Charting a path between semiclassical islands (can we relate semiclassical confinement mechanisms?)

Erich Poppitz (Toronto)

based on works, over the years, with

Andrew Cox and F. David Wandler (Toronto)

- Mohamed Anber (Durham)

- title borrowed from latest 2211.10347 w/ Wandler

confinement on R^4 is a difficult strong-coupling problem lattice and large-N offer insightbut, this talk:

Polyakov: 1970s monopole-instantons on R^3 in $SU(2) \rightarrow U(1)$

Tanizaki & Ünsal: 2022 ("wrapped") center vortices on $R^2 \times T^2$ in $SU(N) \rightarrow Z_N$ (Greensite et al 1990s,..., González-Arroyo, Pérez et al, 2000s)

weak coupling by separation of scales $vev \gg \Lambda$, $N\Lambda L_{S^1 or T^2} \ll 1$

not the real world, so should we ignore?

- semiclassics and weak coupling
- Ünsal, w/ Yaffe, w/ Shifman...: 2010s (twisted) monopole-instantons on $R^3 \times S^1$ in $SU(N) \rightarrow U(1)^{N-1}$ 'dYM', bions QCD(adj)... or any G SYM!

not the real world, so should we ignore? - NO!

not the real world, so should we ignore? - NO!

setups offer unique opportunity to analytically study locally-4d nonperturbative physics (hope... use "resurgent transseries" to resume series?)

not the real world, so should we ignore? - NO!

setups offer unique opportunity to analytically study locally-4d nonperturbative physics in each case, evidence for continuous connection to expected or known physics on R^4

- not the real world, so should we ignore? NO!
- setups offer unique opportunity to analytically study locally-4d nonperturbative physics
- in each case, evidence for continuous connection to expected or known physics on R^4
- studies highlight the importance of objects with fractional topological charges

- not the real world, so should we ignore? NO!
- setups offer unique opportunity to analytically study locally-4d nonperturbative physics
- in each case, evidence for continuous connection to expected or known physics on R^4
- studies highlight the importance of objects with fractional topological charges
- use of twisted boundary conditions and relation to generalized anomalies

semiclassics and weak coupling not the real world, so should we ignore? - NO!

setups offer unique opportunity to analytically study locally-4d nonperturbative physics

in each case, evidence for continuous connection to expected or known physics on R^4

studies highlight the importance of objects with fractional topological charges

use of twisted boundary conditions and relation to generalized anomalies

TWISTED BOUNDARY CONDITIONS: A NON-PERTURBATIVE PROBE FOR PURE NON-ABELIAN GAUGE THEORIES

Pierre van Baal

op woensdag <u>4 juli 1984</u> des namiddags te 4.15 uur PROMOTOR: PROF. DR. G. 'T HOOFT

PhD thesis resurging, or rising from the ashes...

 $m_3 = 1$ Hilbert space, with spatial 't Hooft twist $n_{12} = 1$

$$|E, e_3 = 1\rangle_{m_3=1}$$
 degenerate w/ $|E, e_3|$

SU(N = 2) for simplicity $e_3 \in \{0,1\}$ = eigenvalue of \hat{T}_3 \hat{T}_3 - generator of center symmetry along $\vec{m} = (0,0,1)$ Z_N $=0\rangle_{m_3=1}$ for all *E*, any size T^3 , at $\theta = \pi$

due to anomaly: $\hat{T}_3 \hat{P} = (-)^{m_3} \hat{P} \hat{T}_3^{-1} \quad [\hat{P}, \hat{H}_{\theta=\pi}] = [\hat{T}_3, \hat{H}_{\theta=\pi}] = 0$

$n\bar{n}w$, to this talk... background: In 2021, w/ Cox & Wand \hat{f}_{l} \hat{f}_{l} form \hat{f}_{l} form \hat{f}_{l} form anomaly (YM, SYM...) in Hamiltonian on $T^3 \circ f_1$ any size. Anomaly implies exact degeneracies:

 $m_3 = 1$ Hilbert space, with spatial 't Hooft twist $n_{12} = 1$ two states only have $E < L^{-1}$ (L=small size)

$$\begin{aligned} A^{(0)} &= 0 \to |0\rangle \\ A^{(1)} &= iT_3 dT_3^{-1} \to |1\rangle = \hat{T}_3 |0\rangle \quad \frac{\text{eigen}}{\hat{T}_3} \text{c} \end{aligned}$$

