Anomalies, tori, and new twists in the gaugino condensate

Erich Poppitz (Toronto)

with
Mohamed Anber (Durham)
2210.13568 (w/ some mention of 2307.04795 and work since)
title of 2210.13568 is The gaugino condensate from asymmetric four-torus with twists: sounds like a mouthful \& is 70 pages long!
why now, etc. ?
$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems
$S_{S Y M}=\frac{1}{g^{2}} \int_{\mathbb{T}^{4}} \operatorname{tr}\left[\frac{1}{2} F_{m n} F_{m n}+2\left(\partial_{n} \bar{\lambda}_{\dot{\alpha}}+i\left[A_{n}, \bar{\lambda}_{\dot{\alpha}}\right]\right) \bar{\sigma}_{n}^{\dot{\alpha} \alpha} \lambda_{\alpha}\right]$
$G=S U(N)$
chiral $U(1): \lambda \rightarrow e^{i \alpha} \lambda$ by anomaly $\rightarrow Z_{2 N}^{(0)}$
title of 2210.13568 is The gaugino condensate from asymmetric four-torus with twists: sounds like a mouthful \& is 70 pages long!
$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems
$S_{S Y M}=\frac{1}{g^{2}} \int_{\mathbb{T}^{4}} \operatorname{tr}\left[\frac{1}{2} F_{m n} F_{m n}+2\left(\partial_{n} \bar{\lambda}_{\dot{\alpha}}+i\left[A_{n}, \bar{\lambda}_{\dot{\alpha}}\right]\right) \bar{\sigma}_{n}^{\dot{\alpha} \alpha} \lambda_{\alpha}\right]$
$\mathrm{G}=\mathrm{SU}(\mathrm{N})$
chiral $U(1): \lambda \rightarrow e^{i \alpha} \lambda$ by anomaly $\rightarrow Z_{2 N}^{(0)}$

$$
Z_{2 N}^{(0)} \rightarrow Z_{2}^{(0)} \quad\left\langle\operatorname{tr} \lambda^{2}\right\rangle \underset{(N=2)}{= \pm 16 \pi^{2} \Lambda^{3}} \quad \begin{aligned}
& \text { the "mother" of all } \\
& \text { exact results in SUSY, } \\
& \text { no further corrections }
\end{aligned}
$$

$\Lambda^{3}=\mu^{3} \frac{e^{-8 \pi^{2} / N g^{2}}}{g^{2}}\left(=\mu^{3} e^{-\frac{8 \varepsilon^{2}}{N \Sigma_{h}^{2}(\mu)}}\right)$ holomorphic scale

title of 2210.13568 is The gaugino condensate from asymmetric

 four-torus with twists: sounds like a mouthful \& is 70 pages long!
$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems

1983-1999: Novikov, Shifman, Vainshtein, Zakharov; Amati, Konishi, Rossi, Veneziano; Affleck, Dine, Seiberg; Cordes; Finnell, Pouliot (SQCD \rightarrow SYM on R^{4}); Davies, Hollowood, Khoze, Mattis;... 2014 Anber, Teeple, EP (SYM on $R^{3} \times S^{1} \rightarrow>$ SYM on R^{4})
two weakly-coupled calculations of $\left\langle\lambda^{2}\right\rangle$
$Z_{2 N}^{(0)} \rightarrow Z_{2}^{(0)}$

$$
\left\langle\operatorname{tr} \lambda^{2}\right\rangle= \pm 16 \pi^{2} \Lambda^{3}
$$

($\mathrm{N}=2$)
all history...?

$$
\Lambda^{3}=\mu^{3} \frac{e^{-8 \pi^{2} / N g^{2}}}{g^{2}}\left(=\mu^{3} e^{-\frac{8 \pi^{2}}{N 2_{h}^{2}(\mu)}}\right) \text { holomorphic scale }
$$

title of 2210.13568 is The gaugino condensate from asymmetric four-torus with twists: sounds like a mouthful \& is 70 pages long!
$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems
$S_{S Y M}=\frac{1}{g^{2}} \int_{\mathbb{T}^{4}} \operatorname{tr}\left[\frac{1}{2} F_{m n} F_{m n}+2\left(\partial_{n} \bar{\lambda}_{\dot{\alpha}}+i\left[A_{n}, \bar{\lambda}_{\dot{\alpha}}\right]\right) \bar{\sigma}_{n}^{\dot{\alpha} \alpha} \lambda_{\alpha}\right]$
chiral $U(1): \lambda \rightarrow e^{i \alpha} \lambda$ broken by anomaly to $Z_{2 N}^{(0)}$
center symmetry: $Z_{N}^{(1)}$, acting on Wilson loops by Z_{N} phase ex. of "generalized symmetries, backgrounds, new anomalies..."

Gaiotto, Kapustin, Komargodski, Seiberg, + hundreds... 2015-

So-called "higher symmetries" are illuminating everything from
particle decays to the behavior of complex quantum systems.

