From the femtouniverse toward the real world, via anomalies and twists

Erich Poppitz

various works over the years ('18-'23) with
Mohamed Anber (Durham)
Andrew Cox, F. David Wandler (Toronto)

From the femtouniverse toward the real world, via anomalies and twists

$=R^{1,3}$

Erich Poppitz

various works over the years ('18-'23) with
Mohamed Anber (Durham)
Andrew Cox, F. David Wandler (Toronto)

- importance of symmetries in QFT
- 't Hooft anomalies since1980's: e.g. preons, Seiberg dualities
- new developments!

THIS TALK

higher-form/discrete: Gaiotto, Kapustin, Komargodski, Seiberg 2014-...

MAIN: mixed 0-form/1-form anomaly "new" vs "old"

IN THE FORM OF COMMENTS:
anomalies, nonpertubative semiclassical dynamics and the large volume ("real world") limit

1-FORM CENTER SYMMETRY AND 0-FORM DISCRETE SYMMETRY

1. pure 4 d YM , any $\mathrm{G}, \theta=0$ or π

parity at $\theta=0, \pi$

2. 4d N=1 SYM, any G, or G with n_{f} massless adjoint Weyl, or...

 discrete chiral $Z_{2 N n_{f}}^{(0)} \quad$ for $G=S U(N): U(1) \rightarrow Z_{2 N n_{f}}$in each case, 1-FORM CENTER, e.g. $Z_{N}^{(1)}$ for $\operatorname{SU}(\mathrm{N})$, act on Wilson loops in each case, 0 -FORM involves 2π shift of θ angle (in YM, only at $\theta=\pi$)

1-FORM CENTER SYMMETRY AND 0-FORM DISCRETE SYMMETRY

1. pure 4 d YM, any $\mathrm{G}, \theta=0$ or π

$\left(\int_{a^{3} \times K^{0}=\frac{1}{82^{2}}}\left(\operatorname{tr}\left(A A_{F}-\frac{i}{3} A^{3}\right)\right)\right.$
parity at $\theta=0, \pi \quad \hat{P}_{\pi}=\hat{V}_{2 \pi} \hat{P}_{0} \quad \hat{V}_{2 \pi}=e^{i 2 \pi \int d^{3} x \hat{K}^{0}}$
2. 4d N=1 SYM, any G, or G with n_{f} massless adjoint Weyl, or... discrete chiral $Z_{2 N n_{f}}^{(0)} \quad$ conserved non-gauge invariant $U(1)$ charge

$$
\begin{array}{r}
\hat{Q}_{5}=\int d^{3} x \hat{J}_{5}^{0}=\int d^{3} x \hat{j}_{f}^{0}-2 n_{f} N \int d^{3} x \hat{K}^{0} \\
\hat{X}_{\mathbb{Z}_{2 n_{f} N}^{(0)}}=e^{i \frac{2 \pi}{2 n_{f} N} \hat{Q}_{5}}=e^{i \frac{2 \pi}{2 n_{f} N} \int d^{3} x \hat{j}_{f}^{0}} \hat{V}_{2 \pi}^{-1}
\end{array}
$$

1-FORM CENTER SYMMETRY AND 0-FORM DISCRETE SYMMETRY

1. pure 4 d YM , any $\mathrm{G}, \theta=0$ or π

$\left(\int_{d^{3}} k^{0}=\frac{1}{8 n^{2}}\left(\operatorname{tr}\left(A_{A F}-\frac{\pi}{3} A^{3}\right)\right)\right.$
parity at $\theta=0, \pi$

$$
\hat{P}_{\pi}=\underline{\overline{\underline{\hat{V}_{2 \pi}}}} \hat{P}_{0} \quad \underline{\underline{\underline{\hat{V}_{2 \pi}=e^{i 2 \pi \int d^{3} x \hat{K}^{0}}}}}
$$

