Anomalies, tori, and new twists in the gaugino condensate

Erich Poppitz (Toronto)

with

2210.13568 (w/ some mention of 2307.04795 and work since)

Mohamed Anber (Durham)

why now, etc. ?

$$S_{SYM} = \frac{1}{g^2} \int_{\mathbb{T}^4} \operatorname{tr} \left[\frac{1}{2} F_{mn} F_{mn} + 2(\partial_n \bar{\lambda}_{\dot{\alpha}} + i[A_n]) \right]$$

chiral $U(1): \lambda \to e^{i\alpha}\lambda$ by anomaly $\to Z_{2N}^{(0)}$

four-torus with twists: sounds like a mouthful & is 70 pages long!

$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems

$[n, \bar{\lambda}_{\dot{\alpha}}])\bar{\sigma}_{n}^{\dot{\alpha}\alpha}\lambda_{\alpha}$ **G=SU(N)**

 $S_{SYM} = \frac{1}{a^2} \int_{\mathbb{T}^4} \operatorname{tr} \left| \frac{1}{2} F_{mn} F_{mn} + 2(\partial_n \bar{\lambda}_{\dot{\alpha}} + i[A_n, \bar{\lambda}_{\dot{\alpha}}]) \bar{\sigma}_n^{\dot{\alpha}\alpha} \lambda_\alpha \right|$

chiral $U(1): \lambda \to e^{i\alpha}\lambda$ by anomaly $\to Z_{2N}^{(0)}$

 $\Lambda^{3} = \mu^{3} \frac{e^{-8\pi^{2}/Ng^{2}}}{a^{2}} \ (= \mu^{3} \ e^{-\frac{8\pi^{2}}{Ng_{h}^{2}(\mu)}}) \quad \text{holomorphic scale}$

four-torus with twists: sounds like a mouthful & is 70 pages long!

$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems

G=SU(N)

 $Z_{2N}^{(0)} \rightarrow Z_{2}^{(0)} \qquad \langle \operatorname{tr} \lambda^{2} \rangle \underset{(N=2)}{= \pm 16\pi^{2}\Lambda^{3}} \qquad \frac{\operatorname{the ``mother'' of all}}{\operatorname{exact results in SUSY,}}$

$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems

1983-1999: Novikov, Shifman, Vainshtein, Zakharov; Amati, Konishi, Rossi, Veneziano; Affleck, Dine, Seiberg; Cordes; Finnell, Pouliot (SQCD —> SYM on R^4); Davies, Hollowood, Khoze, Mattis;... 2014 Anber, Teeple, EP (SYM on $R^3 \times S^1$ —> SYM on R^4)

two weakly-coupled calculations of $\langle \lambda^2 \rangle$

four-torus with twists: sounds like a mouthful & is 70 pages long!

$Z_{2N}^{(0)} \rightarrow Z_2^{(0)} \qquad \langle \operatorname{tr} \lambda^2 \rangle = \pm 16\pi^2 \Lambda^3$ (N=2)

all history...?

 $\Lambda^{3} = \mu^{3} \frac{e^{-8\pi^{2}/Ng^{2}}}{a^{2}} \ (= \mu^{3} \ e^{-\frac{8\pi^{2}}{Ng_{h}^{2}(\mu)}}) \quad \text{holomorphic scale}$

 $\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems $S_{SYM} = \frac{1}{a^2} \int_{\mathbb{T}^4} \operatorname{tr} \left| \frac{1}{2} F_{mn} F_{mn} + 2(\partial_n \bar{\lambda}_{\dot{\alpha}} + i[A_n, \bar{\lambda}_{\dot{\alpha}}]) \bar{\sigma}_n^{\dot{\alpha}\alpha} \lambda_\alpha \right|$

chiral $U(1): \lambda \to e^{i\alpha}\lambda$ broken by anomaly to $Z_{2N}^{(0)}$ ex. of "generalized symmetries, backgrounds, new anomalies..."

four-torus with twists: sounds like a mouthful & is 70 pages long!

- center symmetry: $Z_N^{(1)}$, acting on Wilson loops by Z_N phase

 - Gaiotto, Kapustin, Komargodski, Seiberg, + hundreds... 2015-

MATHEMATICAL PHYSICS

A New Kind of Symmetry Shakes Up **Physics**

🗬 23 | 🔳

So-called "higher symmetries" are illuminating everything from particle decays to the behavior of complex quantum systems.

The symmetries of 20th-century physics were built on points. Higher symmetries are based on one-dimensional lines.