1-form center symmetry $Z_{N}^{(1)}$ acts on Wilson loops (e.g. in SYM)

$$
\begin{aligned}
& \quad Z_{q}^{(1)} \\
& : W_{1} \rightarrow e^{i \frac{2 \pi}{q} l_{1}} W_{1} \\
& : W_{2} \rightarrow e^{i \frac{2 \pi}{q} l_{2}} W_{2} \\
& : W_{3} \rightarrow e^{i \frac{2 \pi}{q} l_{3}} W_{3}
\end{aligned}
$$

well-known on lattice since the mid 1970's - generalized to non-winding loops GKKS+

title of 2210.13568 is The gaugino condensate from asymmetric

 four-torus with twists: sounds like a mouthful \& is 70 pages long!$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems
$S_{S Y M}=\frac{1}{g^{2}} \int_{\mathbb{T}^{4}} \operatorname{tr}\left[\frac{1}{2} F_{m n} F_{m n}+2\left(\partial_{n} \bar{\lambda}_{\dot{\alpha}}+i\left[A_{n}, \bar{\lambda}_{\dot{\alpha}}\right]\right) \bar{\sigma}_{n}^{\dot{\alpha} \alpha} \lambda_{\alpha}\right]$
center/chiral mixed anomaly!
chiral $U(1): \lambda \rightarrow e^{i \alpha} \lambda$ broken by anomaly to $Z_{2 N}^{(0)}$ center symmetry: $Z_{N}^{(1)}$, acting on Wilson loops by Z_{N} phase ex. of "generalized symmetries, backgrounds, new anomalies..."

Gaiotto, Kapustin, Komargodski, Seiberg, + hundreds... 2015new developments warrant a new look at some old studies of gaugino condensate...

title of 2210.13568 is The gaugino condensate from asymmetric

 four-torus with twists : sounds like a mouthful \& is 70 p. long!
recent motivation

I. semiclassical studies of confinement...
in a controlled way, show relevance of objects of fractional $Q_{\text {top. }}$. for confinement and $\chi \mathrm{SB}$, advocated by many (González-Arroyo,...)
semiclassical - small spaces
eg $R^{2} \times T^{2}$ Tanizaki, Ünsal, 2022 or
Ünsal, +w/ Yaffe, w/ Shifman +...: 2007-
$R^{3} \times S^{1} S U(N) \rightarrow U(1)^{N-1} \ldots+$ any G SYM
2. generalized symmetries, backgrounds, new anomalies
Gaiotto, Kapustin, Komargodski, Seiberg, +... 2015-
2-form backgrounds for 1-form center also lead to fractional $Q_{\text {top }}$
relation of "'t Hooft twists" 't Hooft, van Baal 1980s to anomalies now clearly understood
I. semiclassical studies of confinement...
2. generalized symmetries, backgrounds, new anomalies
one of two weakly-coupled calculations of $\left\langle\lambda^{2}\right\rangle$: continuous connection to R^{4}

$$
\left\langle\lambda^{2}\right\rangle=16 \pi^{2} \Lambda^{3}
$$

using this new and deeper knowledge, revisit old (1984!) calculations of $\left\langle\lambda^{2}\right\rangle$ on T^{4}

$$
\left\langle\lambda^{2}\right\rangle=c 16 \pi^{2} \Lambda^{3} \quad \begin{aligned}
& \text { Cohen, Gomez ‘84; } \\
& \text { Shifman, Vainshtein } 86
\end{aligned}
$$

how well do we understand semiclassics in the femtouniverse?
is there continuity to infinite volume limit?

- test for condensate, in SYM, where some exact results are known
what fluctuations contribute to the gaugino condensate?
one of two weakly-coupled calculations of $\left\langle\lambda^{2}\right\rangle$: continuous connection to R^{4}

$$
\left\langle\lambda^{2}\right\rangle=16 \pi^{2} \Lambda^{3}
$$

$$
\left\langle\lambda^{2}\right\rangle=c 16 \pi^{2} \Lambda^{3} \quad \begin{aligned}
& \text { Cohen, Gomez ‘84; } \\
& \text { Shifman, Vainshtein } 86
\end{aligned}
$$

in 2021, w/ Cox \& Wandler studied 1-form center/O-form anomaly in YM, SYM,..., in Hamiltonian on twisted T^{3} of any size. Anomaly implies exact degeneracies!
discuss on board... or... ?

we now canonically quantize of $S U(N)$ on T^{3} :

Hilbert space with spatial 't Hooft twist $n_{12}=1$ (e.g., suffices), $A_{0}=0$ gauge, "by the book"
't Hooft, van Baal Lüscher, Witten, González-Arroyo 1980's
$\Psi(A)$ with $A_{R}=\Omega_{1}\left(A_{L}-i d\right) \Omega_{1}^{-1}$, etc., with some chosen gauge for $\Omega_{1,2,3}$
obeying $\Omega_{1}\left(L_{2}\right) \Omega_{2}(0)=e^{i \frac{2 \pi}{N}} \Omega_{2}\left(L_{1}\right) \Omega_{1}(0)$ and no 13 and 23 twists
1 -form $Z_{N}^{(1)}: \hat{T}_{i}, i=1,2,3$, generated by gauge transforms (maps $T^{3} \rightarrow S U(N)$)
periodic up to center element and preserving b.c. w/ Ω_{i}
$\left[\hat{T}_{i}, \hat{H}\right]=0 \Longrightarrow\left|E, e_{1}, e_{2}, e_{3}\right\rangle, \hat{T}_{i}\left|E, e_{1}, e_{2}, e_{3}\right\rangle=\left|E, e_{1}, e_{2}, e_{3}\right\rangle e^{i \frac{2 \pi}{N} e_{i}}$
"electric flux sectors" (changed by winding Wilson loop)
$\stackrel{x_{3}}{\uparrow}$