2. 4d N=1 SYM, any G, or G with n_{f} massless adjoint Weyl, or... discrete chiral $Z_{2 N n_{f}}^{(0)} \quad$ conserved non-gauge invariant $U(1)$ charge

$$
\begin{array}{r}
\hat{Q}_{5}=\int d^{3} x \hat{J}_{5}^{0}=\int d^{3} x \hat{j}_{f}^{0}-2 n_{f} N \int d^{3} x \hat{K}^{0} \\
\hat{X}_{\mathbb{Z}_{2 n_{f} N}^{(0)}}=e^{i \frac{2 \pi}{2 n_{f} N} \hat{Q}_{5}}=e^{i \frac{2 \pi}{2 n_{f} N} \int d^{3} x \hat{j}_{f}^{0}} \overline{\underline{\hat{V}_{2 \pi}^{-1}}}
\end{array}
$$

1-FORM CENTER SYMMETRY AND 0-FORM DISCRETE SYMMETRY

GKKS+ have shown that these symmetries have a mixed anomaly
usually considered in the Euclidean path integral:
gauge center -> find that discrete symmetry disappears

THIS TALK: MIXED ANOMALY IN HILBERT SPACE ON TORUS

- desire to understand a new observation from different view points

Hamiltonian was particularly useful in 2d, work w/ Anber 1807, 1811

- lattice is usually a torus
- this study reveals connections to "old" work, somewhat unknown/unappreciated!
- last but not least: allows for simple understanding of anomaly, e.g. w/out " $\mathscr{P}\left(B^{(2)}\right)$ " anomaly has immediate consequences for spectrum of \hat{H} : exact degeneracies of "electric flux" states in appropriately twisted Hilbert space at any size torus
N.B.: different from 'topological order' (e.g. Z_{2} in superconductors), where torus degeneracy only in "topological scaling limit," neglect tunnelling at $V<\infty$

outline

1. mixed 0 -form/1-form anomaly in torus $\left(T^{3}\right)$ Hilbert space old: 1980's $+\ldots T^{3}$ "femtouniverse" w/ twists
new: anomaly interpretation
2. consequence for spectrum of \hat{H} : exact degeneracies of "electric flux" states at any size T^{3}
3. implications for infinite volume phases, semiclassics, and connection to Euclidean discussions
will skip derivations - see Cox, Wandler, EP, 2106.11442 (nicely explained!) and focus on discussing the implications (mostly on example of $\operatorname{SU}(\mathrm{N})$ at $\theta=\pi$)

$$
\begin{aligned}
\Gamma_{i} \Gamma_{j} & =e^{i \frac{2 \pi}{N} n_{i j}} \Gamma_{j} \Gamma_{i} \\
& =e^{i \frac{2 \pi}{N} \epsilon_{i j k} m_{k}} \Gamma_{j} \Gamma_{i}
\end{aligned}
$$

constant-twist (Γ_{i}) - gauge (the good one!)

 the gauge invariant data:$$
m_{k} \in Z(\bmod N), k=1,2,3
$$

"spatial 't Hooft twists $S U(N) / Z_{N}$ bundle"
example: $m_{3}=n_{12}=1 \quad \Gamma_{1} \Gamma_{2}=e^{i \frac{2 \pi}{N}} \Gamma_{2} \Gamma_{1}, \Gamma_{3}=1$

$=$ turned on static topological 2-form Z_{N} gauge background in 1-2 plane [Kapustin,Seiberg '14]
example: $m_{3}=n_{12}=1 \quad \Gamma_{1} \Gamma_{2}=e^{i \frac{2 \pi}{N}} \Gamma_{2} \Gamma_{1}, \Gamma_{3}=1$
winding Dirac surface of "'t Hooft loop"

$\measuredangle:$ tr $_{p} \rightarrow e^{i \frac{2 \pi}{N}}$ for u_{p}
$=$ lattice: unit $=$ turned on static topological center vortex in $\quad 2$-form Z_{N} gauge background 0-3 plane
 in 1-2 plane [Kapustin,Seiberg '14]
quantizing in fixed \vec{m} background
$=$ in spatial 2-form flux gauging $Z_{N}^{(1)}$
't Hooft '8I; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+..

Witten '82, '00: use for $\operatorname{tr}(-1)^{F}$

- center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_{l} \hat{W}_{k} \hat{T}_{l}^{-1}=e^{i \frac{2 \pi}{N} \delta_{k l}} \hat{W}_{k}$
't Hooft '8I; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+..