1-form center symmetry $Z_N^{(1)}$ acts on Wilson loops

(e.g. in SYM)

$$: W_3 \to e^{i\frac{2\pi}{q}l_3}W_3$$

well-known on lattice since the mid 1970's - generalized to non-winding loops GKKS+

Samuel Velasco/Quanta Magazine

 $S_{SYM} = \frac{1}{a^2} \int_{\mathbb{T}^4} \operatorname{tr} \left[\frac{1}{2} F_{mn} F_{mn} + 2(\partial_n \bar{\lambda}_{\dot{\alpha}} + i[A_n, \bar{\lambda}_{\dot{\alpha}}]) \bar{\sigma}_n^{\dot{\alpha}\alpha} \lambda_\alpha \right]$

ex. of "generalized symmetries, backgrounds, new anomalies..." Gaiotto, Kapustin, Komargodski, Seiberg, + hundreds... 2015-

new developments warrant a new look at some old studies of gaugino condensate...

four-torus with twists: sounds like a mouthful & is 70 pages long!

$\mathcal{N}=1$ SYM: symmetries and nonrenormalization theorems

title of 2210.13568 is The gaugino condensate from asymmetric four-torus with twists : sounds like a mouthful & is 70 p. long!

recent motivation

I. semiclassical studies of confinement...

in a controlled way, show relevance of objects of fractional $Q_{top.}$ for confinement and χ SB, advocated by many (González-Arroyo,...)

semiclassical - small spaces

eg $R^2 \times T^2$ Tanizaki, Ünsal, 2022 or

Ünsal, +w/ Yaffe, w/ Shifman +...: 2007- $R^3 \times S^1 SU(N) \rightarrow U(1)^{N-1} - ... + any G SYM$

2. generalized symmetries, backgrounds, new anomalies

Gaiotto, Kapustin, Komargodski, Seiberg, +... 2015-

2-form backgrounds for 1-form center also lead to fractional Q_{top}

relation of "'t Hooft twists" 't Hooft, van Baal 1980s to anomalies now clearly understood

I. semiclassical studies of confinement...

one of two weakly-coupled calculations of $\langle \lambda^2 \rangle$: continuous connection to R^4

 $\langle \lambda^2 \rangle = 16\pi^2 \Lambda^3$

2. generalized symmetries, backgrounds, new anomalies

using this new and deeper knowledge, revisit old (1984!) calculations of $\langle \lambda^2 \rangle$ on T^4

$$\langle \lambda^2 \rangle = c \ 16\pi^2 \Lambda^3$$

Cohen, Gomez '84; Shifman, Vainshtein '86

how well do we understand semiclassics in the femtouniverse? is there continuity to infinite volume limit?

what fluctuations contribute to the gaugino condensate?

one of two weakly-coupled calculations of $\langle \lambda^2 \rangle$: continuous connection to R^4

 $\langle \lambda^2 \rangle = 16\pi^2 \Lambda^3$

- test for condensate, in SYM, where some exact results are known

using this new and deeper knowledge, revisit old (1984!) calculations of $\langle \lambda^2 \rangle$ on T^4

$$\langle \lambda^2 \rangle = c \ 16\pi^2 \Lambda^3$$

Cohen, Gomez '84; Shifman, Vainshtein '86

in Hamiltonian on twisted T^3 of any size. Anomaly implies exact degeneracies!

in 2021, w/ Cox & Wandler studied 1-form center/0-form anomaly in YM, SYM,...,

discuss on board... or...?

we now canonically quantize of SU(N) on T^3 :

González-Arroyo Hilbert space with spatial 't Hooft twist $n_{12} = 1$ (e.g., suffices), $A_0 = 0$ gauge, "by the book" 1980's $(-1)^{P} (A) \text{ with } A_R = \Omega_1(A_L - id)\Omega_1^{-1}, \text{ etc., with some chosen gauge for } \Omega_{1,2,3}$ obeying $\Omega_1(L_2)\Omega_2(0) = e^{i\frac{2\pi}{N}} \Omega_2(L_1)\Omega_1(0)$ and no 13 and 23 twists 1-form $Z_N^{(1)}$: \hat{T}_i , i = 1, 2, 3, generated by gauge from storms (maps $T^3 \rightarrow SU(N)$) periodic up to center element and preserving b.c. w/ Ω_i $[\hat{T}_{i}, \hat{H}] = 0 = \mathbb{Z}_{N}^{(1)} E, \hat{E}_{1}, e_{2}, e_{3}\rangle, \quad \hat{T}_{i} | E, e_{1}^{2\pi}, e_{2}^{2\pi}, e_{3} \in \mathbb{Z}_{N}E, e_{1}, e_{2}, e_{3}\rangle e^{i\frac{2\pi}{N}e_{i}}$ (changed by <u>"electric flux sectors"</u> winding Wilson loop)

torus Hilbert space, with or without twists, splits into N^3 electric flux sectors