(changed by winding 't Hooft loop)
torus Hilbert space, with or without twists, splits into N^{3} electric flux sectors

$$
\hat{T}_{i} \hat{W}_{j}=e^{i \frac{2 \pi}{N} \delta_{i j}} \hat{W}_{j} \hat{T}_{i}
$$

we now canonically quantize of $S U(N)$ on T^{3} :
Hilbert space with spatial 't Hooft twist $n_{12}=1$ (e.g., suffices), $A_{0}=0$ gauge, "by the book"
't Hooft, van Baal Lüscher, Witten, González-Arroyo 1980's
$\Psi(A)$ with $A_{R}=\Omega_{1}\left(A_{L}-i d\right) \Omega_{1}^{-1}$, etc., with some chosen gauge for $\Omega_{1,2,3}$ obeying $\Omega_{1}\left(L_{2}\right) \Omega_{2}(0)=e^{i \frac{2 \pi}{N}} \Omega_{2}\left(L_{1}\right) \Omega_{1}(0)$ and no 13 and 23 twists
1 -form $Z_{N}^{(1)}: \hat{T}_{i}, i=1,2,3$, generated by gauge transforms (maps $T^{3} \rightarrow S U(N)$) periodic up to center element and preserving b.c. w/ Ω_{i}

$$
\left[\hat{T}_{i}, \hat{H}\right]=0 \Longrightarrow\left|E, e_{1}, e_{2}, e_{3}\right\rangle, \hat{T}_{i}\left|E, e_{1}, e_{2}, e_{3}\right\rangle=\left|E, e_{1}, e_{2}, e_{3}\right\rangle e^{i \frac{2 \pi}{N} e_{i}}
$$

Crucial observation ('t Hooft)

\hat{T}_{3}, the $Z_{N}^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number $\mathrm{Q}=\frac{n_{12}}{N}(\bmod Z)$
torus Hilbert space, with or without twists, splits into N^{3} electric flux sectors

Crucial observation ('t Hooft)

idea only (details are plentiful... see eg appx of 2106 paper w/ Cox, Wandler)
\hat{T}_{3}, the $Z_{N}^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number $\mathrm{Q}=\frac{n_{12}}{N}(\bmod Z)$

$$
Q=\frac{1}{8 \pi^{2}} \int \operatorname{tr} F \wedge F=\frac{1}{64 \pi^{2}} \int d^{4} x F_{\mu \nu}^{a} F_{\lambda \sigma}^{a} \epsilon^{\mu \nu \lambda \sigma}=\int d^{4} x \partial_{\mu} K^{\mu}
$$

integrand a total derivative, Q only depends on transition functions for a 4d field configuration twisted by T_{3} (denoted C) in time and n_{12} in space:

$$
Q[C]=\frac{1}{24 \pi^{2}} \int_{\mathbb{T}^{3}} \operatorname{tr}\left(C d C^{-1}\right)^{3}
$$

a direct calculation (only requires cocycle conditions, good gauge choice, not explicit form of $\mathrm{C}=\mathrm{T}$ _3), then gives

$$
\mathrm{Q}=\frac{n_{12}}{N}(\bmod Z)=\text { winding of } \hat{T}_{3}(\vec{x}), \text { as map } T^{3} \rightarrow S U(N)
$$

(considering 4d field configuration is a clutch ('t Hooft); equiv., can explicitly construct $\hat{T}_{3}(\vec{x})$ and compute winding...)

we now canonically quantize of $S U(N)$ on T^{3} :

$$
\left[\hat{T}_{i}, \hat{H}\right]=0 \Longrightarrow\left|E, e_{1}, e_{2}, e_{3}\right\rangle, \hat{T}_{i}\left|E, e_{1}, e_{2}, e_{3}\right\rangle=\left|E, e_{1}, e_{2}, e_{3}\right\rangle e^{i \frac{2 \pi}{N} e_{i}}
$$

but then, since the change of CS functional is the winding number
torus Hilbert space, with or without twists, splits into N^{3} electric flux sectors

