hat{P}_\pi = \hat{1} \quad \text{use deformed} \\ Z[k_3,m_3] &= Z[-k_3,m_3] \,\,e^{i\frac{2\pi}{N}k_3m_3} \qquad \text{mixed anomaly in path} \end{split}$$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs. $\theta = 0$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

$$\hat{T}_3 \hat{P}_0 = \hat{P}_0 \hat{T}_3^\dagger$$
 deformed dihedral D_{2N}

COMMENT 2:

The Euclidean connection? [GKKS+]

$$Z[k_3, m_3] \equiv {\rm tr}_{\mathcal{H}^{phys.}_{\theta=0,m_3}}(e^{-\beta \hat{H}_{\theta=\pi}}\,\hat{T}_3^{\,k_3}) \ \ {\rm insert} \ \ \hat{P}_\pi\,\hat{P}_\pi=\hat{1} \ \ {\rm use} \ \ {\it deformed}$$

$$Z[k_3, m_3] = Z[-k_3, m_3] e^{i\frac{2\pi}{N}k_3m_3}$$
 " $\mathscr{P}(B^{(2)})$ " mixed anomaly in path

solution: $Z[k_3, m_3] = e^{i\frac{\pi}{N}k_3m_3} \Xi$ w/ $\Xi(k_3) = \Xi(-k_3)$

the two degenerate fluxes of van Baal's = TQFT, $\Xi = e^{-\beta E_{\text{vac}}} 2\cos\frac{\pi k m_3}{N}$ (coming up)

COMMENT 3:

Discrete chiral symmetry in SYM/QCD(adj) study proceeds similarly.

Strongest constraints for SU(N): N-fold degeneracy of all electric flux states on T^3 at any L, here, anomaly: "confinement -> chiral breaking"

[constraints from $Z_k^{(0)}$ -gravity (Cordova, Ohmori '19), assuming gap, are stronger for $G \neq SU(N)$... due to smaller rank centers]

All my further comments below also apply for general G and SYM!

SUMMARY SO FAR:

Studied mixed 0-form/1-form anomaly: "new" vs "old"- Hilbert space w/ twist

main result:

Set up offers a relatively simple understanding of this type of anomaly.

Quantization in discrete \overrightarrow{m} background implies exact degeneracies between \overrightarrow{e} -flux states, due to deformed symmetry algebra, at any finite size torus.

1. pure 4d YM, any G, $\theta=\pi$ 2. 4d N=1 SYM, any G, or G with n_f adjoint Weyl, or..

end of MAIN

continue IN THE FORM OF COMMENTS about various semiclassical limits:

femtouniverse [small T^3 , BJ... Lüscher, van Baal...'80s] or $R^3 \times S^1$ small $S^1 + \dots$ [Ünsal,...'10's]

a word about motivation for these studies (not that we live at $\theta = \pi$):

any theory of confinement should provide dynamical explanation of $\theta=\pi$ degeneracy!

here:

semiclassical understanding of confinement in various (semi ∞ -volume) limits of T^3

(to be sure: ...truly ∞ -volume still outstanding...)

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs. $\theta = 0$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

COMMENT 4:

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

fractional instantons on $T^3 \times R$ split perturbative degeneracy of lowest "electric flux" energies

(lowest classical states have no gauge field strength)

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

 $|e\rangle \sim \sum_{k=0}^{\infty} e^{i\frac{2\pi ke}{N}} |k\rangle$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs.
$$\theta = 0$$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

COMMENT 4:

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

$$E(\theta, e_3) = -\frac{Ce^{-\frac{8\pi^2}{g^2N}}}{Lg^4}\cos\left(\frac{2\pi}{N}e_3 - \frac{\theta}{N}m_3\right)$$
 SU(6)

fractional instantons on $T^3 \times R$ split perturbative degeneracy of lowest "electric flux" energies

(lowest classical states have no gauge field strength)

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

 $|e\rangle \sim \sum_{k=0}^{\infty} e^{i\frac{2\pi ke}{N}} |k\rangle$

[van Baal, PhD thesis, '84] unpublished Ch3, picture attributed there to 't Hooft

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

at
$$\theta = \pi$$

vs.
$$\theta = 0$$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

COMMENT 4:

