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Abstract: We calculate the gaugino condensate in SU(2) super Yang-Mills theory

on an asymmetric four-torus T4 with ’t Hooft’s twisted boundary conditions. The T4

asymmetry is controlled by a dimensionless detuning parameter �, proportional to

L3L4 � L1L2, with Li denoting the T4 periods. We perform our calculations via a

path integral on a T4. Its size is taken much smaller than the inverse strong scale ⇤

and the theory is well inside the semi-classical weak-coupling regime. The instanton

background, constructed for � ⌧ 1 in [1], has fractional topological charge Q = 1
2 and

supports two gaugino zero modes, yielding a non-vanishing bilinear condensate, which

we find to be �-independent. Further, the theory has a mixed discrete chiral/1-form

center anomaly leading to double degeneracy of the energy eigenstates on any size torus

with ’t Hooft twists. In particular, there are two vacua, |0i and |1i, that are exchanged
under chiral transformation. Using this information, the �-independence of the con-

densate, and assuming further that the semi-classical theory is continuously connected

to the strongly-coupled large-T4 regime, we determine the numerical coe�cient of the

gaugino condensate: h0|tr��|0i = |h1|tr��|1i| = 32⇡2⇤3, a result equal to twice the

known R4 value. We discuss possible loopholes in the continuity approach that may

lead to this discrepancy.
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 =1 SYM: symmetries and nonrenormalization theorems 𝒩

 chiral  by anomaly   U(1) : λ → eiαλ → Z(0)
2N

formation (we also determine these gauge transformations). Finally, we determine the

Jacobian of the bosonic zero modes moduli space needed to complete the calculations.

2 Fractional instantons on the symmetric torus

We consider the SU(2) SYM theory on T4 with periods of lengths L1, L2, L3, L4. The

Euclidean action of the theory is given by13

SSYM =
1

g2

Z

T4

tr


1

2
FmnFmn + 2(@n�̄↵̇ + i[An, �̄↵̇])�̄

↵̇↵

n
�↵

�
, (2.1)

and � is a left-handed adjoint Weyl fermion, the gaugino. Dn = @n + i[An, ] is the

covariant derivative, �n ⌘ (i~�, 1), �̄n ⌘ (�i~�, 1), ~� are the Pauli matrices, and the

Latin letters n,m run over 1, 2, 3, 4. The field strength is given by Fmn = @mAn �
@nAm + i[Am, An]. This action is invariant under the supersymmetry transformations

�An = ⇣↵ �n ↵↵̇ �̄↵̇ + ⇣̄↵̇ �̄↵̇↵

n
�↵ , ��↵ = �� �

mn ↵
⇣� Fmn , ��̄↵̇ = ��̄ ↵̇

mn �̇
⇣̄ �̇ Fmn ,

(2.2)

where the spinors obey ⇠1 = ⇠2, ⇠2 = �⇠1 and likewise for the dotted ones. The

equations of motion that result from the variation of SSYM are

(DmFmn)
A = �i tr �̄�̄n[T

A,�] , �̄↵̇↵

n
Dn�

A

↵
= 0 , �n ↵↵̇Dn�̄

A↵̇ = 0, (2.3)

where A = 1, 2, 3 labels the color group generators TA = ⌧A/2 with ⌧A the Pauli

matrices. We shall consider SYM with twisted boundary conditions on T4. Without

loss of generality, we can use the following transition functions:

⌦2(x) = e�i2⇡
x1
L1

⌧3

2 , ⌦4(x) = e�i2⇡
x3
L3

⌧3

2 , while ⌦1 = ⌦3 = 1. (2.4)

⌦2 and ⌦4 implement the twists along the x2 and x4 directions, while the transition

functions along the x1 and x3 directions are trivial. The transition functions obey the

cocycle conditions

⌦i(x+ Lj êj) ⌦j(x) = ei⇡nij⌧3 ⌦j(x+ Liêi) ⌦i(x), i, j = 1, 2, 3, 4, 8x 2 R4, (2.5)

13The Euclidean action, supersymmetry transformations, and the matrices �n, �̄n, �mn, �̄mn, are as
in [25], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iA

this paper.
See also Appendices A.1 and B.2.
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 =1 SYM: symmetries and nonrenormalization theorems 𝒩

 chiral  by anomaly   U(1) : λ → eiαλ → Z(0)
2N

⟨tr λ2⟩ = ± 16π2Λ3Z(0)
2N → Z(0)

2  (N=2)

modes in the Q = 1 instanton background gives a nonzero value to the 2N -point func-

tion h(tr�2)Ni, from which one can naively extract the value of the 2-point function

h(tr�2)i =
⇥
h(tr�2)Ni

⇤1/N
. A detailed calculation, keeping track of all numerical coe�-

cients, gives h(tr�2)i = 2((N � 1)!(3N � 1))�1/N(16⇡2⇤3)ei
2⇡k
N , with k = 0, 1, ..., N � 1.

The complex phase results from taking the Nth root of unity, in accordance with the

expectation that the theory admits N distinct vacua needed to match the generalized

’t Hooft anomaly.

In the weak-coupling instanton method, we consider super QCD with N�1 funda-

mental flavors �i, i = 1, .., N�1, where �i is a chiral superfield, and give all the flavors

small masses m. We work in the limit |�i| � ⇤Q, where ⇤Q is the strong scale in the

presence of quarks. Since there are N �1 flavors, the gauge group fully abelianizes and

we are well inside the weak-coupling regime. The total superpotential of this theory

takes the from W = mi

j
�̄j�i +

⇤2N+1
Q

Det(�̄�)
, where the second term is the A✏eck-Dine-

Seiberg (ADS) superpotential [20]. The ADS term is nonperturbative in nature and is

based on holomorphy and the symmetry structure of super QCD. It also results from

saturating the quarks’ zero modes in the BPST instanton background (the numerical

coe�cient was obtained1 in [29], and corrected in [30]). Since we are in a weak-coupling

limit, the instanton calculations are reliable. Minimizing the energy, we obtain the su-

persymmetric vacuum �̄j�i = (m�1)j
i

h
⇤(2N+1)

Q
Detm

i1/N
. Finally, we substitute this

result back into W to find W = N
⇥
⇤2N+1

Q
Detm

⇤1/N
. We then decouple the quarks by

taking m � ⇤Q, thus, leaving the weak-coupling regime. Using holomorphy, we can

write We↵ = N⇤3, where ⇤ is the strong scale at the mass threshold, and it exactly

coincides with SYM strong scale at the decoupling limit. Recalling that one can write

the holomorphic strong scale as ⇤ = µe2⇡i⌧/3N , with ⌧ = 4⇡i
g
2
h(µ)

(gh is the holomorphic

gauge coupling, running at one loop only and µ is some arbitrary energy scale) and

that htr�2i = �8⇡i
@We↵
@⌧

, one obtains htr�2i = 16⇡2⇤3ei
2⇡k
N in the k-th vacuum.2

Having two di↵erent methods that yield two di↵erent answers resulted in many

debates in the literature about the validity of both methods. It was earlier understood

that the strong-coupling instanton method is in tension with the cluster decomposition

principle (CDP). Consider the correlator htr�2(x)tr�2(x0)i. In the limit |x�x0| ! 1 we

expect htr�2(x)tr�2(x0)i = htr�2i2. However, since a BPST instanton cannot saturate

2 gaugino zero modes, one finds htr�2i = 0, contradicting CDP. A possible resolution

1The comparison between the weak-coupling and strong-coupling instanton methods in SU(2) was
first performed in [21], where the correct ratio between the two methods was given.

2The definition of the strong coupling scale we follow in this paper is given by ⇤3 = µ
3 e�8⇡2/Ng2

g2 ,
the one used in [25, 26, 31].
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⌦i(x+ Lj êj) ⌦j(x) = ei⇡nij⌧3 ⌦j(x+ Liêi) ⌦i(x), i, j = 1, 2, 3, 4, 8x 2 R4, (2.5)

13The Euclidean action, supersymmetry transformations, and the matrices �n, �̄n, �mn, �̄mn, are as
in [25], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iA

this paper.
See also Appendices A.1 and B.2.