"magnetic flux sectors"

(changed by winding 't Hooft loop)

 $\hat{T}_i \hat{W}_j = e^{i \frac{2\pi}{N} \delta_{ij}} \hat{W}_j \hat{T}_i$

we now canonically quantize of SU(N) on T^3 :

González-Arroyo Hilbert space with spatial 't Hooft twist $n_{12} = 1$ (e.g., suffices), $A_0 = 0$ gauge, "by the book" 1980's $(-1)^{\Psi(A)} \text{ with } A_R = \Omega_1(A_L - id)\Omega_1^{-1}, \text{ etc., with some chosen gauge for } \Omega_{1,2,3}$ obeying $\Omega_1(L_2)\Omega_2(0) = e^{i\frac{2\pi}{N}} \Omega_2(L_1)\Omega_1(0)$ and no 13 and 23 twists 1-form $Z_N^{(1)}$: \hat{T}_i , i = 1, 2, 3, generated by gauge transforms (maps $T^3 \rightarrow SU(N)$) periodic up to center element and preserving b.c. w/ Ω_i $T_{2}(\vec{x})$ $[\hat{T}_{i}, \hat{H}] = 0 = \mathbb{Z}_{N}^{(1)} E, \hat{T}_{1}, e_{2}, e_{3}\rangle, \quad \hat{T}_{i} | E, e_{1}^{2\pi}, e_{2}^{2\pi}, e_{3} \in \mathbb{Z}_{N}E, e_{1}, e_{2}, e_{3}\rangle e^{i\frac{2\pi}{N}e_{i}}$

 $e_{3} = 0$

(mod N

torus Hilbert space, with or without twists, splits into N^3 electric flux sectors

<u>Crucial observation ('t Hooft)</u>

 \hat{T}_3 , the $Z_N^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number Q = $\frac{n_{12}}{N}$ (mod Z)

 L_N

<u>Crucial observation ('t Hooft)</u>

 \hat{T}_3 , the $Z_N^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number Q = $\frac{n_{12}}{N} \pmod{Z}$

 $A(x_{g}=\beta) = A(x_{g}=\alpha)^{'_{3}(x)}$

idea only (details are plentiful... see eg appx of 2106 paper w/ Cox, Wandler)

$$Q = \frac{1}{8\pi^2} \int \operatorname{tr} F \wedge F = \frac{1}{64\pi^2} \int d^4 x F^a_{\mu\nu} F^a_{\lambda\sigma} \epsilon^{\mu\nu\lambda\sigma} = \int d^4 x \partial_\mu$$

integrand a total derivative, Q only depends on transition functions for a 4d field configuration twisted by T_3 (denoted C) in time and n_{12} in space:

$$Q[C] = \frac{1}{24\pi^2} \int_{\mathbb{T}^3} \operatorname{tr} (CdC^{-1})^3$$

a direct calculation (only requires cocycle conditions, good gauge choice, not explicit form of $C=T_3$, then gives

$$Q = \frac{n_{12}}{N} \pmod{Z} = \text{winding of } \hat{T}_3(\vec{x}), \text{ as map } T^3 \to S$$

considering 4d field configuration is a clutch ('t Hooft); equiv., can explicitly construct $\hat{T}_3(\vec{x})$ and compute winding... [García Pérez, González-Arroyo '92; Selivanov-Smilga '00; Wandler-EP 2211]

we now canonically quantize of SU(N) on T^3 :

torus Hilbert space, with or without twists, splits into N^3 electric flux sectors

Crucial observation ('t Hooft)

 \hat{T}_3 , the $Z_N^{(1)}$ generator in the direction orthogonal to the (12) plane of the twist has winding number Q = $\frac{n_{12}}{N} \pmod{Z}$

but then, since the change of CS functional is the winding number $\implies \hat{T}_{3} e^{i2\pi \int_{T^{3}} \operatorname{tr}(\hat{A}d\hat{A} + ...)} \hat{T}_{3}^{-1} = e^{i\frac{2\pi}{N}} e^{i2\pi \int_{T^{3}} \operatorname{tr}(\hat{A}d\hat{A} + ...)}$

we now canonically quantize of SU(N) on T^3 :