Crucial observation ('t Hooft)
\hat{T}_{3}, the $Z_{N}^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number $\mathrm{Q}=\frac{n_{12}}{N}(\bmod Z)$

$$
\Longrightarrow \hat{T}_{3} e^{i 2 \pi \int_{T^{3}} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)} \hat{T}_{3}^{-1}=e^{i \frac{2 \pi}{N}} e^{i 2 \pi \int_{T^{3}} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)}
$$

we now canonically quantize of $S U(N)$ on T^{3} :

$$
\left[\hat{T}_{i}, \hat{H}\right]=0 \Longrightarrow\left|E, e_{1}, e_{2}, e_{3}\right\rangle, \hat{T}_{i}\left|E, e_{1}, e_{2}, e_{3}\right\rangle=\left|E, e_{1}, e_{2}, e_{3}\right\rangle e^{i \frac{2 \pi}{N} e_{i}}
$$

$$
\hat{T}_{3} e^{i 2 \pi \int_{T^{3}} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)} \hat{T}_{3}^{-1}=e^{i \frac{2 \pi}{N}} e^{i 2 \pi \int_{T^{3}} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)}
$$

i.e., operator shifting θ angle by 2π does not commute with

1 -form center symmetry in the direction orthogonal to the twist

- Pierre van Baal PhD thesis, 1984, Ch 3, unpublished! (**)
- "theta-periodicity anomaly"... [GKKS+] ~ 2010's (in Euclidean)
(**) admittedly, while commutation relation appears there, its significance as an anomaly and implications for large volume theory was not appreciated back then... (why?)
we now canonically quantize of $S U(N)$ on T^{3} :
consider $S U(N)$ with adjoints, for definiteness take $S Y M, \underline{n}_{f}=1$ below:

$$
\partial_{\mu} \hat{j}_{f}^{\mu}=\partial_{\mu}\left(\hat{\lambda}^{a \dagger} \bar{\sigma}^{\mu} \hat{\lambda}^{a}\right)=2 n_{f} N \partial_{\mu} \hat{K}^{\mu} \longrightarrow \text { R-current not conserved }
$$

$$
\begin{aligned}
& \hat{J}_{5}^{\mu}=\hat{j}_{f}^{\mu}-2 n_{f} N \hat{K}^{\mu} \\
& \hat{Q}_{5}=\int d^{3} x \hat{y}_{5}^{0}=\int d^{3} x \hat{j}_{f}^{0}-2 n_{f} N \int d^{3} x \hat{K}^{0}
\end{aligned} \longrightarrow \text { conserved but not gauge invariant }
$$

$$
\hat{X}_{2 N}=e^{i \frac{2 \pi}{2 N} \hat{Q}_{5}}=e^{i \frac{2 \pi}{2 N} \int d^{3} x \hat{j}_{f}^{0}} e^{-i 2 \pi \int d^{3} x \hat{K}_{0}} \longrightarrow \text { of }_{2 N}^{\text {gauge invariant operator }} \text { discrete R-symmetry }
$$

$$
\hat{T}_{3} e^{i 2 \pi \int_{T_{3} 3} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)} \hat{T}_{3}^{-1}=e^{i \frac{i \pi}{N}} e^{i 2 \pi \int_{T_{3}} \operatorname{tr}(\hat{A} d \hat{A}+\ldots)} \Longrightarrow \hat{T}_{3} \hat{X}_{2 N} \hat{T}_{3}^{-1}=e^{-i \frac{2 \pi}{N}} \hat{X}_{2 N}
$$

$$
\iint_{d x}^{d x} \dot{\hat{K}_{0}}
$$

Ex 1.: SYM on twisted T^{3} - invertible chiral/center anomaly

Hilbert space with spatial 't Hooft twist $n_{12}=1$ (e.g., suffices); SYM has two global symmetries, \hat{T}_{3} and $\hat{X}_{2 N}$, 1-form and 0-form, invertible (=normal unitary operators on Hilbert space) commute with Hamiltonian, but not with each other:

$$
\hat{T}_{3} \hat{X}_{2 N} \hat{T}_{3}^{-1}=e^{-i \frac{2 \pi}{N}} \hat{X}_{2 N} \longrightarrow \hat{X}_{2 N}\left|E, e_{3}\right\rangle=\left|E, e_{3}-1\right\rangle
$$

action of chiral symmetry changes flux of state (the one in 3rd direction, for 12 twist) all energy levels on the twisted T^{3} are N -fold degenerate, exact degeneracy, for any volume, provided $n_{12}=1$!
[Cox, Wandler, EP 2106]
as volume goes to infinity, if theory confines (center unbroken), clustering ground states are the lowest energy degenerate flux states, related by broken discrete chiral symmetry - here, a consequence of the mixed anomaly!
does not require SUSY, similar degeneracies in non-SUSY QCD(adj) exact degeneracies less severe if gauge group has smaller center... SP, Spin, E6, E7
[Cox, Wandler, EP 2106]
in 2021, w/ Cox \& Wandler studied 1-form center/0-form anomaly in YM, SYM,..., in Hamiltonian on twisted T^{3} of any size. Anomaly implies exact degeneracies!

$e_{3}=0$

$e_{3} \in\{0,1\} \quad \hat{T}_{3}$-eigenvalue: $\hat{T}_{3}\left|e_{3}\right\rangle=e^{i \pi e_{3}}\left|e_{3}\right\rangle$
\hat{T}_{3} - generator of Z_{2} center symmetry along $(0,0,1)$

$$
\hat{T}_{3} \hat{W}_{3}=-\hat{W}_{3} \hat{T}_{3}
$$

\hat{X} - generator of Z_{4} chiral symmetry

Hilbert space with spatial 't Hooft twist $\underline{n_{12}=1:}|\ldots\rangle_{\left(n_{12}\right)}$

$$
\left|E, e_{3}=1\right\rangle_{\left(n_{12}\right)} \text { degenerate } \mathbf{w} /\left|E, e_{3}=0\right\rangle_{\left(n_{12}\right)} \text { for all } E \text {, any size } T^{3} \text { interchanged by chiral symmetry }
$$

anomaly: $\quad \hat{T}_{3} \hat{X}=(-)^{n_{12}} \hat{X} \hat{T}_{3}$

$$
\Longrightarrow \hat{X}\left|E, e_{3}=0\right\rangle_{\left(n_{12}\right)} \sim\left|E, e_{3}=1\right\rangle_{\left(n_{12}\right)}
$$