Witten '82, '00: use for $\operatorname{tr}(-1)^{F}$

- center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_{l} \hat{W}_{k} \hat{T}_{l}^{-1}=e^{i \frac{2 \pi}{N} \delta_{k l}} \hat{W}_{k}$
- \hat{T}_{l} commute with Hamiltonian, generate I-form $Z_{N}^{(1)} ; \hat{T}_{l}$ eigenvalues $e^{i \frac{2 \pi}{N} e_{l}} \in Z_{N}$
't Hooft '8I; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+..

$$
\text { Witten '82, '00: use for } \operatorname{tr}(-1)^{F}
$$

- center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_{l} \hat{W}_{k} \hat{T}_{l}^{-1}=e^{i \frac{2 \pi}{N} \delta_{k l}} \hat{W}_{k}$
- \hat{T}_{l} commute with Hamiltonian, generate l-form $Z_{N}^{(1)} ; \hat{T}_{l}$ eigenvalues $e^{i \frac{2 \pi}{N} e_{l}} \in Z_{N}$ - all eigenvectors of \hat{H} also labeled by Z_{N} "electric flux" \vec{e} (change \vec{e} : act w/W. loop)

$$
\hat{T}_{l}\left|\psi_{\vec{e}}\right\rangle=\left|\psi_{\vec{e}}\right\rangle e^{\frac{2 \pi i}{N} e_{l}}
$$

boundary conditions on T^{3}
$\vec{m}(\bmod N) \ldots$ discrete "magnetic flux"
eigenvalues of \hat{T}_{l}, generating 1-form Z_{N}
$\vec{e}(\bmod \mathrm{~N}) \ldots$ discrete "electric flux"
't Hooft '8I; Luscher '82; van Baal '84; Gonzalez-Arroyo; Korthals Altes '80s+. .

Witten '82, '00: use for $\operatorname{tr}(-1)^{F}$

- center-symmetry: $\hat{T}_{l, l=1,2,3}$ act on winding loops $\hat{T}_{l} \hat{W}_{k} \hat{T}_{l}^{-1}=e^{i \frac{2 \pi}{N} \delta_{k l}} \hat{W}_{k}$
- \hat{T}_{l} commute with Hamiltonian, generate I-form $Z_{N}^{(1)} ; \hat{T}_{l}$ eigenvalues $e^{i \frac{2 \pi}{N} e_{l}} \in Z_{N}$

$$
\hat{T}_{l}\left|\psi_{\vec{e}}\right\rangle=\left|\psi_{\vec{e}}\right\rangle e^{\frac{2 \pi i}{N} e_{l}}
$$

boundary conditions on T^{3}
$\vec{m}(\bmod \mathrm{~N}) \ldots$ discrete "magnetic flux"
"flux" label is due to "t Hooft does not necessarily imply nonzero gauge field strength! (dynamical issue, twist of b.c.)

eigenvalues of \hat{T}_{l}, generating 1-form Z_{N}

$$
\vec{e}(\bmod N) \ldots
$$

discrete "electric flux"
't Hooft: center-symmetry generator "along" \vec{m} has fractional $T^{3} \rightarrow G$ winding \#

$$
\text { in our constant- } \Gamma_{i} \text { gauge }
$$

the gauge invariant statement is that a $4 d$ configuration with twists as shown:

argument takes too long to give in a short talk
remind you of this: will skip derivations - see Cox, Wandler, EP, 2106.11442 (nicely explained!) and focus on discussing the implications (mostly on example of $S U(N)$ at $\theta=\pi$)
't Hooft: center-symmetry generator "along" \vec{m} has fractional $T^{3} \rightarrow G$ winding \#
a picture (J. Greensite's demand) to illustrate fractional winding

$$
x \sim x+1, y \sim y+1, z \sim z+1
$$

$$
\begin{aligned}
& \operatorname{su}(2), \vec{m}=(0,0,1), \hat{T}_{3}(x, y, z): \pi^{3} \rightarrow s^{3}=\operatorname{su}(2) \\
& S^{3} \equiv y^{\mu} \in \mathbb{R}^{4} \\
& y_{1}=\cos \pi z \\
& y_{2}=\sin \pi z \times \sin \pi x \times 4 f(y) f(1+y) \\
& y_{3}=\sin \pi z \times \cos \pi x \times 4 f(y) f(1+y) \sim \sim \sin \theta \text { (full range) } \\
& y_{y}=\cos \pi z \times \frac{2\left(f^{2}(1+y)-f^{2}(y)\right)}{\uparrow}
\end{aligned}
$$