- $\hat{T}_{l}\hat{W}_{k}\hat{T}_{l}^{-1} = e^{i\frac{2\pi}{N}}\hat{S}_{kl}}_{T_{3}}e^{i\frac{2\pi}{N}}\hat{T}_{3}^{kl}}e^{i\frac{2\pi}{N}}\hat{T}_{3}^{-1} = e^{i\frac{2\pi}{N}}e^{i2\pi}\int_{T^{3}}\operatorname{tr}(\hat{A}d\hat{A}+...)$ $e^{i\frac{2\pi}{N}e_l}$ e_l e_l e_l shifting θ angle by 2π does not commute with 1-form center symmetry in the direction orthogonal to the twist
 - Pierre van Baal PhD thesis, 1984, Ch 3, unpublished! (**)
 - "theta-periodicity anomaly"... [GKKS+] ~ 2010's (in Euclidean)

admittedly, while commutation relation appears there, its significance as an anomaly and implications for large volume theory was not appreciated back then... (why?)

we now canonically quantize of SU(N) on T^3 : consider SU(N) with adjoints, for definiteness take SYM, $\underline{n_f} = 1$ below: $\partial_{\mu}\hat{j}_{f}^{\mu} = \partial_{\mu}(\hat{\lambda}^{a} \dagger \bar{\sigma}^{\mu} \hat{\lambda}^{a}) = 2n_{f} N \partial_{\mu} \hat{K}^{\mu} \longrightarrow \text{R-current not conserved}$ $\hat{J}_5^\mu = \hat{j}_f^\mu - 2n_f N \hat{K}^\mu$ → conserved but not gauge invariant $\hat{Q}_{5} = \int d^{3}x \hat{J}_{5}^{0} = \int d^{3}x \hat{j}_{f}^{0} - 2n_{f}N \int d^{3}x \hat{K}^{0}$ $\hat{X}_{2N} = e^{i\frac{2\pi}{2N}\hat{Q}_5} = e^{i\frac{2\pi}{2N}\int d^3x\hat{j}_f^0} e^{-i2\pi\int d^3x\hat{K}_0} \longrightarrow \begin{array}{l} \text{gauge invariant operator} \\ \text{of } Z_{2N}^{(0)} \text{ discrete R-symmetry} \end{array}$

 $d^3 x \hat{K}_0$

$\hat{T}_{3} e^{i2\pi \int_{T^{3}} \text{tr}(\hat{A}d\hat{A}+...)} \hat{T}_{3}^{-1} = e^{i\frac{2\pi}{N}} e^{i2\pi \int_{T^{3}} \text{tr}(\hat{A}d\hat{A}+...)} \implies \hat{T}_{3} \hat{X}_{2N} \hat{T}_{3}^{-1} = e^{-i\frac{2\pi}{N}} \hat{X}_{2N}$

<u>mixed 0-form/1-form anomaly</u>

Ex 1.: SYM on twisted T^3 - invertible chiral/center anomaly

 \hat{T}_3 and \hat{X}_{2N} , 1-form and 0-form, invertible (=normal unitary operators on Hilbert space) commute with Hamiltonian, but not with each other:

$$\hat{T}_3 \,\hat{X}_{2N} \,\hat{T}_3^{-1} = e^{-i\frac{2\pi}{N}} \,\hat{X}_{2N}$$

action of chiral symmetry changes flux of state (the one in 3rd direction, for 12 twist)

all energy levels on the twisted T^3 are N-fold degenerate, exact degeneracy, for any volume, provided $n_{12} = 1!$

as volume goes to infinity, if theory confines (center unbroken), clustering ground states are the lowest energy degenerate flux states, related by broken discrete chiral symmetry - here, a consequence of the mixed anomaly!

does not require SUSY, similar degeneracies in non-SUSY QCD(adj) exact degeneracies less severe if gauge group has smaller center... SP, Spin, E6, E7

Hilbert space with spatial 't Hooft twist $n_{12} = 1$ (e.g., suffices); SYM has two global symmetries,

$$\rightarrow \hat{X}_{2N} | E, e_3 \rangle = | E, e_3 - 1 \rangle$$

[Cox, Wandler, EP 2106]

[Cox, Wandler, EP 2106]