(phase depends on whether B or F)

remarks on infinite vs. finite volume in 't Hooft flux $n_{12}=1$ background

Assuming confinement (unbroken center) $->$ broken chiral

$$
\begin{array}{ll}
\left|E=0, e_{3}=1\right\rangle_{\left(n_{12}\right)} & \text { two clustering vacua in } \\
\left|E=0, e_{3}=0\right\rangle_{\left(n_{12}\right)} & \text { infinite volume limit }
\end{array}
$$ twisted b.c. should be irrelevant in gapped theory in ∞ volume lattice pure-YM, $\theta=0$: string tensions, glueballs agree $V \gg V_{0}$ twist vs no twist

remarks on infinite vs. finite volume in 't Hooft flux $n_{12}=1$ background

Assuming confinement (unbroken center) $->$ broken chiral

$$
\begin{array}{ll}
\left|E=0, e_{3}=1\right\rangle_{\left(n_{12}\right)} & \text { two clustering vacua in } \\
\left|E=0, e_{3}=0\right\rangle_{\left(n_{12}\right)} & \text { infinite volume limit }
\end{array}
$$

armed with this, consider condensate, $\lambda^{2} \equiv \operatorname{tr} \lambda^{2}:$

$$
\left\langle\lambda^{2}\right\rangle_{n_{12}, n_{34}}=2 \sum_{E}(-)^{F} e^{-\beta E}\langle E, 0| \lambda^{2}|E, 0\rangle_{\left(n_{12}\right)}
$$

normalize by path integral without λ^{2} and \hat{T}_{3} (i.e. no n_{34} twist, only n_{12}), i.e. Witten index

$$
\langle 1\rangle_{n_{12}, 0}=\operatorname{Tr}_{\mathscr{H}_{n_{12}}} e^{-\beta H}(-1)^{F}=\sum_{E ; e_{3}=0,1}(-)^{F} e^{-\beta E}\left\langle E, e_{3} \mid E, e_{3}\right\rangle_{\left(n_{12}\right)}=2
$$

$$
\begin{aligned}
& \begin{array}{c}
\left\langle\lambda^{2}\right\rangle_{n_{12}, n_{34}}=\operatorname{Tr}_{\mathscr{H}_{n_{12}}} e^{-\beta H}(-1)^{F} \hat{T}_{3} \lambda^{2}=\sum_{E ; e_{3}=0,1}(-)^{F} e^{-\beta E}(-1)^{e_{3}}\left\langle E, e_{3}\right| \lambda^{2}\left|E, e_{3}\right\rangle_{\left(n_{12}\right)} \\
\hat{X}|E, 0\rangle_{\left(n_{12}\right)} \sim|E, 1\rangle_{\left(n_{12}\right)} \text { and } \hat{X} \lambda^{2} \hat{X}^{\dagger}=-\lambda^{2} \text { imply that } \lambda^{2} \text { has opposite signs in degenerate flux states }
\end{array}
\end{aligned}
$$

$$
Q \in Z+1 / 2
$$

semiclassical expansion expected to hold at small T^{4} ("femtouniverse")
$Q=\frac{1}{2}$, the leading contribution to numerator, will have two undotted λ zero modes we shall discuss this calculation... but first the big picture

$$
\begin{aligned}
& A\left(x_{y}=\beta\right)=A\left(x_{y}=0\right)^{T_{3}(x)}
\end{aligned}
$$

$Q \in Z+1 / 2$
$A\left(x_{y}=\beta\right)=A\left(x_{r}=0\right)^{T_{3}(x)}$

take β infinite: only $\mathrm{E}=0$
take $L_{1,2,3}$ infinite:
R^{4} gaugino condensate in one of the vacua
$Q \in Z+1 / 2$

$$
A\left(x_{y}=\beta\right)=A\left(x_{p}=0\right)^{T_{3}(x)}
$$

$$
\equiv\left\langle\lambda^{2}\right\rangle=\sum_{E}(-)^{F} e^{-\beta E}\langle E, 0| \lambda^{2}|E, 0\rangle_{\left(n_{12}\right)}
$$

take β infinite: only $\mathrm{E}=0$
take $L_{1,2,3}$ infinite:
R^{4} gaugino condensate in one of the vacua