't Hooft: center-symmetry generator "along" \vec{m} has fractional $T^{3} \rightarrow G$ winding \# immediate consequence for $\hat{V}_{2 \pi}=e^{i 2 \pi \int d^{3} x \hat{K}^{0}}$

$$
\hat{X}_{\mathbb{Z}_{2 n_{f} N}^{(0)}}=e^{i \frac{2 \pi}{2 n_{f} N} \hat{Q}_{5}}=e^{i \frac{2 \pi}{2 n_{f} N} \int d^{3} x \hat{j}_{f}^{0}} \hat{V}_{2 \pi}^{-1}
$$

't Hooft: center-symmetry generator "along" \vec{m} has fractional $T^{3} \rightarrow G$ winding \# immediate consequence for $\hat{V}_{2 \pi}=e^{i 2 \pi \int d^{3} x \hat{K}^{0}}$

$$
\hat{T}_{l} \hat{V}_{2 \pi}=e^{i 2 \pi \frac{m_{l}}{N}} \hat{V}_{2 \pi} \hat{T}_{l}
$$

same as algebra in charge-N 2d Schwinger [Anber, EP '18]

$$
\mathbf{S U}(\mathbf{N}) \mathrm{YM} \text { at } \theta=\pi
$$

$$
\hat{T}_{j} \hat{P}_{\pi}=e^{\frac{\pi i z}{N} m_{j}} \hat{P}_{\pi} \hat{T}_{j}^{\dagger} \quad \hat{T}_{j} \hat{X}_{Z_{2 r_{j} N}(0)}=e^{-i \frac{2 \pi}{N} m_{j}} \hat{X}_{Z_{2 n_{j}}^{(0)}} \quad \hat{T}_{j} .
$$

$$
\hat{X}_{\mathbb{Z}_{2 n_{f} N}^{(0)}}=e^{i \frac{2 \pi}{2 n_{f}{ }^{N}} \hat{Q}_{5}}=e^{i \frac{2 \pi}{2 n_{f} N} \int d^{3} x \hat{j}_{f}^{0}} \hat{V}_{2 \pi}^{-1}
$$

$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\begin{aligned}
& {\left[\hat{T}_{3}, \hat{H}_{\theta=\pi}\right]=0, \quad\left[\hat{P}_{\pi}, \hat{H}_{\theta=\pi}\right]=0, \quad \hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \xrightarrow[\text { deformed }]{ } \underbrace{\hat{P}_{0} \hat{T}_{3}^{\dagger}}_{\substack{T_{3} \\
\text { dihedral } D_{N} \\
(2 N \text { elements })^{2}}}} \\
& \hat{P}_{\pi}:\left|E, e_{3}\right\rangle \rightarrow\left|E, 1-e_{3}(\bmod N)\right\rangle \text { for all E }
\end{aligned}
$$

$$
\hat{P}_{\pi}:\left|E, e_{3}\right\rangle \rightarrow\left|E, 1-e_{3}(\bmod N)\right\rangle \text { for all } \mathrm{E}
$$

even N: "anomaly" all states doubly degenerate!

$$
1 N=3
$$

odd N: "global inconsistency"

THIS IS GENERAL:

any YM at $\theta=\pi$, if center of even order, $\operatorname{Sp}(2 k+1), E_{7}, \operatorname{Spin}(2 k)$: double degeneracy; if center of odd order: global inconsistency (no anomaly on $T^{3}: \operatorname{Sp}(2 k), \operatorname{Spin}(2 k+1)$)
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \quad \underset{\text { deformed }}{ } \begin{gathered}
\hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{\dagger} \\
\text { dihedral } D_{2 N}
\end{gathered}
$$