Hilbert space with spatial 't Hooft twist $n_{12} \stackrel{\hat{T}}{=} 1$: $|...\rangle_{(n_{12})}$

$$|E, e_3 = 1\rangle_{(n_{12})}$$
 degenerate w/ $|E, e_3 = 0\rangle_{(n_{12})}$

anomaly:
$$\hat{T}_3 \hat{X} = (-)^{n_{12}} \hat{X} \hat{T}_3$$

 $[\hat{X}, \hat{H}] = [\hat{T}_3, \hat{H}] = 0$

$$\Rightarrow \hat{X} | E, e_3 = 0 \rangle_{(n_{12})} \sim |E, e_3 = 1 \rangle_{(n_{12})}$$
(phase depends on whether B or

in 2021, w/ Cox & Wandler studied 1-form center/0-form anomaly in YM, SYM,..., in Hamiltonian on twisted T_1^3 of any size. Wanomaly implies exact degeneracies!

 $e^{i\frac{2\pi}{N}e_l} \in \mathcal{SU}(2)$ SYM, for simplicity

 $e_3 \in \{0,1\}$ \hat{T}_3 -eigenvalue: $\hat{T}_3 | e_3 \rangle = e^{i\pi e_3} | e_3 \rangle$

 \hat{T}_3 - generator of Z_2 center symmetry along (0,0,1) $\hat{T}_{3} \hat{W}_{3} = - \hat{W}_{3} \hat{T}_{3}$

 \hat{X} - generator of Z_4 chiral symmetry Z_N

for all *E*, any size T^3 interchanged by chiral symmetry

remarks on infinite vs. finite $\hat{T}_{q}\hat{W}_{q}\hat{T}_$

e3 = 0

Assuming confinement (unbroken center) -> broken chiral

 $|E = 0, e_3 = 1\rangle_{(n_{12})}$ two clustering vacua in $|E = 0, e_3 = 0\rangle_{(n_{12})}$ infinite volume limit twisted b.c. should be irrelevant in gapped theory in ∞ volume lattice pure-YM, $\theta = 0$: string tensions, glueballs agree $V \gg V_0$ twist vs no twist

[Teper, Stephenson '89,'91]

remarks on infinite vs. finite $\hat{V}_{0}\hat{V}_{0}\hat{T}_{0}\hat{T}_{0}\hat{T}_{1}^{-1}$ Hooft flux $\hat{h}_{1}\hat{V}_{k}\hat{V}_{k}$ background

 W_{3}^{+} 0

for $L_{1,2} \rightarrow \infty$ m-x element expected to $\rightarrow 0$ by clustering $(W_3(\vec{x}_{12},0) \text{ local, at } L_3 < \infty)$ (area law, unbroken T_3)

Assuming confinement (unbroken center) -> broken chiral

 $|E = 0, e_3 = 1\rangle_{(n_{12})}$ two clustering vacua in $|E = 0, e_3 = 0\rangle_{(n_{12})}$ infinite volume limit

$$Z_N$$

armed with this, consider condensate, $\lambda^2 \equiv tr \lambda^2$:

$$\langle \lambda^2 \rangle_{n_{12},n_{34}} = \operatorname{Tr}_{\mathcal{H}_{n_{12}}} e^{-\beta H} (-1)^F \hat{T}_3 \lambda^2 =$$

 $\hat{X}|E,0\rangle_{(n_{12})} \sim |E,1\rangle_{(n_{12})}$ and $\hat{X}\lambda^2 \hat{X}^{\dagger} = -\lambda^2$ imply that λ^2 has opposite signs in degenerate flux states

$$\langle \lambda^2 \rangle_{n_{12}, n_{34}} = 2 \sum_{E} (-)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\langle 1 \rangle_{n_{12},0} = \operatorname{Tr}_{\mathscr{H}_{n_{12}}} e^{-\beta H} (-1)^F = \sum_{E;e_3=0,1}^{\infty} (-)$$

normalize by path integral without λ^2 and \hat{T}_3 (i.e. no n_{34} twist, only n_{12}), i.e. Witten index $^{F}e^{-\beta E} \langle E, e_{3} | E, e_{3} \rangle_{(n_{12})} = 2$

semiclassical expansion expected to hold at small T^4 ("femtouniverse") $Q = \frac{1}{2}$, the leading contribution to numerator, will have two undotted λ zero modes

we shall discuss this calculation... but first the big picture

$$Q \in Z + 1$$

$$\frac{Q \in Z + 1}{e^{-\beta H}(-1)^F \hat{T}_3 \lambda^2} = \frac{\int_{n_{12}=1, n_{34}=1} \mathcal{D}A \mathcal{D}\lambda e^{-\beta H}(-1)^F}{\int_{n_{12}=1, n_{34}=0} \mathcal{D}A \mathcal{D}\lambda}$$