- made assumptions, stated later!
+ argue that result is $L_{\mu}, g_{Y M}$-independent
$Q \in Z+1 / 2$

$$
A\left(x_{y}=\beta\right)=A\left(x_{p}=0\right)^{T_{3}(x)}
$$

$Q=\frac{1}{2}$, the leading semiclassical contribution to numerator, w/ two undotted λ zero modes.
what are these instantons?
't Hooft, 1981, $Q=\frac{1}{2}$ constant flux background
BPS if symmetric $T^{4}: L_{1} L_{2}=L_{3} L_{4}$

$$
F_{m n}^{(0)}=\frac{\tau^{3}}{2}\left(\begin{array}{cccc}
0 & -\frac{2 \pi}{L_{1} L_{2}} & 0 & 0 \\
\frac{2 \pi}{L_{1} L_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2 \pi}{L_{3} L_{4}} \\
0 & 0 & \frac{2 \pi}{L_{3} L_{4}} & 0
\end{array}\right)
$$

Commun. Math. Phys. 81, 267-275 (1981)

Some Twisted Self-Dual Solutions

for the Yang-Mills Equations on a Hypertorus*
such an action. All our solutions will be represented in a suitably chosen gauge that makes them look essentially translationally invariant and Abelian. However, considering the difficulty we had in finding them it looked worth-while to publish the result.

$$
\begin{aligned}
& \bar{A}_{n}(x, z)=\bar{A}_{n}^{3}(x, z) \frac{\tau^{3}}{2}: \quad \bar{A}_{1}^{3}=\frac{2 \pi x_{2}}{L_{1} L_{2}}+\frac{z_{1}}{L_{1}}, \\
& \begin{array}{l}
\bar{A}_{2}^{3}=\frac{z_{2}}{L_{2}}, \\
\bar{A}_{3}^{3}=\frac{2 \pi x_{4}}{L_{3} L_{4}}+\frac{z_{3}}{L_{3}},
\end{array} \text { moduli } \\
& \bar{A}_{4}^{3}=\frac{z_{4}}{L_{4}} .
\end{aligned}
$$

't Hooft, 1981, $Q=\frac{1}{2}$ constant flux background

$$
\text { BPS if symmetric } T^{4}: L_{1} L_{2}=L_{3} L_{4}
$$

BPS - minimum action for given Q

- preserves $1 / 2$ SUSY
(SYM: B/F det's of nonzero modes cancel, up to power of PV regulator mass)
attempting symmetric $T^{4} \ldots$ all looks bad!
- find 4λ and $2 \bar{\lambda}$ zero modes
(explicit, 2210.13568)
- these source gauge field EOM... lifted? how?

> (we don’t know!)

- $L_{1} L_{2}=L_{3} L_{4}$ does not allow taking some interesting limits, e.g., $R^{2} \times T_{n_{12}}^{2}$

Tanizaki Ünsal 2022
't Hooft, 1981, $Q=\frac{1}{2}$ constant flux background
BPS if symmetric $T^{4}: L_{1} L_{2}=L_{3} L_{4}$
BPS - minimum action for given Q

- preserves 1/2 SUSY
(SYM: B/F det's of nonzero modes cancel, up to power of PV regulator mass)
attempting symmetric $T^{4} \ldots$ all looks bad!
- find 4λ and $2 \bar{\lambda}$ zero modes
(explicit, 2210.13568)
- these source gauge field EOM... lifted? how? (we don't know!)
- $L_{1} L_{2}=L_{3} L_{4}$ does not allow taking some interesting limits, e.g., $R^{2} \times T_{n_{12}}^{2}$

Tanizaki Ünsal 2022

Cohen, Gomez 1984 gave an expression using this solution ("toron") unaware (?) of subtleties mentioned, or of coefficient.
In any case, since Hilbert space at finite $T_{n_{12}}^{3}$ was not understood at the time, interpretation would have been difficult.
't Hooft, 1981, $Q=\frac{1}{2}$ constant flux background

$$
\text { BPS if symmetric } T^{4}: L_{1} L_{2}=L_{3} L_{4}
$$

González-Arroyo, Pérez, Pena 2000

attempting symmetric $T^{4} \ldots$ all looks bad! \longrightarrow deform the symmetric T^{4}, impose BPS :

- find 4λ and $2 \bar{\lambda}$ zero modes
(explicit, 2210.13568)
- these source gauge field EOM... lifted? how? (we don't know!)
- only 2λ zero modes
- no source term in YM field EOM
- $L_{1} L_{2}=L_{3} L_{4}$ does not allow taking some interesting limits, e.g., $R^{2} \times T_{n_{12}}^{2}$

Tanizaki Ünsal 2022

- $L_{1} L_{2} \neq L_{3} L_{4}$, so can take limits Sounds fantastic!?

There is "bad news," too: deformed $-T^{4}$ analytic BPS solution is only known to leading order in

$$
\Delta=\frac{L_{3} L_{4}-L_{1} L_{2}}{\sqrt{V}}
$$

for $\operatorname{SU}(2)$, there is numerical evidence for uniqueness and convergence upon comparing to "exact" (=numerical) solution for $\Delta \leq 0.08 \ldots$
so, for now, we stick with $\operatorname{SU}(2)$

Remark:

If there were general statements known about the moduli space of $Q=\frac{r}{N}$ instantons on T^{4}, one could do certain calculations in SYM only using this knowledge (not explicit form of solutions) as integrals for some correlators reduce to those over bosonic and fermionic moduli.

Alas...not known!

hence, we proceed by "trial and error" (consistency)
(as l'll discuss, our results may be taken to suggest that it is here where we likely need help!)