– 11 –

 G=SU(N) 



Prepared for submission to JHEP

The gaugino condensate from asymmetric
four-torus with twists

Mohamed M. Anber,a Erich Poppitzb

aCentre for Particle Theory, Department of Mathematical Sciences, Durham University,

South Road, Durham DH1 3LE, UK
bDepartment of Physics, University of Toronto, 60 St George St., Toronto, ON M5S 1A7,

Canada

E-mail: mohamed.anber@durham.ac.uk, poppitz@physics.utoronto.ca

Abstract: We calculate the gaugino condensate in SU(2) super Yang-Mills theory

on an asymmetric four-torus T4 with ’t Hooft’s twisted boundary conditions. The T4

asymmetry is controlled by a dimensionless detuning parameter �, proportional to

L3L4 � L1L2, with Li denoting the T4 periods. We perform our calculations via a

path integral on a T4. Its size is taken much smaller than the inverse strong scale ⇤

and the theory is well inside the semi-classical weak-coupling regime. The instanton

background, constructed for � ⌧ 1 in [1], has fractional topological charge Q = 1
2 and

supports two gaugino zero modes, yielding a non-vanishing bilinear condensate, which

we find to be �-independent. Further, the theory has a mixed discrete chiral/1-form

center anomaly leading to double degeneracy of the energy eigenstates on any size torus

with ’t Hooft twists. In particular, there are two vacua, |0i and |1i, that are exchanged
under chiral transformation. Using this information, the �-independence of the con-

densate, and assuming further that the semi-classical theory is continuously connected

to the strongly-coupled large-T4 regime, we determine the numerical coe�cient of the

gaugino condensate: h0|tr��|0i = |h1|tr��|1i| = 32⇡2⇤3, a result equal to twice the

known R4 value. We discuss possible loopholes in the continuity approach that may

lead to this discrepancy.

ar
X

iv
:2

21
0.

13
56

8v
3 

 [h
ep

-th
]  

21
 F

eb
 2

02
3

title of 2210.13568 is 
: sounds like a mouthful & is 70 pages long!

 =1 SYM: symmetries and nonrenormalization theorems 𝒩

Z(0)
2N → Z(0)

2  (N=2)

modes in the Q = 1 instanton background gives a nonzero value to the 2N -point func-

tion h(tr�2)Ni, from which one can naively extract the value of the 2-point function

h(tr�2)i =
⇥
h(tr�2)Ni

⇤1/N
. A detailed calculation, keeping track of all numerical coe�-

cients, gives h(tr�2)i = 2((N � 1)!(3N � 1))�1/N(16⇡2⇤3)ei
2⇡k
N , with k = 0, 1, ..., N � 1.

The complex phase results from taking the Nth root of unity, in accordance with the

expectation that the theory admits N distinct vacua needed to match the generalized

’t Hooft anomaly.

In the weak-coupling instanton method, we consider super QCD with N�1 funda-

mental flavors �i, i = 1, .., N�1, where �i is a chiral superfield, and give all the flavors

small masses m. We work in the limit |�i| � ⇤Q, where ⇤Q is the strong scale in the

presence of quarks. Since there are N �1 flavors, the gauge group fully abelianizes and

we are well inside the weak-coupling regime. The total superpotential of this theory

takes the from W = mi

j
�̄j�i +

⇤2N+1
Q

Det(�̄�)
, where the second term is the A✏eck-Dine-

Seiberg (ADS) superpotential [20]. The ADS term is nonperturbative in nature and is

based on holomorphy and the symmetry structure of super QCD. It also results from

saturating the quarks’ zero modes in the BPST instanton background (the numerical

coe�cient was obtained1 in [29], and corrected in [30]). Since we are in a weak-coupling

limit, the instanton calculations are reliable. Minimizing the energy, we obtain the su-

persymmetric vacuum �̄j�i = (m�1)j
i

h
⇤(2N+1)

Q
Detm

i1/N
. Finally, we substitute this

result back into W to find W = N
⇥
⇤2N+1

Q
Detm

⇤1/N
. We then decouple the quarks by

taking m � ⇤Q, thus, leaving the weak-coupling regime. Using holomorphy, we can

write We↵ = N⇤3, where ⇤ is the strong scale at the mass threshold, and it exactly

coincides with SYM strong scale at the decoupling limit. Recalling that one can write

the holomorphic strong scale as ⇤ = µe2⇡i⌧/3N , with ⌧ = 4⇡i
g
2
h(µ)

(gh is the holomorphic

gauge coupling, running at one loop only and µ is some arbitrary energy scale) and

that htr�2i = �8⇡i
@We↵
@⌧

, one obtains htr�2i = 16⇡2⇤3ei
2⇡k
N in the k-th vacuum.2

Having two di↵erent methods that yield two di↵erent answers resulted in many

debates in the literature about the validity of both methods. It was earlier understood

that the strong-coupling instanton method is in tension with the cluster decomposition

principle (CDP). Consider the correlator htr�2(x)tr�2(x0)i. In the limit |x�x0| ! 1 we

expect htr�2(x)tr�2(x0)i = htr�2i2. However, since a BPST instanton cannot saturate

2 gaugino zero modes, one finds htr�2i = 0, contradicting CDP. A possible resolution

1The comparison between the weak-coupling and strong-coupling instanton methods in SU(2) was
first performed in [21], where the correct ratio between the two methods was given.

2The definition of the strong coupling scale we follow in this paper is given by ⇤3 = µ
3 e�8⇡2/Ng2

g2 ,
the one used in [25, 26, 31].
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formation (we also determine these gauge transformations). Finally, we determine the

Jacobian of the bosonic zero modes moduli space needed to complete the calculations.

2 Fractional instantons on the symmetric torus

We consider the SU(2) SYM theory on T4 with periods of lengths L1, L2, L3, L4. The

Euclidean action of the theory is given by13

SSYM =
1

g2

Z

T4

tr


1

2
FmnFmn + 2(@n�̄↵̇ + i[An, �̄↵̇])�̄

↵̇↵

n
�↵

�
, (2.1)

and � is a left-handed adjoint Weyl fermion, the gaugino. Dn = @n + i[An, ] is the

covariant derivative, �n ⌘ (i~�, 1), �̄n ⌘ (�i~�, 1), ~� are the Pauli matrices, and the

Latin letters n,m run over 1, 2, 3, 4. The field strength is given by Fmn = @mAn �
@nAm + i[Am, An]. This action is invariant under the supersymmetry transformations

�An = ⇣↵ �n ↵↵̇ �̄↵̇ + ⇣̄↵̇ �̄↵̇↵

n
�↵ , ��↵ = �� �

mn ↵
⇣� Fmn , ��̄↵̇ = ��̄ ↵̇

mn �̇
⇣̄ �̇ Fmn ,

(2.2)

where the spinors obey ⇠1 = ⇠2, ⇠2 = �⇠1 and likewise for the dotted ones. The

equations of motion that result from the variation of SSYM are

(DmFmn)
A = �i tr �̄�̄n[T

A,�] , �̄↵̇↵

n
Dn�

A

↵
= 0 , �n ↵↵̇Dn�̄

A↵̇ = 0, (2.3)

where A = 1, 2, 3 labels the color group generators TA = ⌧A/2 with ⌧A the Pauli

matrices. We shall consider SYM with twisted boundary conditions on T4. Without

loss of generality, we can use the following transition functions:

⌦2(x) = e�i2⇡
x1
L1

⌧3

2 , ⌦4(x) = e�i2⇡
x3
L3

⌧3

2 , while ⌦1 = ⌦3 = 1. (2.4)