$$Q$$

$$\sum_{E} (-)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$Q \in Z + 1/2$$

$$\frac{-\beta H}{(-1)^F \hat{T}_3 \lambda^2} = \frac{\int_{n_{12}=1, n_{34}=1} \mathcal{D}A \mathcal{D}\lambda e^{-\beta H}(-1)^F}{\int_{n_{12}=1, n_{34}=0} \mathcal{D}A \mathcal{D}\lambda e^{-\beta H}} Q = \sum_{E}^{\infty} (-1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

semiclassical calculation in femtouniverse limit - made assumptions, stated later!

+ argue that result is L_{μ} , g_{YM} -independent

$$Q \in Z + 1/2$$

$$\frac{-\beta H}{(-1)^F \hat{T}_3 \lambda^2} = \frac{\int_{n_{12}=1, n_{34}=1} \mathcal{D}A \mathcal{D}\lambda e^{-\beta H}(-1)^F}{\int_{n_{12}=1, n_{34}=0} \mathcal{D}A \mathcal{D}\lambda e^{-\beta H}} Q = \sum_{E}^{\infty} (-1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

$$\sum_{E}^{\infty} (1 + 1)^F e^{-\beta E} \langle E, 0 | \lambda^2 | E, 0 \rangle_{(n_{12})}$$

 $Q = \frac{1}{2}$, the leading semiclassical contribution to numerator, w/ two undotted λ zero modes. what are these instantons?

Commun. Math. Phys. 81, 267–275 (1981)

Some Twisted Self-Dual Solutions for the Yang-Mills Equations on a Hypertorus*

such an action. All our solutions will be represented in a suitably chosen gauge that makes them look essentially translationally invariant and Abelian. However, considering the difficulty we had in finding them it looked worth-while to publish the result.

... SU(N) generalizations

BPS if symmetric T^4 : $L_1L_2 = L_3L_4$

attempting symmetric T⁴ ... all looks bad!

- find 4 λ and 2 $\overline{\lambda}$ zero modes (explicit, 2210.13568)
- these source gauge field EOM... lifted? how? (we don't know!)

- $L_1L_2 = L_3L_4$ does not allow taking some interesting limits, e.g., $R^2 \times T_{n_{12}}^2$ Tanizaki Ünsal 2022

BPS if symmetric T^4 : $L_1L_2 = L_3L_4$

BPS - minimum action for given Q - preserves 1/2 SUSY

(SYM: B/F det's of nonzero modes cancel, up to power of PV regulator mass)

attempting symmetric T⁴ ... all looks bad!

- find 4 λ and 2 $\overline{\lambda}$ zero modes (explicit, 2210.13568)
- these source gauge field EOM... lifted? how? (we don't know!)

- $L_1L_2 = L_3L_4$ does not allow taking some interesting limits, e.g., $R^2 \times T_{n_{12}}^2$ Tanizaki Ünsal 2022

BPS if symmetric T^4 : $L_1L_2 = L_3L_4$

BPS - minimum action for given Q - preserves 1/2 SUSY

(SYM: B/F det's of nonzero modes cancel, up to power of PV regulator mass)

Cohen, Gomez 1984 gave an expression using this solution ("toron") *unaware (?) of subtleties* mentioned, or of coefficient.

In any case, since Hilbert space at finite $T_{n_1}^3$ was not understood at the time, interpretation would have been difficult.

attempting symmetric T⁴ ... all looks bad!

- find 4 λ and 2 $\overline{\lambda}$ zero modes (explicit, 2210.13568)
- these source gauge field EOM... lifted? how? (we don't know!)

- $L_1L_2 = L_3L_4$ does not allow taking some interesting limits, e.g., $R^2 \times T_{n_{12}}^2$ Tanizaki Ünsal 2022

BPS if symmetric T^4 : $L_1L_2 = L_3L_4$

González-Arroyo, Pérez, Pena 2000 <u>deform the symmetric *T*⁴, impose BPS:</u>

- only 2 λ zero modes

- no source term in YM field EOM
- $L_1L_2 \neq L_3L_4$, so can take limits Sounds fantastic!?

<u>There is "bad news," too:</u> deformed- T^4 analytic BPS solution is only known to leading order in $\Delta = \frac{L_3 L_4 - L_1 L_2}{\sqrt{V}}$

for SU(2), there is numerical evidence for uniqueness and convergence upon comparing to

Remark:

If there were general statements known about the moduli space of $Q = \frac{r}{N}$ instantons on T^4 , one could do certain calculations in SYM only using this knowledge (not explicit form of solutions) as integrals for some correlators reduce to those over bosonic and fermionic moduli.