COMMENT 1:

What about real infinite- T^{3} world ?

focus on even N: no state mapped to itself, all states doubly degenerate!
if confinement? $\theta=0$ expect $e_{3}=0$ flux to have finite \mathbf{E} at $L \rightarrow \infty$, others $E_{f l u x}=\sigma L$

$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1) \quad$ at $\theta=\pi$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \xrightarrow[\text { deformed }]{ } \quad \hat{T}_{3} \hat{P}_{0}=\hat{P}_{0_{0}} \hat{T}_{3}^{\dagger} \text { dihedral } D_{2 N}
$$

COMMENT 1:

What about real infinite- T^{3} world ?

focus on even N: no state mapped to itself, all states doubly degenerate! if confinement? $\theta=\pi$ e.g. $\left|e_{3}=0\right\rangle$ and $\left|e_{3}=1\right\rangle$ states of finite E at $L \rightarrow \infty$ clustering: if center preserved, parity broken: $|0\rangle,|1\rangle$ parity breaking vacua
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1) \quad$ at $\theta=\pi$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 1:

$\longrightarrow \hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{\dagger}$ deformed dihedral $D_{2 N}$

What about real infinite- T^{3} world?

focus on even N : no state mapped to itself, all states doubly degenerate! if no confinement? $\theta=\pi$ e.g. $\left|e_{3}=0\right\rangle$ and $\left|e_{3}=1\right\rangle$ states of finite \boldsymbol{E} at $L \rightarrow \infty$
clustering: if parity preserved, center must be broken still double degeneracy at any volume
Example: 4d Georgi-Glashow $S U(2) \rightarrow U(1) \mathrm{w} /$ real triplet vev $v \gg 1 / L$; IR-free CFT at $\theta=\pi$, at any L!

$e_{3}=0$
$e_{3}-1$
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \quad \xrightarrow[\text { deformed }]{ } \begin{gathered}
\hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{\dagger} \text { dihedral } D_{2 N}
\end{gathered}
$$

The Euclidean connection? connect to GKKS+
$Z\left[k_{3}, m_{3}\right] \equiv \operatorname{tr}_{\mathscr{H}_{\theta=0, m_{3}}^{\text {phys. }}}\left(e^{-\beta \hat{H}_{\theta=\pi}} \hat{T}_{3}^{k_{3}}\right)$
twist by $\hat{T}_{3}^{k_{3}}$ - path integral configurations w/ $Q_{\text {top. }}=\frac{k_{3} m_{3}}{N}+n$, summed over $n \in Z$.
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \quad \underset{\text { deformed }}{ } \quad \begin{gathered}
\hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{\dagger} \hat{T}_{3}^{\dagger} \text { dihal } D_{2 N}
\end{gathered}
$$

The Euclidean connection? [GKKS+]

$Z\left[k_{3}, m_{3}\right] \equiv \operatorname{tr}_{\mathscr{H}_{\theta=0,0, m_{3}}^{\text {phs. }}}\left(e^{-\beta \hat{H}_{\theta=\pi}} \hat{T}_{3}^{k_{3}}\right)$ insert $\hat{P}_{\pi} \hat{P}_{\pi}=\hat{1}$ use deformed

$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

The Euclidean connection ? [GKKS+]

$Z\left[k_{3}, m_{3}\right] \equiv \operatorname{tr}_{\mathscr{H}_{\theta=0,0, m_{3}}^{\text {phys. }}}\left(e^{-\beta \hat{H}_{\theta=\pi}} \hat{T}_{3}^{k_{3}}\right)$ insert $\hat{P}_{\pi} \hat{P}_{\pi}=\hat{1}$ use deformed
$Z\left[k_{3}, m_{3}\right]=\mathrm{Z}\left[-k_{3}, m_{3}\right] e^{i \frac{2 \pi}{N} k_{3} m_{3}-} \begin{aligned} & \text { " } \mathscr{P}\left(B^{(2)}\right) " \\ & \text { mixed anomaly in path } \int\end{aligned}$
solution: $Z\left[k_{3}, m_{3}\right]=e^{i \frac{\pi}{N} k_{3} m_{3}} \Xi \mathrm{w} / \Xi\left(k_{3}\right)=\Xi\left(-k_{3}\right)$
the two degenerate fluxes of van Baal's $=$ TQFT, $\Xi=e^{-\beta E_{\mathrm{vac}}} 2 \cos \frac{\pi k m_{3}}{N}$ (coming up)

Discrete chiral symmetry in SYM/QCD(adj) study proceeds similarly.