⌦2 and ⌦4 implement the twists along the x2 and x4 directions, while the transition

functions along the x1 and x3 directions are trivial. The transition functions obey the

cocycle conditions

⌦i(x+ Lj êj) ⌦j(x) = ei⇡nij⌧3 ⌦j(x+ Liêi) ⌦i(x), i, j = 1, 2, 3, 4, 8x 2 R4, (2.5)

13The Euclidean action, supersymmetry transformations, and the matrices �n, �̄n, �mn, �̄mn, are as
in [25], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iA

this paper.
See also Appendices A.1 and B.2.
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Abstract: We calculate the gaugino condensate in SU(2) super Yang-Mills theory

on an asymmetric four-torus T4 with ’t Hooft’s twisted boundary conditions. The T4

asymmetry is controlled by a dimensionless detuning parameter �, proportional to

L3L4 � L1L2, with Li denoting the T4 periods. We perform our calculations via a

path integral on a T4. Its size is taken much smaller than the inverse strong scale ⇤

and the theory is well inside the semi-classical weak-coupling regime. The instanton

background, constructed for � ⌧ 1 in [1], has fractional topological charge Q = 1
2 and

supports two gaugino zero modes, yielding a non-vanishing bilinear condensate, which

we find to be �-independent. Further, the theory has a mixed discrete chiral/1-form

center anomaly leading to double degeneracy of the energy eigenstates on any size torus

with ’t Hooft twists. In particular, there are two vacua, |0i and |1i, that are exchanged
under chiral transformation. Using this information, the �-independence of the con-

densate, and assuming further that the semi-classical theory is continuously connected

to the strongly-coupled large-T4 regime, we determine the numerical coe�cient of the

gaugino condensate: h0|tr��|0i = |h1|tr��|1i| = 32⇡2⇤3, a result equal to twice the

known R4 value. We discuss possible loopholes in the continuity approach that may

lead to this discrepancy.
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formation (we also determine these gauge transformations). Finally, we determine the

Jacobian of the bosonic zero modes moduli space needed to complete the calculations.

2 Fractional instantons on the symmetric torus

We consider the SU(2) SYM theory on T4 with periods of lengths L1, L2, L3, L4. The

Euclidean action of the theory is given by13

SSYM =
1

g2

Z

T4

tr


1

2
FmnFmn + 2(@n�̄↵̇ + i[An, �̄↵̇])�̄

↵̇↵

n
�↵

�
, (2.1)

and � is a left-handed adjoint Weyl fermion, the gaugino. Dn = @n + i[An, ] is the

covariant derivative, �n ⌘ (i~�, 1), �̄n ⌘ (�i~�, 1), ~� are the Pauli matrices, and the

Latin letters n,m run over 1, 2, 3, 4. The field strength is given by Fmn = @mAn �
@nAm + i[Am, An]. This action is invariant under the supersymmetry transformations

�An = ⇣↵ �n ↵↵̇ �̄↵̇ + ⇣̄↵̇ �̄↵̇↵

n
�↵ , ��↵ = �� �

mn ↵
⇣� Fmn , ��̄↵̇ = ��̄ ↵̇

mn �̇
⇣̄ �̇ Fmn ,

(2.2)

where the spinors obey ⇠1 = ⇠2, ⇠2 = �⇠1 and likewise for the dotted ones. The

equations of motion that result from the variation of SSYM are

(DmFmn)
A = �i tr �̄�̄n[T

A,�] , �̄↵̇↵

n
Dn�

A

↵
= 0 , �n ↵↵̇Dn�̄

A↵̇ = 0, (2.3)

where A = 1, 2, 3 labels the color group generators TA = ⌧A/2 with ⌧A the Pauli

matrices. We shall consider SYM with twisted boundary conditions on T4. Without

loss of generality, we can use the following transition functions:

⌦2(x) = e�i2⇡
x1
L1

⌧3

2 , ⌦4(x) = e�i2⇡
x3
L3

⌧3

2 , while ⌦1 = ⌦3 = 1. (2.4)

⌦2 and ⌦4 implement the twists along the x2 and x4 directions, while the transition

functions along the x1 and x3 directions are trivial. The transition functions obey the

cocycle conditions

⌦i(x+ Lj êj) ⌦j(x) = ei⇡nij⌧3 ⌦j(x+ Liêi) ⌦i(x), i, j = 1, 2, 3, 4, 8x 2 R4, (2.5)

13The Euclidean action, supersymmetry transformations, and the matrices �n, �̄n, �mn, �̄mn, are as
in [25], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iA

this paper.
See also Appendices A.1 and B.2.
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 chiral  broken by anomaly to  U(1) : λ → eiαλ Z(0)
2N

center symmetry:  , acting on Wilson loops by  phase   Z(1)
N ZN

 =1 SYM: symmetries and nonrenormalization theorems 𝒩

ex. of “generalized symmetries, backgrounds, new anomalies…”
Gaiotto, Kapustin, Komargodski, Seiberg,  + hundreds… 2015-

new developments warrant a new look at some old studies of gaugino condensate… 

center/chiral

mixed anomaly!



I. semiclassical studies 

  of confinement…

 semiclassical - small spaces  

  eg  Tanizaki, Ünsal, 2022 orR2 × T2

in a controlled way, show relevance of 
objects of fractional  for confinement

and SB, advocated by many (González-Arroyo,…)

Qtop.
χ

recent motivation 

Ünsal, +w/ Yaffe, w/ Shifman +…: 2007-  
  -… + any G SYM R3 × S1 SU(N) → U(1)N−1
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2. generalized symmetries, 

   backgrounds, new anomalies

Gaiotto, Kapustin, Komargodski, Seiberg, +… 2015-

2-form backgrounds for 1-form center also 

lead to fractional Qtop

 ’t Hooft, van Baal 1980s relation of “’t Hooft twists”
to anomalies now clearly understood 



using this new and deeper knowledge, 

revisit old (1984!) calculations of  on ⟨λ2⟩ T4

one of two weakly-coupled calculations 

of : continuous connection to ⟨λ2⟩ R4

⟨λ2⟩ = 16π2Λ3 ⟨λ2⟩ = c 16π2Λ3 Cohen, Gomez ‘84;  
Shifman, Vainshtein ‘86

2. generalized symmetries, 

   backgrounds, new anomalies

I. semiclassical studies 

  of confinement…



using this new and deeper knowledge, 

revisit old (1984!) calculations of  on ⟨λ2⟩ T4

one of two weakly-coupled calculations 

of : continuous connection to ⟨λ2⟩ R4

⟨λ2⟩ = 16π2Λ3 ⟨λ2⟩ = c 16π2Λ3 Cohen, Gomez ‘84;  
Shifman, Vainshtein ‘86

how well do we understand semiclassics in the femtouniverse? 


is there continuity to infinite volume limit? 

- test for condensate, in SYM, where some exact results are known 

what fluctuations contribute to the gaugino condensate?



in 2021, w/ Cox & Wandler studied 1-form center/0-form anomaly in YM, SYM,…, 

in Hamiltonian on twisted  of any size. Anomaly implies exact degeneracies!T3

discuss on board… or… ? 



’t Hooft ’81; Luscher ’82; van Baal ’84;  Gonzalez-Arroyo; Korthals Altes ‘80s+…

Witten ’82, ’00: use for tr(−1)F

- center-symmetry:     act on winding loops    ̂Tl, l=1,2,3 ̂TlŴk ̂T−1
l = ei 2π

N δkl Ŵk

-  commute with Hamiltonian, generate 1-form ;  eigenvalues ̂Tl Z(1)
N

̂Tl ei 2π
N el ∈ ZN

⃗e⃗m
boundary conditions on T3 eigenvalues of , generating 1-form ̂Tl ZN

 framework:  Hilbert space: :    with  obeying ’t Hooft twisted boundary conditionsT3 A0 = 0 Ψ[A] A

“flux” label is due to ’t Hooft 
does not necessarily imply 
nonzero gauge field strength!  
 (dynamical issue, twist of b.c.)

̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

we now canonically quantize of SU(N) on  :T3

Hilbert space with spatial ‘t Hooft twist  (e.g., suffices),  gauge, “by the book”n12 = 1 A0 = 0

 with , etc., with some chosen gauge for 

                         obeying   and no 13 and 23 twists
Ψ(A) AR = Ω1(AL − id)Ω−1

1 Ω1,2,3
Ω1(L2)Ω2(0) = ei 2π

N Ω2(L1)Ω1(0)
1-form : , generated by gauge transforms (maps ) 

                                          periodic up to center element and preserving b.c. w/ 

Z(1)
N

̂Ti, i = 1,2,3 T3 → SU(N)
Ωi

[ ̂Ti, Ĥ] = 0 ⟹ |E, e1, e2, e3⟩, ̂Ti |E, e1, e2, e3⟩ = |E, e1, e2, e3⟩ ei 2π
N ei

“electric flux sectors”

torus Hilbert space, with or without twists, 

splits into  electric flux sectors  N3

’t Hooft, van Baal

Lüscher, Witten,

González-Arroyo

1980’s

n12 = 1 n12 = 1

̂TiŴj = ei 2π
N δij Ŵj

̂Ti

“magnetic flux sectors”

(changed by 

 winding Wilson loop)

(changed by 

 winding ’t Hooft loop)
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Witten ’82, ’00: use for tr(−1)F
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does not necessarily imply 
nonzero gauge field strength!  
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N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

we now canonically quantize of SU(N) on  :T3

 with , etc., with some chosen gauge for 

                         obeying   and no 13 and 23 twists
Ψ(A) AR = Ω1(AL − id)Ω−1

1 Ω1,2,3
Ω1(L2)Ω2(0) = ei 2π

N Ω2(L1)Ω1(0)
1-form : , generated by gauge transforms (maps ) 

                                          periodic up to center element and preserving b.c. w/ 

Z(1)
N

̂Ti, i = 1,2,3 T3 → SU(N)
Ωi

[ ̂Ti, Ĥ] = 0 ⟹ |E, e1, e2, e3⟩, ̂Ti |E, e1, e2, e3⟩ = |E, e1, e2, e3⟩ ei 2π
N ei

’t Hooft, van Baal

Lüscher, Witten,

González-Arroyo

1980’s

n12 = 1 n12 = 1

̂T3( ⃗x)

Crucial observation (’t Hooft)


, the  generator in the direction 

orthogonal to the (12) plane of the twist

has winding number Q =  

̂T3 Z(1)
N

n12

N
(mod Z)

torus Hilbert space, with or without twists, 

splits into  electric flux sectors  N3

Hilbert space with spatial ‘t Hooft twist  (e.g., suffices),  gauge, “by the book”n12 = 1 A0 = 0



Crucial observation (’t Hooft)


, the  generator in the direction 

orthogonal to the (12) plane of the twist

has winding number Q =  

̂T3 Z(1)
N

n12

N
(mod Z)

is multiplied by ei2πkl/N upon the action of C[!k, ν].

For the discussion that follows, it will be useful to define the three generators of the
1-form center symmetry, T̂i, by their action on vectors in H as follows:

T̂1 |A〉 = |C[(1, 0, 0), 0] ◦ A〉
T̂2 |A〉 = |C[(0, 1, 0), 0] ◦ A〉
T̂3 |A〉 = |C[(0, 0, 1), 0] ◦ A〉 ,

(3.14)

where (1, 0, 0), etc., denote the components of !k. The above definition is somewhat
open-ended as the C[!k, 0] used to define T̂i can be multiplied by any small gauge trans-
formation and still satisfy (3.12). Moreover, the operators T̂i must map physical states
to physical states. Note however, that for any gauge transformation U , the transforma-
tion U ′ = T †

i UTi satisfies the conditions of (3.7) and hence is a gauge transformation.
Thus, for any physical states |ψ〉 and any gauge transformation U we have

ÛTi |ψ〉 = T̂iÛ
′ |ψ〉 = e−iθν T̂i |ψ〉 . (3.15)

This demonstrates that T̂i map physical states to physical states and that they are well
defined on physical states.

Before we continue, we comment on the relation to the modern understanding of p-form
symmetries in d spacetime dimensions. These symmetries are represented by topological
operators defined on codimension-(p+1) surfaces in spacetime [4]. While this property
is not immediately obvious from (3.14), we note that one can, instead, use canonical
momenta and coordinates to define the unitary operator T̂i by an exponential of an
integral of an operator over a 2-surface in R3. We will not need such a definition here,14

as (3.14) suffices for our purposes.

5. When the spatial boundary conditions are twisted by a nonzero !m, the operators T̂i,
and the related15 Ĉ[!k, ν] have fractional winding number T3 → G [31]. The winding
number is familiar from Skyrmion physics

Q[C] =
1

24π2

∫

T3
tr (CdC−1)3 . (3.16)

and its fractional nature in the !m $= 0 background can be explicitly demonstrated as
follows. Consider the topological charge on the Euclidean T4,

Q =
1

8π2

∫

trF ∧ F =
1

64π2

∫

d4xF a
µνF

a
λσε

µνλσ =

∫

d4x∂µK
µ , (3.17)

14An analogous definition can be explicitly seen in the 2d Schwinger model, where the 1-form symmetry

is generated by a local operator, as in e.g. [14], or using the Kogut-Susskind lattice Hamiltonian [53]. For a

related continuum discussion, see also [54] and the appendix of [55].
15The operators Ĉ are defined analogously to (3.14) by their action on |A〉 via the functions C[!k, ν], as in

(3.11).
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for a 4d field configuration twisted by   (denoted C) in time 

and  in space: 

T3
n12

 Q =  
n12

N
(mod Z)

a direct calculation (only requires cocycle conditions, 

good gauge choice, not explicit form of C=T_3), then gives

= winding of , as map ̂T3( ⃗x) T3 → SU(N)

idea only  (details are plentiful… see eg appx of 2106 paper w/ Cox, Wandler)

considering 4d field configuration is a clutch (’t Hooft); 

equiv., can explicitly construct  and compute winding… ̂T3( ⃗x)
[García Pérez, González-Arroyo ‘92; Selivanov-Smilga ’00; Wandler-EP 2211]

( )



’t Hooft ’81; Luscher ’82; van Baal ’84;  Gonzalez-Arroyo; Korthals Altes ‘80s+…

Witten ’82, ’00: use for tr(−1)F

- center-symmetry:     act on winding loops    ̂Tl, l=1,2,3 ̂TlŴk ̂T−1
l = ei 2π

N δkl Ŵk

-  commute with Hamiltonian, generate 1-form ;  eigenvalues ̂Tl Z(1)
N

̂Tl ei 2π
N el ∈ ZN

⃗e⃗m
boundary conditions on T3 eigenvalues of , generating 1-form ̂Tl ZN

 framework:  Hilbert space: :    with  obeying ’t Hooft twisted boundary conditionsT3 A0 = 0 Ψ[A] A

“flux” label is due to ’t Hooft 
does not necessarily imply 
nonzero gauge field strength!  
 (dynamical issue, twist of b.c.)

̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

we now canonically quantize of SU(N) on  :T3

[ ̂Ti, Ĥ] = 0 ⟹ |E, e1, e2, e3⟩, ̂Ti |E, e1, e2, e3⟩ = |E, e1, e2, e3⟩ ei 2π
N ei

torus Hilbert space, with or without twists, 

splits into  electric flux sectors  N3

n12 = 1 n12 = 1

Crucial observation (’t Hooft)


, the  generator in the direction 

orthogonal to the (12) plane of the twist

has winding number Q =  

̂T3 Z(1)
N

n12

N
(mod Z)

̂T3 ei2π ∫T3 tr( ̂Ad ̂A+...) ̂T−1
3 = ei 2π

N ei2π ∫T3 tr( ̂Ad ̂A+...)⟹
but then, since the change of CS functional is the winding number
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̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
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(mod N) … 
discrete “electric flux”
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N ei

n12 = 1 n12 = 1

̂T3 ei2π ∫T3 tr( ̂Ad ̂A+...) ̂T−1
3 = ei 2π

N ei2π ∫T3 tr( ̂Ad ̂A+...)

i.e., operator shifting  angle by  does not commute with 

1-form center symmetry in the direction orthogonal to the twist


-  Pierre van Baal PhD thesis, 1984, Ch 3, unpublished! (**)


- “theta-periodicity anomaly”… [GKKS+] ~ 2010’s (in Euclidean)


θ 2π

admittedly, while commutation relation appears there, its 
significance as an anomaly and implications for large 
volume theory was not appreciated back then… (why?)

(**)



we now canonically quantize of SU(N) on  :T3

consider SU(N) with adjoints, for definiteness take SYM,  below: nf = 1

Since the adjoint fermions obey (3.6), the Z
(1)
N center-symmetry generators T̂i commute with

the Hamiltonian.
Classically, the nf Weyl fermions have a U(nf ) (0-form) global chiral symmetry. However,

in the quantum theory, this is broken by the triangle anomaly to
Z2nfN×SU(nf )

Znf
. In what

follows, we shall only consider the discrete chiral symmetry which is defined as the center of
the full unbroken chiral symmetry, that is Z2nfN . The classical U(1) ∈ U(nf ) chiral current
operator ĵµf = λ̂a †σ̄µλ̂a, with a sum over a and flavour understood, has an anomaly given by
the (Heisenberg picture) operator equation

∂µĵ
µ
f = ∂µ(λ̂

a †σ̄µλ̂a) = 2nfN∂µK̂
µ . (3.48)

This allows one to define a conserved but gauge variant current which we label Ĵµ
5 for historical

reasons:31

Ĵµ
5 = ĵµf − 2nfNK̂µ . (3.49)

The corresponding U(1) charge operator, Q̂5 =
∫

d3xĴ0
5 =

∫

d3xĵ0f − 2nfN
∫

d3xK̂0, com-
mutes with the Hamiltonian but is not gauge invariant. However, the unitary operator rep-
resenting a Z

(0)
2nfN

subgroup of the chiral symmetry is gauge invariant32

X̂
Z
(0)
2nfN

= e
i 2π
2nfN Q̂5

= e
i 2π
2nfN

∫
d3xĵ0f V̂ −1

2π , (3.50)

with V̂2π from (3.23). Since the fermions are adjoint and the operator
∫

d3xĵ0f contains a trace
in its definition, the fermion part of the chiral symmetry operator commutes with the 1-form
center symmetry generators T̂j . Hence, the algebra between X̂

Z
(0)
2nfN

and the T̂j is exactly the

same as between V̂2π and Z
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N symmetry generators T̂j of eqn. (3.26)
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(0)
2nfN
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This implies that the discrete chiral symmetry transformation results in a shift $e → $e− $m.
We can now return to our example of $m = (0, 0, 1). We have, as in the pure gauge theory,
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. Similar
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As Ĥ commutes with T̂3, as before, we can label energy eigenstates as |E, e3〉. Clearly, the
algebra (3.52) then requires that
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2nfN

|E, e3〉 = |E, e3 − 1〉 . (3.53)

31See [71] for the calculation of the relevant field-current and current-current equal-time commutators.
32The discussion that follows parallels the one in the charge q > 1 Schwinger model [13]. In particular, the

algebra (3.51) with mj = 1, for one chosen j, is identical to the one found there.
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X̂2N = ei 2π
2N Q̂5 = ei 2π

2N ∫ d3x ̂j0
f e−i2π ∫ d3xK̂0

gauge invariant operator 

of  discrete R-symmetryZ(0)

2N

̂T3 ei2π ∫T3 tr( ̂Ad ̂A+...) ̂T−1
3 = ei 2π

N ei2π ∫T3 tr( ̂Ad ̂A+...) ⟹ ̂T3 X̂2N
̂T−1
3 = e−i 2π

N X̂2N

 ∫ d3xK̂0 mixed 0-form/1-form anomaly



Ex 1.: SYM on twisted  - invertible chiral/center anomalyT3

Hilbert space with spatial ‘t Hooft twist  (e.g., suffices); SYM has two global symmetries, 

 and , 1-form and 0-form, invertible (=normal unitary operators on Hilbert space)


commute with Hamiltonian, but not with each other: 

n12 = 1
̂T3 X̂2N

̂T3 X̂2N
̂T−1
3 = e−i 2π

N X̂2N X̂2N |E, e3⟩ = |E, e3 − 1⟩
action of chiral symmetry changes flux of state (the one in 3rd direction, for 12 twist)

all energy levels on the twisted  are N-fold degenerate, exact degeneracy,

for any volume, provided !

T3

n12 = 1

as volume goes to infinity, if theory confines (center unbroken), clustering ground states are the 
lowest energy degenerate flux states, related by broken discrete chiral symmetry 

- here, a consequence of the mixed anomaly!

does not require SUSY, similar degeneracies in non-SUSY QCD(adj) 

exact degeneracies less severe if gauge group has smaller center… SP, Spin, E6, E7 

  [Cox, Wandler, EP 2106] 

  [Cox, Wandler, EP 2106] 



’t Hooft ’81; Luscher ’82; van Baal ’84;  Gonzalez-Arroyo; Korthals Altes ‘80s+…

Witten ’82, ’00: use for tr(−1)F

- center-symmetry:     act on winding loops    ̂Tl, l=1,2,3 ̂TlŴk ̂T−1
l = ei 2π

N δkl Ŵk

-  commute with Hamiltonian, generate 1-form ;  eigenvalues ̂Tl Z(1)
N

̂Tl ei 2π
N el ∈ ZN

⃗e⃗m
boundary conditions on T3 eigenvalues of , generating 1-form ̂Tl ZN

 framework:  Hilbert space: :    with  obeying ’t Hooft twisted boundary conditionsT3 A0 = 0 Ψ[A] A

“flux” label is due to ’t Hooft 
does not necessarily imply 
nonzero gauge field strength!  
 (dynamical issue, twist of b.c.)

̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

Hilbert space with spatial ‘t Hooft twist :n12 = 1

 SYM, for simplicity 

   -eigenvalue:   

 - generator of  center symmetry along 

SU(2)

e3 ∈ {0,1} ̂T3
̂T3 |e3⟩ = eiπe3 |e3⟩

̂T3 Z2 (0,0,1)

|E, e3 = 0⟩(n12)degenerate w/ for all , any size E T3|E, e3 = 1⟩(n12)

̂T3 X̂ = ( − )n12 X̂ ̂T3

[X̂, Ĥ] = [ ̂T3, Ĥ] = 0

anomaly:

in 2021, w/ Cox & Wandler studied 1-form center/0-form anomaly in YM, SYM,…, 

in Hamiltonian on twisted  of any size. Anomaly implies exact degeneracies!T3

̂T3 Ŵ3 = − Ŵ3
̂T3

 - generator of  chiral symmetryX̂ Z4

⟹ X̂ |E, e3 = 0⟩(n12) ∼ |E, e3 = 1⟩(n12)

= W3

(phase depends on whether B or F)

| . . . ⟩(n12)

interchanged by chiral symmetry



’t Hooft ’81; Luscher ’82; van Baal ’84;  Gonzalez-Arroyo; Korthals Altes ‘80s+…

Witten ’82, ’00: use for tr(−1)F

- center-symmetry:     act on winding loops    ̂Tl, l=1,2,3 ̂TlŴk ̂T−1
l = ei 2π

N δkl Ŵk

-  commute with Hamiltonian, generate 1-form ;  eigenvalues ̂Tl Z(1)
N

̂Tl ei 2π
N el ∈ ZN

⃗e⃗m
boundary conditions on T3 eigenvalues of , generating 1-form ̂Tl ZN

 framework:  Hilbert space: :    with  obeying ’t Hooft twisted boundary conditionsT3 A0 = 0 Ψ[A] A

“flux” label is due to ’t Hooft 
does not necessarily imply 
nonzero gauge field strength!  
 (dynamical issue, twist of b.c.)

̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

= W3

|E = 0,e3 = 0⟩(n12)

|E = 0,e3 = 1⟩(n12) two clustering vacua in 

infinite volume limit

remarks on infinite vs. finite volume in ’t Hooft flux  background n12 = 1

Assuming confinement (unbroken center) -> broken chiral

lattice pure-YM, : string tensions, glueballs 

agree  twist vs no twist

θ = 0
V ≫ V0 [Teper, Stephenson ’89,’91]

twisted b.c. should be irrelevant in gapped theory in  volume ∞



|E = 0,e3 = 0⟩(n12)

|E = 0,e3 = 1⟩(n12) two clustering vacua in 

infinite volume limit

Assuming confinement (unbroken center) -> broken chiral

= |(n12)
⟨0,e3 |W3( ⃗x12,0) |0,e3 + 1⟩(n12) |

2

for L1,2 → ∞ m-x element expected to → 0

(n12)⟨0,e3 |W†
3 ( ⃗x12, T) W3( ⃗x12,0) |0,e3⟩(n12)

T→∞

= exact 

(“perimeter,” 
“broken” ) T3

(area law,  unbroken ) T3by clustering (W3( ⃗x12,0) local, at L3 < ∞)

’t Hooft ’81; Luscher ’82; van Baal ’84;  Gonzalez-Arroyo; Korthals Altes ‘80s+…

Witten ’82, ’00: use for tr(−1)F

- center-symmetry:     act on winding loops    ̂Tl, l=1,2,3 ̂TlŴk ̂T−1
l = ei 2π

N δkl Ŵk

-  commute with Hamiltonian, generate 1-form ;  eigenvalues ̂Tl Z(1)
N

̂Tl ei 2π
N el ∈ ZN

⃗e⃗m
boundary conditions on T3 eigenvalues of , generating 1-form ̂Tl ZN

 framework:  Hilbert space: :    with  obeying ’t Hooft twisted boundary conditionsT3 A0 = 0 Ψ[A] A

“flux” label is due to ’t Hooft 
does not necessarily imply 
nonzero gauge field strength!  
 (dynamical issue, twist of b.c.)

̂Tl |ψ ⃗e⟩ = |ψ ⃗e⟩e 2πi
N el

(mod N) … 
discrete “magnetic flux”

(mod N) … 
discrete “electric flux”

= W3

remarks on infinite vs. finite volume in ’t Hooft flux  background n12 = 1

≠ 0 for L1,2,3 < ∞



⟨λ2⟩n12,n34
= Trℋn12

e−βH(−1)F ̂T3 λ2 =

X̂ |E,0⟩(n12) ∼ |E,1⟩(n12) and X̂ λ2 X̂† = − λ2

⟨λ2⟩n12,n34
= 2∑

E

( − )Fe−βE ⟨E,0 |λ2 |E,0⟩(n12)

⟨1⟩n12,0 = Trℋn12
e−βH(−1)F = ∑

E;e3=0,1

( − )Fe−βE ⟨E, e3 |E, e3⟩(n12) = 2

∑
E;e3=0,1

( − )Fe−βE (−1)e3 ⟨E, e3 |λ2 |E, e3⟩(n12)

normalize by path integral without  and  (i.e. no  twist, only ), i.e. Witten indexλ2 ̂T3 n34 n12

armed with this, consider condensate, : λ2 ≡ trλ2
T3

imply that   has opposite signs in degenerate flux statesλ2

hence this product is same for e =0,1

inserts =1 twistn34

 eigenvalue

3



Trℋn12
e−βH(−1)F ̂T3 λ2

Trℋn12
e−βH(−1)F

=
∫

n12=1,n34=1
𝒟A𝒟λ e−S λ2

∫
n12=1,n34=0

𝒟A𝒟λ e−S

≡ ⟨λ2⟩ = ∑
E

( − )Fe−βE ⟨E,0 |λ2 |E,0⟩(n12)

, the leading contribution to numerator, will have two undotted  zero modes Q =
1
2

λ

semiclassical expansion expected to hold at small  (“femtouniverse”)  T4

Q ∈ Z + 1/2

Q ∈ Z

 we shall discuss this calculation… but first the big picture



Trℋn12
e−βH(−1)F ̂T3 λ2

Trℋn12
e−βH(−1)F

=
∫

n12=1,n34=1
𝒟A𝒟λ e−S λ2

∫
n12=1,n34=0

𝒟A𝒟λ e−S

≡ ⟨λ2⟩ = ∑
E

( − )Fe−βE ⟨E,0 |λ2 |E,0⟩(n12)

Q ∈ Z + 1/2

Q ∈ Z

take  infinite: 

 gaugino condensate in one of the vacua 

L1,2,3
R4

take  infinite: only E=0β



Trℋn12
e−βH(−1)F ̂T3 λ2

Trℋn12
e−βH(−1)F

=
∫

n12=1,n34=1
𝒟A𝒟λ e−S λ2

∫
n12=1,n34=0

𝒟A𝒟λ e−S

≡ ⟨λ2⟩ = ∑
E

( − )Fe−βE ⟨E,0 |λ2 |E,0⟩(n12)

Q ∈ Z + 1/2

Q ∈ Z

semiclassical calculation in femtouniverse limit

   - made assumptions, stated later! 
+ argue that result is , -independentLμ gYM

take  infinite: 

 gaugino condensate in one of the vacua 

L1,2,3
R4

take  infinite: only E=0β



Trℋn12
e−βH(−1)F ̂T3 λ2

Trℋn12
e−βH(−1)F

=
∫

n12=1,n34=1
𝒟A𝒟λ e−S λ2

∫
n12=1,n34=0

𝒟A𝒟λ e−S

≡ ⟨λ2⟩ = ∑
E

( − )Fe−βE ⟨E,0 |λ2 |E,0⟩(n12)

Q ∈ Z + 1/2

Q ∈ Z

, the leading semiclassical contribution to numerator, w/ two undotted  zero modes.Q =
1
2

λ

 what are these instantons? 



A particular field configuration obeying (A.4) is the constant field strength Abelian

background, the “fractional instanton” introduced by ’t Hooft, see [15, 44, 62]:

Ān(x, z) = Ā3
n
(x, z)

⌧ 3

2
: Ā3

1 =
2⇡x2

L1L2
+

z1
L1

, (A.7)

Ā3
2 =

z2
L2

,

Ā3
3 =

2⇡x4

L3L4
+

z3
L3

,

Ā3
4 =

z4
L4

.

Here, zn are constants whose significance as collective coordinates associated with the

instanton will be discussed at length later. The field strength of the abelian background

(A.7) is:

F (0)
mn

=
⌧ 3

2

0

BBB@

0 � 2⇡
L1L2

0 0
2⇡

L1L2
0 0 0

0 0 0 � 2⇡
L3L4

0 0 2⇡
L3L4

0

1

CCCA
. (A.8)

The abelian background (A.7,A.8) has the following properties:

1. The field strength F (0)
mn from (A.8) can be used to explicitly verify that the abelian

background (A.7) has topological charge 1/2. This can be seen by recalling that

the topological charge only depends on the transition functions. Its fractional

nature is owing to the nonzero twists n12 = n34 = 1.

2. In addition, it also follows from (A.8), that for a “symmetric” T4—one where

L1L2 = L3L4—the background (A.7) is self-dual and hence stable, i.e. it has

minimal action for the given topological charge. The action of the self-dual abelian

solution is S0 =
4⇡2

g2
, half that of the BPST instanton.