As an aside

at order Δ^{1}, gauge invariant densities (constant at Δ^{0}) acquire x-dependence

this is $\mathrm{Q}=3 / \mathrm{N}$, in $\mathrm{SU}(\mathrm{N}>3)$, 12 moduli are positions of 3 lumps
(yellow, red, blue; 2-torus shown doubled in size)
see Anber, EP 2307.04975

$$
\Delta=\frac{L_{3} L_{4}-L_{1} L_{2}}{\sqrt{V}}
$$

Anber, EP 2210.13568:

deforming the symmetric T^{4}, we find
all orders
Δ-independence

- only 2λ (no $\bar{\lambda}$) zero modes
 explicit expressions to $O(\Delta)$ SUSY
- four translational moduli
- measure Δ-independent to all orders
- condensate Δ-independent to all orders argument assumes
convergence (+ uses SUSY)

pure YM, Hamiltonian argument:

Most importantly: range of moduli?

$$
\left\langle W_{1}\right\rangle_{n_{12}, n_{34}}=\operatorname{Tr}_{\mathscr{H} n_{12}} e^{-\beta H_{\theta}} \hat{T}_{3} W_{1}=0, \text { as }\langle E, \vec{e}| W_{1}|E, \vec{e}\rangle=0
$$

to find range of z_{n} moduli, require $\left\langle W_{\mu}\right\rangle=0$ in pure-YM theory in femtouniverse with twists (use uniqueness):

$$
e^{-\frac{4 \pi^{2}}{g^{2}}-i \frac{\theta}{2}} \frac{V}{g^{4}} \int_{M} \prod_{k=1}^{4} d z_{k} W\left(x, z, C_{n_{1}, n_{2}, n_{3}, n_{4}}\right)+\text { h.c. }=0(\forall x, \theta) \text { iff } z_{k} \in(0,4 \pi)
$$

winding loop in $\mathrm{Q}=1 / 2$ self-dual background

$$
\begin{array}{ll}
= & W\left(x, C_{n_{1}, n_{2}, n_{3}, n_{4}}\right) \\
& 2 \cos \left[\frac{1}{2}\left(n_{1}\left(z_{1}+\frac{2 \pi x_{2}}{L_{2}}\right)+n_{2}\left(z_{2}-\frac{2 \pi x_{1}}{L_{1}}\right)+n_{3}\left(z_{3}+\frac{2 \pi x_{4}}{L_{4}}\right)+n_{4}\left(z_{4}-\frac{2 \pi x_{\mathbb{B}}}{L_{2}}\right)\right)\right] \\
& \times[1+\Delta \mathcal{F}(x, z)] . \tag{5.5}
\end{array}
$$

Most importantly: range of moduli?

- to find range of z_{n} moduli, require $\left\langle W_{\mu}\right\rangle=0$ in pure-YM theory in femtouniverse with twists (use uniqueness):

$$
e^{-\frac{4 \pi^{2}}{g^{2}}-i \frac{\theta}{2}} \frac{V}{g^{4}} \int_{M} \prod_{k=1}^{4} d z_{k} W\left(x, z, C_{n_{1}, n_{2}, n_{3}, n_{4}}\right)+\text { h.c. }=0(\forall x, \theta) \text { iff } z_{k} \in(0,4 \pi)
$$

winding loop in $\mathrm{Q}=1 / 2$ self-dual background

- range of moduli found by demanding vanishing of Wilson loop vevs in pure-YM, is equivalent to that found by demanding that there exist gauge invariants, evaluated in solution background, differentiate between all points $(0,4 \pi)$ - i.e., we are not integrating over gauge equivalent values of moduli

Remark: Range of z_{n} moduli $(0,4 \pi)$ means that instanton wraps twice around each direction of torus.
Local gauge invariants identify $z \sim z+2 \pi$, but ones dressed by Wilson loops see difference.

Recall what we compute (factor of 2 from Witten index already divided out)

$$
\left\langle\lambda^{2}\right\rangle=\left.\sum_{E}(-)^{F} e^{-L_{4} E}\langle E, 0| \lambda^{2}|E, 0\rangle\right|_{n_{12}=1, V_{3}=L_{1} L_{2} L_{3}, \frac{L_{3} L_{4}-L_{1} L_{2}}{\sqrt{L_{1} L_{2} L_{3} L_{4}}} \ll 1, L_{i} \Lambda \ll 1}
$$

all qualifications stated!