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

$$E(\theta, e_3) = -\frac{Ce^{-\frac{8\pi^2}{g^2N}}}{Lg^4}\cos\left(\frac{2\pi}{N}e_3 - \frac{\theta}{N}m_3\right)$$
 SU(6)

fractional instantons on $T^3 \times R$ split perturbative degeneracy of lowest "electric flux" energies

(lowest classical states have no gauge field strength)

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

 $|e\rangle \sim \sum_{k=0}^{\infty} e^{i\frac{2\pi ke}{N}} |k\rangle$

[van Baal, PhD thesis, '84] unpublished Ch3, picture attributed there to 't Hooft

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$

COMMENT 5:

A tale of two semiclassical limits

femtouniverse $L \ll \Lambda^{-1}$

[van Baal, '84]

$$E(\theta, e_3) = -\frac{Ce^{-\frac{8\pi^2}{g^2N}}}{Lq^4}\cos\left(\frac{2\pi}{N}e_3 - \frac{\theta}{N}m_3\right).$$

fractional instantons on $T^3 \times R$

dYM, $R^3 \times S^1$, $\Lambda LN \ll 2\pi$

[Unsal, Yaffe '08 +]

$$\rho_{vac}(k,\theta) = \frac{c}{L^4} e^{-\frac{8\pi^2}{Ng^2}} \cos(\frac{2\pi k}{N} - \frac{\theta}{N})$$

monopole-instanton gas $R^3 \times S^1$

accident or...?

[as in Witten '79, large-N arguments, $V = \infty$ - here, any N]

Unsal, Yaffe '08 +

van Baal, femtouniverse $L\ll \Lambda^{-1}$ \longrightarrow dYM, $R^3\times S^1$, $\Lambda LN\ll 2\pi$

dYM on $R \times T^2 \times S^1$, with \overrightarrow{m} through T^2 (along S^1) [after Unsal 2020+...]

changing
$$T^2$$
 from $\ll \Lambda^{-1}$

changing
$$T^2$$
 from $\ll \Lambda^{-1}$ to $\gg \Lambda^{-1}$, keep $L(S^1) \ll \Lambda^{-1}$

Unsal, Yaffe '08 +

van Baal, femtouniverse
$$L\ll \Lambda^{-1}$$
 \longrightarrow dYM, $R^3\times S^1, \Lambda LN\ll 2\pi$

dYM,
$$R^3 \times S^1$$
, $\Lambda LN \ll 2\pi$

dYM on $R \times T^2 \times S^1$, with \overrightarrow{m} through T^2 (along S^1) [after Unsal 2020+...]

changing
$$T^2$$
 from $\ll \Lambda^{-1}$

changing
$$T^2$$
 from $\ll \Lambda^{-1}$ to $\gg \Lambda^{-1}$, keep $L(S^1) \ll \Lambda^{-1}$

femtouniverse

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

no magnetic flux $\langle k | \text{tr} \hat{F}_{12} \hat{W}_3 | k \rangle = 0$

$$\hat{T}_3$$
 "broken" classically $\langle k | \operatorname{tr} \hat{W}_3 | k \rangle \neq 0$

 T_3 restored by fractional instantons

then
$$|e\rangle \sim \sum e^{i\frac{2\pi ke}{N}}|k\rangle$$
 have energies $\sim e^{-\frac{8\pi^2}{g^2N}}\cos(\frac{2\pi e}{N}-\frac{\theta}{N})$

Unsal, Yaffe '08 +

van Baal, femtouniverse $L \ll \Lambda^{-1}$

 $\longrightarrow \text{dYM}, R^3 \times S^1, \Lambda LN \ll 2\pi$

dYM on $R \times T^2 \times S^1$, with \overrightarrow{m} through T^2 (along S^1) [after Unsal 2020+...]

changing
$$T^2$$
 from $\ll \Lambda^{-1}$

to

$$\gg \Lambda^{-1}$$
, keep $L(S^1) \ll \Lambda^{-1}$

femtouniverse

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

no magnetic flux $\langle k | \text{tr} \hat{F}_{12} \hat{W}_3 | k \rangle = 0$

$$\hat{T}_3$$
 "broken" classically $\langle k | \operatorname{tr} \hat{W}_3 | k \rangle \neq 0$