Strongest constraints for $\operatorname{SU}(\mathbf{N})$: \mathbf{N}-fold degeneracy of all electric flux states on T^{3} at any L, here, anomaly: "confinement -> chiral breaking"

```
[constraints from Z}\mp@subsup{Z}{k}{(0)}\mathrm{ -gravity (Cordova, Ohmori '19), assuming gap, are stronger
for G}\not=SU(N)\ldots. due to smaller rank centers
```

All my further comments below also apply for general G and SYM!

Studied mixed 0-form/1-form anomaly: "new" vs "old"- Hilbert space w/ twist

main result:

Set up offers a relatively simple understanding of this type of anomaly.
Quantization in discrete \vec{m} background implies exact degeneracies between \vec{e}-flux states, due to deformed symmetry algebra, at any finite size torus.

1. pure 4 d YM , any $\mathrm{G}, \theta=\pi \quad$ 2. $4 \mathrm{~d} \mathrm{~N}=1 \mathrm{SYM}$, any G , or G with n_{f} adjoint Weyl, or..

continue IN THE FORM OF COMMENTS about various semiclassical limits:

femtouniverse [small T^{3}, BJ... Lüscher, van Baal...'80s] or $R^{3} \times S^{1}$ small $S^{1}+\ldots$ [Ünsal,...'10's]
a word about motivation for these studies (not that we live at $\theta=\pi$):
any theory of confinement should provide dynamical explanation of $\theta=\pi$ degeneracy!
here:
semiclassical understanding of confinement in various (semi ∞-volume) limits of T^{3}
(to be sure: ...truly ∞-volume still outstanding...)
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1) \quad$ at $\theta=\pi$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger} \quad \underset{\text { deformed }}{ } \hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{\dagger} \text { dihedral } D_{2 N}
$$

COMMENT 4:
van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:
fractional instantons on $T^{3} \times R$ split perturbative degeneracy of lowest "electric flux" energies
$\dagger_{\text {Iowest classical statas have no gauge fifd strength) }}$
$|k\rangle=\hat{T}_{3}^{k}|0\rangle, k=0, \ldots, N-1$
$|e\rangle \sim \sum e^{i \frac{i \text { nke }}{v}}|k\rangle$
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

$\longrightarrow \hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{+}$
deformed

COMMENT 4:

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

$$
E\left(\theta, e_{3}\right)=-\frac{C e^{-\frac{8 \pi^{2}}{g^{2} N}}}{L g^{4}} \cos \left(\frac{2 \pi}{N} e_{3}-\frac{\theta}{N} m_{3}\right) \quad \mathbf{S U}(6)
$$

fractional instantons on $T^{3} \times R$ split perturbative degeneracy of lowest "electric flux" energies
$\uparrow_{\text {(lowest classical states have no gauge field strength) }}$
$|k\rangle=\hat{T}_{3}^{k}|0\rangle, k=0, \ldots, N-1$
$|e\rangle \sim \sum e^{i \frac{2 \pi k e}{N}}|k\rangle$
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

$\longrightarrow \hat{T}_{3} \hat{P}_{0}=\hat{P}_{0} \hat{T}_{3}^{+}$
deformed

COMMENT 4:

van Baal, femtouniverse $L \ll \Lambda^{-1}$, '84, saw this behaviour, now understood from anomaly:

$$
E\left(\theta, e_{3}\right)=-\frac{C e^{-\frac{8 \pi^{2}}{g^{2} N}}}{L g^{4}} \cos \left(\frac{2 \pi}{N} e_{3}-\frac{\theta}{N} m_{3}\right) \quad \mathbf{S U}(6)
$$

fractional instantons on $T^{3} \times R$ split perturbative degeneracy of lowest "electric flux" energies
$\uparrow_{\text {(lowest classical states have no gauge field strength) }}$
$|k\rangle=\hat{T}_{3}^{k}|0\rangle, k=0, \ldots, N-1$
lowest "electric flux energies