Collecting everything, we find

$$
\begin{aligned}
&\left\langle\lambda^{2}\right\rangle=32 \pi^{2} \Lambda^{3}=2 \times \frac{16 \pi^{2} \Lambda^{3}}{\uparrow} \\
& \text { two times the } R^{4}, R^{3} \times S^{1} \text { result of weak-coupling } \\
& \text { calculations, all use same def. of scale } \Lambda^{3}=\frac{M_{P V}^{3}}{g^{2}} e^{-\frac{4 \pi^{2}}{g^{2}}}
\end{aligned}
$$

Recall what we compute (factor of 2 from Witten index already divided out)

$$
\left\langle\lambda^{2}\right\rangle=\left.\sum_{E}(-)^{F} e^{-L_{4} E}\langle E, 0| \lambda^{2}|E, 0\rangle\right|_{n_{12}=1, V_{3}=L_{1} L_{2} L_{3}, \frac{L_{3} L_{4}-L_{1} L_{2}}{\sqrt{L_{1} L_{2} L_{3} L_{4}}} \ll 1, L_{i} \Lambda \ll 1}
$$

Collecting everything, we find

$$
\left\langle\lambda^{2}\right\rangle=32 \pi^{2} \Lambda^{3}=2 \times \frac{16 \pi^{2} \Lambda^{3}}{\bigcap_{R^{4}, R^{3} \times S^{1}}}
$$

to get to R^{4}, say, take $L_{4} \rightarrow \infty$, obtaining $\left\langle\lambda^{2}\right\rangle=(-)^{F}\langle 0,0| \lambda^{2}|0,0\rangle_{n_{12}=1, V_{3}=L_{1} L_{2} L_{3}}$
then, take $V_{3} \rightarrow \infty$ there's a discrepancy only if "nothing happens" while these limits are taken
argue that result is $L_{\mu}, g_{Y M}$-independent?

Recall what we compute (factor of 2 from Witten index already divided out)

$$
\left\langle\lambda^{2}\right\rangle=\left.\sum_{E}(-)^{F} e^{-L_{4} E}\langle E, 0| \lambda^{2}|E, 0\rangle\right|_{n_{12}=1, V_{3}=L_{1} L_{2} L_{3}, \frac{L_{3} L_{4}-L_{1} L_{2}}{\sqrt{L_{1} L_{2} L_{3} L_{4}}} \ll 1, L_{i} \Lambda \ll 1}
$$

Collecting everything, we find

$$
\left\langle\lambda^{2}\right\rangle=32 \pi^{2} \Lambda^{3}=2 \times \frac{16 \pi^{2} \Lambda^{3}}{R^{4}, R^{3} \times S^{1}}
$$

Holomorphy on $T^{4} ?$

$$
\begin{gathered}
\Lambda^{*} \frac{d}{d \Lambda *}\left\langle\lambda^{2}\right\rangle \sim\left\langle\lambda^{2} F *\right\rangle \sim\left\langle\lambda^{2} \bar{Q}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}}+\lambda^{2} \bar{\psi}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}}\right\rangle \sim\left\langle\bar{Q}_{\dot{\alpha}} \lambda^{2} \bar{\psi}^{\dot{\alpha}}+\lambda^{2} \bar{\psi}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}}\right\rangle=0 \\
T^{3} \text { : for each } E, e_{3}, \quad \sum_{\uparrow}(-)^{F}\langle E| X_{2} \bar{Q}_{\dot{1}}+\bar{Q}_{\dot{1}} X_{\dot{2}}|E\rangle=0, \text { states } \in \text { reps. of }\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=\delta_{\alpha \dot{\beta}} E \quad \text { on } R^{4}
\end{gathered}
$$

—> holomoprphy on T^{4} as well, $\left\langle\lambda^{2}\right\rangle=c \Lambda^{3}$, holomorphy -> no $L|\Lambda|$-dependence
holomorphy argument appears known/ obvious to S.\&V., the authors of 1986 "Solution of anomaly puzzle..."

Holomorphy wrt Λ leaves open dependence on dim-less ratios, like Δ, but seen not to occur...
thus, we seem to have a problem...

- we made an algebraic mistake (all factors spelled out in glory detail in paper)
- there is a loophole in L_{i}-independence argument?
- misidentified moduli space? (missed some global identification? need rationale?)
- other backgrounds contribute?
- to boot, using one (no numeric study of uniqueness here!) of 't Hooft $\mathrm{SU}(\mathrm{N})$ solutions ($\pm \Delta \ldots$) we find

$$
\left\langle\lambda^{2}\right\rangle=N \times 16 \pi^{2} \Lambda^{3} \quad N \text { times the } R^{4}, R^{3} \times S^{1} \text { weak coupling instanton result, }
$$ in the usual normalization (N-fold degeneracy divided out, as in $\mathrm{SU}(2)$)

SUMMARY:

```
one of two weakly-coupled calculations
of }\langle\mp@subsup{\lambda}{}{2}\rangle\mathrm{ : continuous connection to }\mp@subsup{R}{}{4
```

using this new and deeper knowledge, revisit old (1984!) calculations of $\left\langle\lambda^{2}\right\rangle$ on T^{4}

$$
\begin{array}{ll}
\left\langle\lambda^{2}\right\rangle_{R^{4}} & \\
& \left\langle\lambda^{2}\right\rangle_{T^{4}} \\
& \left\langle\lambda^{2}\right\rangle_{T^{4}}=2 \times\left\langle\lambda^{2}\right\rangle_{R^{4} \text { for SU(2) }} \\
\text { why? }
\end{array}
$$

important for pushing \& checking ‘adiabatic continuity' program qualitatively

FUTURE:

wish for better understanding of fractional charge instantons, semiclassics, and their role in gauge dynamics (for which some evidence has accumulated)
input from math-phys/string?
(as in Dp-4 inside Dp <-> ADHM...; fractionalization of BPST on Coulomb branch)