Alas...not known!

hence, we proceed by "trial and error" (consistency)

(as I'll discuss, our results may be taken to suggest that it is here where we likely need help!)

As an aside

at order Δ^1 , gauge invariant densities (constant at Δ^0) acquire x-dependence

this is Q=3/N, in SU(N>3), 12 moduli are positions of 3 lumps (yellow, red, blue; 2-torus shown doubled in size)

see Anber, EP 2307.04975

Anber, EP 2210.13568:

- only 2 λ (no $\overline{\lambda}$) zero modes-
- four translational moduli z_n
 - measure Δ -independent to all orders
 - condensate Δ -independent to all orders argument assumes convergence (+ uses SUSY)

Most importantly: range of moduli?

- to find range of z_n moduli, require $\langle W_{\mu} \rangle = 0$ in pure-YM theory in femtouniverse with twists (use uniqueness):

$$e^{-\frac{4\pi^2}{g^2} - i\frac{\theta}{2}} \frac{V}{g^4} \int_M \prod_{k=1}^4 dz_k \ W(x, z, C_{n_1, n_2, n_3, n_4}) + \text{h.c.} = 0 \ (\forall x, \theta) \quad \text{iff } z_k \in (0, 4\pi)$$

winding loop in Q=1/2self-dual background

$$= 2 \cos \left[\frac{1}{2} \left(n_1 (z \times [1 + \Delta \mathcal{F}(x, z + \Delta \mathcal{F}(x$$

f-n of
$$z_1 + \frac{2\pi x_2}{L_2}$$
, etc., 2π periodic

pure YM, Hamiltonian argument:

$$\langle W_1 \rangle_{n_{12},n_{34}} = \operatorname{Tr}_{\mathcal{H}_{n_{12}}} e^{-\beta H_{\theta}} \hat{T}_3 W_1 = 0, \text{ as } \langle E, \vec{e} | W_1 | E, \vec{e} \rangle$$

<u>Most importantly: range of moduli?</u>

- to find range of z_n moduli, require $\langle W_u \rangle = 0$ in pure-YM theory in femtouniverse with twists (use uniqueness):

$$e^{-\frac{4\pi^2}{g^2} - i\frac{\theta}{2}} \frac{V}{g^4} \int_M \prod_{k=1}^4 dz_k \ W(x, z, C_{n_1, n_2, n_3, n_4}) + \text{h.c.}$$

winding loop in Q=1/2self-dual background

- range of moduli found by demanding vanishing of Wilson loop vevs in pure-YM, is equivalent to that found by demanding that there exist gauge invariants, evaluated in gauge equivalent values of moduli

<u>**Remark</u>: Range of z_n moduli (0,4\pi) means that instanton wraps twice around each direction of torus.**</u> Local gauge invariants identify $z \sim z + 2\pi$, but ones dressed by Wilson loops see difference.

 $= 0 (\forall x, \theta) \text{ iff } z_k \in (0, 4\pi)$

solution background, differentiate between all points $(0,4\pi)$ - i.e., we are not integrating over

Recall what we compute (factor of 2 from Witten index already divided out)

$$\langle \lambda^2 \rangle = \sum_{E} (-)^F e^{-L_4 E} \langle E, 0 | \lambda^2 | E, 0 \rangle \Big|_{n_{12} = 1, V_3 = L_1 L_2 L_3, \frac{L_3 L_4 - L_1 L_2}{\sqrt{L_1 L_2 L_3 L_4}} \ll 1, L_i \Lambda \ll 1$$

Collecting everything, we find

$$\langle \lambda^2 \rangle = 32\pi^2 \Lambda^3 = 2 \times 16\pi^2 \Lambda^3$$

two times the $R^4, R^3 \times S^1$ results calculations, all

all qualifications stated!

ult of weak-coupling Il use same def. of scale $\Lambda^3 = \frac{M_{PV}^3}{g^2}e^{-\frac{4\pi^2}{g^2}}$