(Witten 1982, $tr(-1)^F$, $E_{cl} = 0$)

dynamical check via semiclassics

 T^3_{small} "femtouniverse" (van Baal 1984) $S^1_{size \to \infty} \times T^2_{small}$ (Tanizaki, Ünsal 2022)

 Z_N

$\underbrace{enstates of} |E_{cl} = 0, e_3 = 0\rangle = |0\rangle + |1\rangle$ $|E_{c1} = 0, e_3 = 1\rangle = |0\rangle - |1\rangle$ enter

$n\bar{n}w$, to this talk... background: In 2021, w/ Cox & Wandler, \hat{T}_l -form center/ \hat{V} -form anomaly (YM, SYM...) in Hamiltonian on T^3 of any size. Anomaly implies exact degeneracies:

 $m_3 = 1$ Hilbert space, with spatial 't Hooft twist $n_{12} = 1$ two states only have $E < L^{-1}$ (L=small size)

$$\begin{aligned} A^{(0)} &= 0 \to |0\rangle \\ A^{(1)} &= iT_3 dT_3^{-1} \to |1\rangle = \hat{T}_3 |0\rangle \quad \frac{\text{eigen}}{\hat{T}_3} \text{c} \end{aligned}$$

(Witten 1982, $tr(-1)^{F}$, $E_{cl} = 0$)

- dynamical check via semiclassics
- T^3_{small} "femtouniverse" (van Baal 1984) $S^1_{size \to \infty} \times T^2_{small}$ (Tanizaki, Ünsal 2022)
- Z_N Q=1/2 instantons <u>Instates of</u> $|E_{cl} = 0, e_3 = 0\rangle = |0\rangle +$ enter $|E_{cl} = 0, e_3 = 1\rangle = |0\rangle - |1\rangle$
 - (van Baal [t Hooft?] 1984, 1999)

 $m_3 = 1$ Hilbert space, with spatial 't Hooft twist $n_{12} = 1$

e3= / (mod N)

 $e_{3} = 0$

$$E(e_3) - E_{pert.} = -c \frac{e^{-\frac{8\pi^2}{2g^2}}}{L} \cos\left(\pi e_3 - \frac{1}{2g^2}\right) + \frac{1}{2g^2} \cos\left(\pi e_3 - \frac{1}{2g^2}\right) + \frac{1}{2g^2} + \frac{1}{2g^$$

dynamical check via semiclassics

 T^3_{small} "femtouniverse" (van Baal 1984) $S^1_{size \to \infty} \times T^2_{small}$ (Tanizaki, Ünsal 2022)

 Z_N

Q=1/2 instantons (González-Arroyo, Pérez... 1990s)

 $e_3 \in \{0,1\}$ degenerate at $\theta = \pi$

only valid in $m_3=1$ background

(van Baal [t Hooft?] 1984, 1999)

now, to this talk... background:

In 2021, w/ Cox & Wandler: 1-form center/0-form anomaly (YM, SYM...) in Hamiltonian on T^3 of any size. Anomaly implies exact degeneracies:

deformed YM (Ünsal-Yaffe 2008)

observations (+ wishlist, confusions) $T^2 \ll \Lambda^{-1}$ femtouniverse ... dYM w/flux

$$T^{2} \qquad S^{1}$$

$$\gg \Lambda^{-1} \qquad L(S^{1}) \ll \Lambda^{-1}$$

$$(G.-Arroyo, Pérez, Okawa 2013; Ünsal)$$

$$(G.-Arroyo, Pérez, Okawa 2013; Unsal)$$

observations (+ wishlist, confusions) $T^2 \ll \Lambda^{-1}$ femtouniverse ... dYM w/flux

$$T^{2} \qquad S^{1}$$

$$\gg \Lambda^{-1} \qquad L(S^{1}) \ll \Lambda^{-1}$$

$$(G.-Arroyo, Perez, Okawa 2013; Ünsal)$$

$$(F.-Arroyo, Perez, Okawa 2013; Ünsal)$$

$$(F.-Arroyo, Perez, Okawa 2013; Ünsal)$$

$$(F.-Arroyo, Perez, Okawa 2013; Unsal)$$

$$(F.-Arroyo, Perez, Okawa 2014; Unsal)$$

$$(F.-Arroyo, Perez, Okawa 2014; Unsal)$$

$\ll \Lambda^{-1}$

$\ll \Lambda^{-1}$

$trW_3 = \pm 2$

 $|1\rangle = \hat{T}_3 |0\rangle$ R A

 $trF_{12}W_3 \sim \pm \frac{1}{L_1L_2}$

Q=1/2 instantons

$\ll \Lambda^{-1}$ T^2

$|1\rangle = \hat{T}_3 |0\rangle$ $trW_3 = \pm 2$

Q=1/2 instantons on $T^3 \times R$ (no analytic!)