$|e\rangle \sim \sum e^{i \frac{2 \pi k e}{N}}|k\rangle$
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

COMMENT 5:

A tale of two semiclassical limits

femtouniverse $L \ll \Lambda^{-1}$ [van Baal, '84]

$$
E\left(\theta, e_{3}\right)=-\frac{C e^{-\frac{82^{2}}{g^{2} N}}}{L g^{4}} \cos \left(\frac{2 \pi}{N} e_{3}-\frac{\theta}{N} m_{3}\right)
$$

dYM, $R^{3} \times S^{1}, \Lambda L N \ll 2 \pi$
[Unsal, Yaffe '08 +]
fractional instantons on $T^{3} \times R$

$$
\rho_{v a c}(k, \theta)=\frac{c}{L^{4}} e^{-\frac{8 \pi^{2}}{N_{g^{2}}}} \cos \left(\frac{2 \pi k}{N}-\frac{\theta}{N}\right)
$$ monopole-instanton gas $R^{3} \times S^{1}$

accident or...?

[as in Witten '79, large- N arguments, $V=\infty$ - here, any N]
van Baal, femtouniverse $L \ll \Lambda^{-1} \longleftrightarrow d Y M, R^{3} \times S^{1}, \Lambda L N \ll 2 \pi$ dM on $R \times T^{2} \times S^{1}$, with \vec{m} through T^{2} (along S^{1}) [after Unseal 2020+...] changing T^{2} from $\ll \Lambda^{-1} \quad$ to $>\Lambda^{-1}$, keep $L\left(S^{1}\right) \ll \Lambda^{-1}$

$$
\text { changing } T^{2} \text { from } \ll \Lambda^{-1} \quad \text { to } \quad \gg \Lambda^{-1} \text {, keep } L\left(S^{1}\right) \ll \Lambda^{-1}
$$

femtouniverse

$$
|k\rangle=\hat{T}_{3}^{k}|0\rangle, k=0, \ldots, N-1
$$

no magnetic flux $\langle k| \operatorname{tr} \hat{F}_{12} \hat{W}_{3}|k\rangle=0$
\hat{T}_{3} "broken" classically $\langle k| \operatorname{tr} \hat{W}_{3}|k\rangle \neq 0$
\hat{T}_{3} restored by fractional instantons
then $|e\rangle \sim \sum e^{i \frac{2 \pi k e}{N}}|k\rangle$ have energies $\sim e^{-\frac{82^{2}}{g^{2 N}}} \cos \left(\frac{2 \pi e}{N}-\frac{\theta}{N}\right)$ van Baal, femtouniverse $L \ll \Lambda^{-1} \longleftrightarrow d Y M, R^{3} \times S^{1}, \Lambda L N \ll 2 \pi$
dYM on $R \times T^{2} \times S^{1}$, with \vec{m} through T^{2} (along S^{1}) [after Unsal 2020+...]

$$
\text { changing } T^{2} \text { from } \ll \Lambda^{-1} \quad \text { to } \quad \gg \Lambda^{-1} \text {, keep } L\left(S^{1}\right) \ll \Lambda^{-1}
$$

femtouniverse
dYM

$$
|k\rangle=\hat{T}_{3}^{k}|0\rangle, k=0, \ldots, N-1
$$

no magnetic flux $\langle k| \operatorname{tr} \hat{F}_{12} \hat{W}_{3}|k\rangle=0$ \hat{T}_{3} "broken" classically $\langle k| \operatorname{tr} \hat{W}_{3}|k\rangle \neq 0$
\hat{T}_{3} restored by fractional instantons
magnetic flux $\langle k| \operatorname{tr} \hat{F}_{12} \hat{W}_{3}|k\rangle \neq 0$
\hat{T}_{3} "broken" classically by flux
\hat{T}_{3} restored by " M " and " $K \mathrm{~K}$ "
then $|e\rangle \sim \sum e^{i \frac{2 \pi k e}{N}}|k\rangle$ have energies $\sim e^{-\frac{82^{2}}{g^{2} N}} \cos \left(\frac{2 \pi e}{N}-\frac{\theta}{N}\right)$