Recall what we compute (factor of 2 from Witten index already divided out)

$$\langle \lambda^2 \rangle = \sum_E (-)^F e^{-L_4 E} \langle E, 0 | \lambda^2 | E, 0 \rangle \Big|_{n_{12} = 1, V_3 = L_1 L_2 L_3, \frac{L_3 L_4 - L_1 L_2}{\sqrt{L_1 L_2 L_3 L_4}} \ll 1, L_i \Lambda \ll 1$$
ecting everything, we find
$$\langle \lambda^2 \rangle = 32\pi^2 \Lambda^3 = 2 \times \underline{16\pi^2 \Lambda^3}$$
to get to R^4 , say, take $L_4 \to \infty$, obtain
$$\langle \lambda^2 \rangle = (-)^F \langle 0, 0 | \lambda^2 | 0, 0 \rangle_{n_{12} = 1, V_3 = L_1 L_2 L_3}$$
then, take $V_3 \to \infty$

Colle

$$\langle \lambda^2 \rangle = 32\pi^2 \Lambda^3 = 2 \times \frac{16\pi^2 \Lambda^3}{16\pi^2 \Lambda^3} / \frac{1}{R^4, R^3 \times S^1}$$

argue that result is L_{μ} , g_{YM} -independent?

there's a discrepancy only if "nothing happens" while these limits are taken

Recall what we compute (factor of 2 from Witten index already divided out)

$$\langle \lambda^2 \rangle = \sum_{E} (-)^F e^{-L_4 E} \langle E, 0 | \lambda^2 | E, 0 \rangle \Big|_{n_{12} = 1, V_3 = L_1 L_2 L_3, \frac{L_3 L_4 - L_1 L_2}{\sqrt{L_1 L_2 L_3 L_4}} \ll 1, L_i \Lambda \ll 1$$

Collecting everything, we find

$$\langle \lambda^2 \rangle = 32\pi^2 \Lambda^3 = 2 \times \frac{16\pi^2 \Lambda^3}{16\pi^2 \Lambda^3}$$

Holomorphy on *T*⁴?

$$\Lambda^* \frac{d}{d\Lambda^*} \langle \lambda^2 \rangle \sim \langle \lambda^2 F^* \rangle \sim \langle \lambda^2 \bar{Q}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}} +$$

 $T^{3}: \text{ for each } E, e_{3}, \sum_{\text{over states w/ given } E, e_{3}} (-)^{F} \langle E | X_{\dot{2}} \bar{Q}_{\dot{1}} + \bar{Q}_{\dot{1}} X_{\dot{2}} | E \rangle = 0, \text{ states } \in \text{ reps. of } \{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = \delta_{\alpha \dot{\beta}} E$

 $+\lambda^2 \bar{\psi}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}} \rangle \sim \langle \bar{Q}_{\dot{\alpha}} \lambda^2 \bar{\psi}^{\dot{\alpha}} + \lambda^2 \bar{\psi}^{\dot{\alpha}} \bar{Q}_{\dot{\alpha}} \rangle = 0$

-> holomoprphy on T^4 as well, $\langle \lambda^2 \rangle = c \Lambda^3$, holomorphy -> no $L |\Lambda|$ -dependence

Holomorphy wrt Λ leaves open dependence on dim-less ratios, like Δ , but seen not to occur...

thus, we seem to have a problem...

- there is a loophole in L_i -independence argument?
- other backgrounds contribute?

- to boot, using one (no numeric study of uniqueness here!) of 't Hooft SU(N) solutions (+ Δ ...) we find

 $\langle \lambda^2 \rangle = N \times 16 \pi^2 \Lambda^3$

holomorphy argument appears known/ obvious to S.&V., the authors of 1986 "Solution of anomaly puzzle..."

- we made an algebraic mistake (all factors spelled out in glory detail in paper)

- misidentified moduli space? (missed some global identification? need rationale?)

N times the R^4 , $R^3 \times S^1$ weak coupling instanton result, in the usual normalization (N-fold degeneracy divided out, as in SU(2))

SUMMARY:

one of two weakly-coupled calculations of $\langle \lambda^2 \rangle$: continuous connection to R^4

$$\langle \lambda^2 \rangle_{R^4}$$

important for pushing & checking 'adiabatic continuity' program qualitatively FUTURE:

wish for better understanding of fractional charge instantons, semiclassics, and their role in gauge dynamics (for which some evidence has accumulated) input from math-phys/string? (as in Dp-4 inside Dp <-> ADHM...; fractionalization of BPST on Coulomb branch)

using this new and deeper knowledge, revisit old (1984!) calculations of $\langle \lambda^2 \rangle$ on T^4

$$\langle \lambda^2 \rangle_{T^4}$$

 $\langle \lambda^2 \rangle_{T^4} = 2 \times \langle \lambda^2 \rangle_{R^4}$ for SU(2) why?