 T_3 restored by fractional instantons

dYM

[Wandler EP '22]

$$|k\rangle = \hat{T}_3^k |0\rangle, k = 0,...,N-1$$

magnetic flux $\langle k | \text{tr} \hat{F}_{12} \hat{W}_3 | k \rangle \neq 0$

 \hat{T}_3 "broken" classically by flux

 \hat{T}_3 restored by "M" and "KK"

then
$$|e\rangle \sim \sum e^{i\frac{2\pi ke}{N}} |k\rangle$$
 have energies $\sim e^{-\frac{8\pi^2}{g^2N}} \cos(\frac{2\pi e}{N} - \frac{\theta}{N})$

$$\sim e^{-\frac{8\pi^2}{g^2N}}\cos(\frac{2\pi e}{N} - \frac{\theta}{N})$$

Unsal, Yaffe '08 +

van Baal, femtouniverse
$$L \ll \Lambda^{-1}$$
 \longrightarrow dYM, $R^3 \times S^1$, $\Lambda LN \ll 2\pi$

dYM on $R \times T^2 \times S^1$, with \overrightarrow{m} through T^2 (along S^1) [after Unsal 2020+...]

changing
$$T^2$$
 from $\ll \Lambda^{-1}$ to $\gg \Lambda^{-1}$, keep $L(S^1) \ll \Lambda^{-1}$

symmetries realized identically in two limits, semiclassical objects different

[Wandler EP '22]

then $|e\rangle \sim \sum e^{i\frac{2\pi ke}{N}}|k\rangle$ have energies $\sim e^{-\frac{8\pi^2}{g^2N}}\cos(\frac{2\pi e}{N}-\frac{\theta}{N})$

thus, these two semiclassical limits, $R \times T^3$ and $R^3 \times S^1$, reproduce the expected vacuum structure of pure YM on R^4

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

Exact degeneracy at finite volume? How come?

we can see how this argument fails at $\theta = \pi$, semiclassically:

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

Exact degeneracy at finite volume? How come?

SU(2) dYM, $R^3 \times S^1 \Lambda L_{S^1} \ll 2\pi$, $\theta = \pi$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

Exact degeneracy at finite volume? How come?

the presence of these two distinct DWs implies "double-string confinement" and "deconfinement on domain walls"... other anomaly-related phenomena found pre-anomaly! [Anber, Sulejmanpasic, EP 2015] (will not discuss)

SU(2) dYM, $R^3 \times S^1 \Lambda L_{S^1} \ll 2\pi$, $\theta = \pi$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

Exact degeneracy at finite volume? How come?

SU(2) dYM: $R \times T^2 \times S^1$, large- T^2 , small $S^1 + m_3 = 1$

[in progress ... '23] -> no tunnelling even at finite volume: A+B =0 when $m_3=1$

$$SU(N)$$
 YM, take e.g. $\overrightarrow{m} = (0,0,1)$ at $\theta = \pi$

$$\hat{T}_3 \hat{P}_\pi = e^{i\frac{2\pi}{N}} \hat{P}_\pi \hat{T}_3^\dagger$$

Exact degeneracy at finite volume? How come?

SU(2) dYM: $R \times T^2 \times S^1$, large- T^2 , small $S^1 + m_3 = 1$

- 1. semiclassics (when it holds) doesn't lie!
 - 2. all of this applies as well for other SU(N>2)

Studied mixed 0-form/1-form anomaly: "new" vs "old"- Hilbert space w/ twist

Set up offers a relatively simple understanding of this type of anomaly.

Quantization in discrete \overrightarrow{m} background implies exact degeneracies between \overrightarrow{e} -flux states, due to deformed symmetry algebra, at any finite size torus.

Different semiclassical limits (the femtouniverse and dYM with flux) have identical symmetry realization and produce a vacuum structure identical to that expected in infinite volume limits (YM/SYM).

Exact degeneracies in \overrightarrow{m} background (trivial to implement!) may be useful for lattice?

[YM $\theta = \pi$: Kitano, Matsudo, Yamada, Yamazaki '21]

Symmetry realizations in \overrightarrow{m} backgrounds imply that semiclassical objects responsible for mass gap (& confinement) in different regimes are related.

In most cases, their nature and implications not well understood...

also Tanizaki, Ünsal '22, $R^2 \times T^2$ + incl. fundamentals!

Anber, EP, '22, SYM & gaugino condensate?

Other symmetries and anomalies?