 $trF_{12}W_3 \sim \pm -$

$\ll \Lambda^{-1}$

Q=1/2 instantons on $T^3 \times R$ (no analytic!)

confinement by center vortices on $S_{large}^1 \times T^2 \times R$

this is the goal... but for now:

$\frac{R \times T^2 \times S^1}{\text{observations (+ wishlist, confusions)}} T^2$ $\ll \Lambda^{-1}$ T^2 femtouniverse ... dYM w/flux ... dYM

small 1st step:

 $A_{\pm} = \frac{\sigma^3}{2} \left(-\frac{2\pi x^2}{L_1 L_2} dx^1 \pm \frac{\pi}{L} dx^3 \right)$

$\frac{R \times T^2 \times S^1}{\text{observations (+ wishlist, confusions)}} T^2$ $T^2 \ll \Lambda^{-1} \qquad \gg \Lambda^{-1} \qquad L(S^1) \ll \Lambda^{-1}$ femtouniverse ... dYM w/flux $\qquad \dots \qquad dYM$

observations (+ wishlist, confusions)

dYM:

"GPY" potential for W, on $T_{flux}^2 \times S_L^1$

from 2211.10347 w/ Wandler skip technicalities... spectrum, etc.

(as opposed to GPY, no analytic form for $\varepsilon > 0$)

 $W = \pi$ appears (meta)stable up to $L_1 \sim L_1$

 $L_1 \sim L_2 \sim L$ suggests validity of two semiclassical descriptions overlap (useful...? future)

observations (+ wishlist, confusions)

from 2211.10347 w/ Wandler

not unexpected, non-SUSY background

$$A_{\pm} = \frac{\sigma^3}{2} \left(-\frac{2\pi x^2}{L_1 L_2} dx^1 \pm \frac{W}{L} dx^3 \right)$$

at $T_{flux,large}^2 \times S_L^1$ Coulomb branch lifted

Witten's configurations A = 0 and $A = iT_3 dT_3^{-1}$ - the only classical SUSY states w/ 't Hooft b.c.

semiclassics on $T_{flux,infinite}^{2} \times S_{L}^{1} = R^{2} \times S_{L}^{1}$ but not on any finite size $T^2 \dots ?$

 L_1L_2

observations (+ wishlist, confusions) **BEGIN WITH SYM, WHERE I HAVE ONLY QUESTIONS:**

SYM offers best-understood semiclassics! = instanton calculus

most detailed semiclassical studies of confining strings, domain walls, and anomalies on $R^3 \times \tilde{S}^1$

e.g. 2011-21 w/ M. Anber, M. Bub, A. Cherman, S. Collier, A. Cox, T. Schäfer, S. Strimas-Mackey, T. Sulejmanpašić, B. Teeple, M. Ünsal, F.D. Wandler, S. Wong

> SYM for any G on the circle: confinement due to r+1 monopoleinstantons with $Q = (\frac{1}{c_2}, \dots, \frac{1}{c_2}, 1 - \frac{r}{c_2})$.

't Hooft twists in $G \neq SU(N)$ do not produce such charges (instead ...1/2,1/3,1/4) What is the relation, if any !?

More questions re. SYM w/ twists + semiclassics: Anber, EP 2210.13568, see talk at "SUSY-50"!

Is there a way to "salvage" semiclassics in SUSY at large T_{flux}^2 , at least?? (SW, anyone?)

observations (+ wishlist, confusions) ON THE LESS CONFUSING SIDE:

for the similarities between semiclassical results in femtouniverse/dYM/"Tanizaki-Unsal" limits.

where semiclassics valid. Regimes where different semiclassics overlap exist.

There are also earlier numeric studies utilizing various twists and size limits, and likely future ones are needed.

Better understand fractional $Q = \frac{m}{N}$ solutions in SU(N) with twists and their dynamical implications.

(work with Anber, in progress).

- Argued that symmetry realization and Q=1/2 tunneling (1/N for SU(N)) are responsible
- It should be possible to relate the various self-dual Q=1/N configurations in the regimes
 - (González-Arroyo, Pérez, Montero, van Baal 1999)