3. For use below, it is convenient to introduce the variables

(ẑ1, ẑ2, ẑ3, ẑ4) ⌘ (z1 +
2⇡x2

L2
, z2 �

2⇡x1

L1
, z3 +

2⇡x4

L4
, z4 �

2⇡x3

L3
) (A.9)

The ẑ-variables are important since all gauge invariants characterizing the non-

abelian instanton background depend on ẑn only. In the gauge we are using,

the fact that the background depends on ẑ1, ẑ3 is already evident in (A.7). The

appearance of the combinations ẑ2, ẑ4 follows from the action of translations in
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Ān(x, z) = Ā3
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’t Hooft, 1981,  constant flux backgroundQ =
1
2
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Some Twisted Self-Dual Solutions 
for the Yang-Mills Equations on a Hypertorus* 

Gerard 't H ooft** 

California Institute of Technology, Pasadena, CA 91125, USA 

Abstract. The SU(N) Yang-Mills equations are considered in a four-dimen- 
sional Euclidean box with periodic boundary conditions (hypertorus). 
Gauge-invariant twists can be introduced in these boundary conditions, to 
be labeled with integers n.~(----n,,~), defined modulo N. The Pontryagin 
number in this space is often fractional. Whenever this number is zero there 
are solutions to the equations G.~=0. Here G~ is the covariant curl. When 
this number is not zero we find a set of solutions to the equations G.~ 
=G.,, ,  provided that the periods G of the box satisfy certain relations. 

1. Introduction 

Understanding quantized gauge theories in the strong-interaction region is 
made difficult by severe infrared divergences. It is therefore useful to consider 
gauge models enclosed in a box with sides of variable lengths. As for the 
boundary conditions at the sides periodic boundary conditions are the most 
natural choice [1]. Indeed, computer simulations have been made of gauge 
theories in such boxes and taught us much about their phase structure [2]. 

After having dealt with the vacuum in the box one may consider studying 
some of the first excited states, such as those corresponding to a hadronic 
particle trapped in the box. But it is perhaps of more fundamental importance 
to look at a trapped amount of electric or magnetic flux in the box. The first 
of these would correspond to a string connecting two opposite sides of the box. 
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… SU(N) generalizations

BPS if symmetric :  T4 L1L2 = L3L4

gZN is kept fixed [4]. We show in Sect. 4 how to construct configurations with 
such an action. All our solutions will be represented in a suitably chosen gauge 
that makes them look essentially translationally invariant and Abelian. How- 
ever, considering the difficulty we had in finding them it looked worth-while to 
publish the result. 

 



attempting symmetric  … all looks bad! T4

- find 4  and 2  zero modes λ λ̄
(explicit, 2210.13568)

- these source gauge field EOM…  lifted? how?   
(we don’t know!) 

-  does not allow taking some interesting

limits, e.g., 

L1L2 = L3L4
R2 × T2

n12 Tanizaki Ünsal 2022

BPS if symmetric :  T4 L1L2 = L3L4

’t Hooft, 1981,  constant flux backgroundQ =
1
2

BPS - minimum action for given Q 

- preserves 1/2 SUSY
(SYM: B/F det’s of nonzero modes cancel, 

         up to power of PV regulator mass)



’t Hooft, 1981,  constant flux backgroundQ =
1
2

Cohen, Gomez 1984  gave an expression using 
this solution (“toron”) unaware (?) of subtleties 
mentioned, or of coefficient.  
In any case, since Hilbert space at finite was 
not understood at the time,  interpretation would 
have been difficult.

T3
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- these source gauge field EOM…  lifted? how?   
(we don’t know!) 
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L1L2 = L3L4
R2 × T2
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BPS - minimum action for given Q 

- preserves 1/2 SUSY
(SYM: B/F det’s of nonzero modes cancel, 

         up to power of PV regulator mass)
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’t Hooft, 1981,  constant flux backgroundQ =
1
2 BPS if symmetric :  T4 L1L2 = L3L4

- find 4  and 2  zero modes λ λ̄

- these source gauge field EOM…  lifted? how?   
(we don’t know!) 

-  does not allow taking some interesting

limits, e.g., 

L1L2 = L3L4
R2 × T2

n12 Tanizaki Ünsal 2022

deform the symmetric , impose BPS: T4
González-Arroyo, Pérez, Pena 2000

- only 2  zero modes λ

- , so can take limitsL1L2 ≠ L3L4

- no source term in YM field EOM

Sounds fantastic!?

(explicit, 2210.13568)

attempting symmetric  … all looks bad! T4



deformed-  analytic BPS solution is only known to leading order in  T4

Δ =
L3L4 − L1L2

V

There is “bad news,” too:

for SU(2), there is numerical evidence for uniqueness and convergence upon comparing to

“exact” (=numerical) solution for …           so, for now, we stick with SU(2)Δ ≤ 0.08

Remark: 


If there were general statements known about the moduli space of  instantons on , 

one could do certain calculations in SYM only using this knowledge (not explicit form of 
solutions) as integrals for some correlators reduce to those over bosonic and fermionic moduli. 

Q =
r
N

T4

Alas…not known! 


hence, we proceed by “trial and error” (consistency) 


(as I’ll discuss, our results may be taken to suggest that it is here where we likely need help!)



at order , gauge invariant

densities (constant at )

acquire x-dependence

Δ1

Δ0

this is Q=3/N, in SU(N>3), 12 moduli are 
positions of 3 lumps 

(yellow, red, blue; 2-torus shown doubled in size)


see Anber, EP 2307.04975 

Figure 1. A 3D plot of the profile given by Eq. (6.11), with r = 3, as a function of (x1, x2),

for fixed (x3, x4). For better visualization, we show double the periods in x1 and x2. We see

three solutions, in red, yellow, and blue, lumped around three distinct centers. These lumps,

however, are not well-separated, comprising a liquid rather than a dilute gas. Earlier [9],

similar configurations were constructed numerically and used to study confinement, see [3].

control of the higher orders in the �-expansion. Numerical studies of instantons on the

twisted torus can also be used to study the convergence of the expansion as well as the

approach to various large volume limits.

2 Review of ’t Hooft’s constant-flux solutions on T4

This section quickly reviews SU(N) ’t Hooft twisted solution on the four-torus T4. We

take the torus to have periods of length Lµ, µ = 1, 2, 3, 4, where µ, ⌫ runs over the

spacetime dimensions. The gauge fields Aµ are Hermitian traceless N ⇥ N matrices,

– 5 –

As an aside 




deforming the symmetric , we find T4

- only 2  (no ) zero modes λ λ̄
explicit expressions to O(Δ)- four translational moduli zn

 Anber, EP 2210.13568:

- measure -independent to all ordersΔ
- condensate -independent to all ordersΔ

Δ =
L3L4 − L1L2

V

argument assumes  
convergence (+ uses SUSY)

all orders 
-independence 

of action
Δ

SUSY

( =
4π2

g2
)



iff zk ∈ (0,4π)e− 4π2
g2 −i θ

2
V
g4 ∫M

4

∏
k=1

dzk W(x, z, Cn1,n2,n3,n4
) + h.c. = 0 (∀x, θ)

Most importantly: range of moduli?

any winding Wilson loop Ŵp,

hŴpi = trHm3=1

h
e�L4ĤŴpT̂3

i
= 0. (5.3)

We spent so much time explaining the expected result (5.3) because its consistency

with semiclassics is one of our main criteria used to determine the moduli space of the

fractional instanton.

Thus, we now contrast the general result (5.3) with the computation of the ex-

pectation value of a Wilson loop in the path integral formalism, in the semiclassical

approximation. Consider a Wilson loop W (Cn1,n2,n3,n4), with C beginning at an arbi-

trary point x in T4 and winding n` times around each direction L`:

W (x, Cn1,n2,n3,n4) = tr
⇣
Pe

i
R
Cn1,n2,n3,n4

Ak(x0)dx0
k ⌦n2

2 (x) ⌦n4
4 (x)

⌘
, (5.4)

where we inserted ⌦n2
2 (x) ⌦n4

4 (x) to enforce the gauge invariance of W (x, Cn1,n2,n3,n4).