$$
\text { changing } T^{2} \text { from } \ll \Lambda^{-1} \quad \text { to } \quad \gg \Lambda^{-1} \text {, keep } L\left(S^{1}\right) \ll \Lambda^{-1}
$$

symmetries realized identically in two limits, semiclassical objects different femtouniverse
dYM
[Wandler EP '22]
then $|e\rangle \sim \sum e^{i \frac{2 \pi k e}{N}}|k\rangle$ have energies $\sim e^{-\frac{8 \pi^{2}}{g^{2} N}} \cos \left(\frac{2 \pi e}{N}-\frac{\theta}{N}\right)$
thus, these two semiclassical limits, $R \times T^{3}$ and $R^{3} \times S^{1}$, reproduce the expected vacuum structure of pure YM on R^{4}
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 6:

Exact degeneracy at finite volume? How come?

usually, sey

we can see how this argument fails at $\theta=\pi$, semiclassically:
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 6:

Exact degeneracy at finite volume? How come?

SU(2) dYM, $R^{3} \times S^{1} \Lambda L_{S^{1}} \ll 2 \pi, \theta=\pi$

- two vacua (\varnothing)
- two distinct domain walls (lines!)
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1) \quad$ at $\theta=\pi$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 6:

Exact degeneracy at finite volume? How come?

the presence of these two distinct DWs implies "double-string confinement" and "deconfinement on domain walls"... other anomaly-related phenomena found pre-anomaly! [Anber, Sulejmanpasic, EP 2015] (will not discuss)

SU(2) dYM, $R^{3} \times S^{1} \Lambda L_{S^{1}} \ll 2 \pi, \theta=\pi$

- two vacua (\varnothing)
- two distinct domain walls (elnes!)
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 6:

Exact degeneracy at finite volume? How come?

SU(2) dYM: $R \times T^{2} \times S^{1}$, large $-T^{2}$, small $S^{1}+m_{3}=1$

$\sigma=0 \quad V(\sigma)$

- two vacua $(\not \varnothing)$
- two distinct domain walls (lives!)
[in progress ...'23] -> no tunnelling even at finite volume: $\boldsymbol{A}+\boldsymbol{B}=\mathbf{0}$ when $m_{3}=1$
$S U(N)$ YM, take e.g. $\vec{m}=(0,0,1)$

$$
\hat{T}_{3} \hat{P}_{\pi}=e^{i \frac{2 \pi}{N}} \hat{P}_{\pi} \hat{T}_{3}^{\dagger}
$$

COMMENT 6:

Exact degeneracy at finite volume? How come?

SU(2) dM: $R \times T^{2} \times S^{1}$, large $-T^{2}$, small $S^{1}+m_{3}=1$

1. semiclassics (when it holds) doesn't lie!
2. all of this applies as well for other $S U(N>2)$

Studied mixed 0-form/1-form anomaly: "new" vs "old"- Hilbert space w/ twist

Set up offers a relatively simple understanding of this type of anomaly.
Quantization in discrete \vec{m} background implies exact degeneracies between \vec{e}-flux states, due to deformed symmetry algebra, at any finite size torus.

Different semiclassical limits (the femtouniverse and dYM with flux) have identical symmetry realization and produce a vacuum structure identical to that expected in infinite volume limits (YM/SYM).

Exact degeneracies in \vec{m} background (trivial to implement!) may be useful for lattice?
[YM $\theta=\pi$: Kitano, Matsudo, Yamada, Yamazaki '21]
Symmetry realizations in \vec{m} backgrounds imply that semiclassical objects responsible for mass gap (\& confinement) in different regimes are related.

In most cases, their nature and implications not well understood...

Anber, EP, '22, SYM \& gaugino condensate?

Other symmetries and anomalies?