Using the classical self-dual background (3.1),(3.5), we show in eqn. (A.58) in the

Appendix, that W to order � is:

W (x, Cn1,n2,n3,n4)

= 2 cos


1

2

✓
n1(z1 +

2⇡x2

L2
) + n2(z2 �

2⇡x1

L1
) + n3(z3 +

2⇡x4

L4
) + n4(z4 �

2⇡x4

L2
)

◆�
.

⇥ [1 +�F(x, z)] . (5.5)

The O(1) and O(�) contributions come from the abelian and nonabelian components

of (3.1). The cosine function has 4⇡ periodicity in {zi}, while the O(�) piece F(x, z) is

a periodic and even function of {z1+ 2⇡x2
L2

, z2� 2⇡x1
L1

, z3+
2⇡x4
L4

, z4� 2⇡x4
L2

} with periodicity

2⇡ for {zi}.
Now, using the results from the previous section and limiting our discussion to

pure Yang-Mills theory and ignoring issues of normalization, the expectation value of

a general Wilson loop is

hW (x, Cn1,n2,n3,n4)i =
X

⌫

Z
[DAµ]W (x, Cn1,n2,n3,n4)e

�SY M�i✓(⌫+ 1
2 )|n12=1,n34=1

⇠ e�S0�i
✓
2
V

g4

Z

M

4Y

k=1

dzkp
2⇡

W (x, Cn1,n2,n3,n4) + e�S0+i
✓
2
V

g4

Z

M

4Y

k=1

dzkp
2⇡

W̃ (x, Cn1,n2,n3,n4) ,

(5.6)

where in going from the first to the second line, we ignored the quantum loops and

used the bosonic zero-mode measure (4.12). We limited the r.h.s. to the contributions
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3

f-n of etc.,  periodicz1 +
2πx2

L2
, 2π

winding loop in Q=1/2 

self-dual background

- to find range of  moduli, require  in pure-YM theory in femtouniverse with twists (use 
uniqueness):

zn ⟨Wμ⟩ = 0

pure YM, Hamiltonian argument:

any winding Wilson loop Ŵp,

hŴpi = trHm3=1

h
e�L4ĤŴpT̂3

i
= 0. (5.3)
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Now, using the results from the previous section and limiting our discussion to
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where in going from the first to the second line, we ignored the quantum loops and

used the bosonic zero-mode measure (4.12). We limited the r.h.s. to the contributions
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⟨W1⟩n12,n34
= Trℋn12

e−βHθ ̂T3 W1 = 0, as ⟨E, ⃗e |W1 |E, ⃗e⟩ = 0



- to find range of  moduli, require  in pure-YM theory in femtouniverse with twists (use 
uniqueness):

zn ⟨Wμ⟩ = 0

iff zk ∈ (0,4π)e− 4π2
g2 −i θ

2
V
g4 ∫M

4

∏
k=1

dzk W(x, z, Cn1,n2,n3,n4
) + h.c. = 0 (∀x, θ)

range of moduli found by demanding vanishing of Wilson loop vevs in pure-YM, is 
equivalent to that found by demanding that there exist gauge invariants, evaluated in 
solution background, differentiate between all points  - i.e., we are not integrating over 
gauge equivalent values of moduli

(0,4π)

winding loop in Q=1/2 

self-dual background

Most importantly: range of moduli?

- 

Remark: Range of  moduli  means that instanton wraps twice around each direction of torus. 

            Local gauge invariants identify , but ones dressed by Wilson loops see difference. 

zn (0,4π)
z ∼ z + 2π



⟨λ2⟩ = ∑
E

( − )Fe−L4E ⟨E,0 |λ2 |E,0⟩
n12=1, V3=L1L2L3,

L3L4 − L1L2
L1L2L3L4

≪1, LiΛ≪1

Recall what we compute (factor of 2 from Witten index already divided out)

⟨λ2⟩ = 32π2Λ3 = 2 × 16π2Λ3

Λ3 =
M3

PV

g2
e− 4π2

g2
 result of weak-coupling 


calculations, all use same def. of scale 
R4, R3 × S1

all qualifications stated! 
Collecting everything, we find

two times the 



Recall what we compute (factor of 2 from Witten index already divided out)

⟨λ2⟩ = 32π2Λ3 = 2 × 16π2Λ3

Collecting everything, we find
to get to , say, take , obtainingR4 L4 → ∞
⟨λ2⟩ = ( − )F ⟨0,0 |λ2 |0,0⟩n12=1, V3=L1L2L3

then, take V3 → ∞

  R4, R3 × S1
there’s a discrepancy only if “nothing happens” 
while these limits are taken

⟨λ2⟩ = ∑
E

( − )Fe−L4E ⟨E,0 |λ2 |E,0⟩
n12=1, V3=L1L2L3,

L3L4 − L1L2
L1L2L3L4

≪1, LiΛ≪1

 argue that result is , -independent?Lμ gYM



Recall what we compute (factor of 2 from Witten index already divided out)

⟨λ2⟩ = 32π2Λ3 = 2 × 16π2Λ3

Collecting everything, we find

  R4, R3 × S1

Λ*
d

dΛ*
⟨λ2⟩ ∼ ⟨λ2F*⟩ ∼ ⟨λ2Q̄ ·αψ̄ ·α + λ2ψ̄ ·αQ̄ ·α⟩ ∼ ⟨Q̄ ·αλ2ψ̄ ·α + λ2ψ̄ ·αQ̄ ·α⟩ = 0

on R4

⟨λ2⟩ = ∑
E

( − )Fe−L4E ⟨E,0 |λ2 |E,0⟩
n12=1, V3=L1L2L3,

L3L4 − L1L2
L1L2L3L4

≪1, LiΛ≪1

Holomorphy on ?T4

: for each , , states  reps. of T3 E, e3 ∑
over states w/ given E, e3

( − )F⟨E |X ·2Q̄ ·1 + Q̄ ·1X ·2 |E⟩ = 0 ∈ {Qα, Q̄ ·β} = δα ·βE



—> holomoprphy on  as wellT4     , , holomorphy -> no -dependence⟨λ2⟩ = cΛ3 L |Λ |
holomorphy argument appears known/
obvious to S.&V., the authors of 1986 
“Solution of anomaly puzzle…”

thus, we seem to have a problem…
-  we made an algebraic mistake (all factors spelled out in glory detail in paper) 
-  there is a loophole in -independence argument?Li

- to boot, using one (no numeric study of uniqueness here!) of ’t Hooft SU(N) solutions (+ …) we findΔ

⟨λ2⟩ = N × 16π2Λ3  times the  weak coupling instanton result, 

in the usual normalization (N-fold degeneracy divided out, as in SU(2))
N R4, R3 × S1

 -  other backgrounds contribute?
 -  misidentified moduli space? (missed some global identification? need rationale?) 

Holomorphy wrt  leaves open dependence on dim-less ratios, like , but seen not to occur…Λ Δ



using this new and deeper knowledge, 

revisit old (1984!) calculations of  on ⟨λ2⟩ T4

one of two weakly-coupled calculations 

of : continuous connection to ⟨λ2⟩ R4

⟨λ2⟩R4

= 2 × for SU(2)  

wish for better understanding of fractional charge instantons, semiclassics, 
and their role in gauge dynamics (for which some evidence has accumulated)

FUTURE: 

SUMMARY:

⟨λ2⟩T4    ⟨λ2⟩R4 why?
important for pushing & checking ‘adiabatic continuity’ program qualitatively

⟨λ2⟩T4

input from math-phys/string?
(as in Dp-4 inside Dp <-> ADHM…; fractionalization of BPST on Coulomb branch) 


