Confinement and strings in circle-compactified gauge theories: “same and different”

Erich Poppitz

An overview and some recent results, will mention some aspects of work with

Kyle Aitken, U. of Washington
Mohamed Anber, Lewis & Clark College
Aleksey Cherman, U. of Washington
Erfan Shalchian, U. of Toronto
Tin Sulejmanpasic, ENS
Larry Yaffe, U. of Washington
After a typical QFT course, you hear from grad students: confinement occurs because the beta function is negative and coupling becomes strong.

[But: asymptotically free theories exist that don’t confine!]

... which is to say “it’s complicated” and we won’t think about it

... will leave it to experimentalists (=lattice people)

These attitudes have merit: indeed, in real-world YM (QCD) confinement occurs at strong coupling & is ‘nonperturbative’.

It was realized within the past 10 years, that there are ‘deformations’ of YM theory, which allow for controlled analytical studies of confinement at weak coupling. It is believed that they are continuously connected - without phase transition - to the real-world YM theory.

This is the subject of my talk.

Note: I cannot review all approaches to the confinement problem, see Jeff Greensite’s book.
I want to explain, as nontechnically as I can, what are these ‘deformations’ of YM theory, which allow for controlled analytical studies of confinement at weak coupling, what we learn, and what is the evidence that there is a continuous connection to YM theory on \mathbb{R}^4.

The main tool is this: the ‘deformation’, which allows us to divorce ‘nonperturbative’ from ‘strong coupling’ is a judiciously chosen circle compactification of YM theory.

For this talk, I will focus on 4d YM theory with SU(N) gauge group and Nf adjoint Weyl fermions, massive or not.

My theory space:

- $N_f = 1$ Weyl, massless: SYM with four supercharges
- $6 > N_f > 1$ Weyl, massless: QCD(adj)
- $6 > N_f > 1$ Weyl, massive: dYM, $d = “deformed”$
\[
\begin{align*}
\text{Nf}=1 \text{ Weyl, massless: } & \text{ SYM with four supercharges} \\
6>Nf>1 \text{ Weyl, massless: } & \text{ QCD(adj)} \\
6>Nf>1 \text{ Weyl, massive: } & \text{ dYM, “d” = “deformed”}
\end{align*}
\]

I will study these theories compactified on a circle of circumference \(L \). It is crucial that this is a spatial circle and fermions are periodic (not finite \(T \)!). Thus, spacetime is really \(R^1,2 \times S^1 \), but I will usually call it \(R^3 \times S^1 \), for brevity.

Weak coupling is assured - will explain - if circle is small \(\frac{N L \Lambda}{a} \ll 1 \)

[Note: peculiar double-scaling large-\(N \) limit can be taken with \(L \rightarrow 0 \). Strange things happen then... Cherman EP 2016]
Nf=1 Weyl, massless: SYM with four supercharges
6>Nf>1 Weyl, massless: QCD(adj)
6>Nf>1 Weyl, massive: dYM, “d” = “deformed”
circle, with $\frac{NLA}{\Lambda} \ll 1$ + periodic (around L) fermions

key features:
1. dynamical abelianization $SU(N) \rightarrow U(1)^{N-1}$ at 1/NL
2. weak coupling
3. relevant d.o.f. at distances $>> NL$: “dual Cartan gluons”
4. mass gap & confinement due to the proliferation (not really ‘condensation’) of nonperturbative semiclassical objects
 - monopole-instantons - dYM
 - magnetic bions - SYM/QCD(adj)
1. dynamical abelianization \(SU(N) \rightarrow U(1)^{N-1} \) at 1/NL

2. weak coupling

on a circle, new gauge invariants:
traces of powers of noncontractible Wilson loop
\[
\Omega = \mathcal{P} \exp[i \int_{S^1} A_4 dx^4] \quad \text{unitary NxN matrix, unit determinant}
\]

small-L, periodic adjoints:
vevs of \(e^{i A_4 L} \sim e^{i k \frac{2\pi}{N}} \)
(k=1,...,N)

lightest W-bosons \(\sim 1/NL \), only Cartan survive! \(1 \checkmark \)
weak coupling: W-boson mass \(\sim 1/NL \gg \Lambda \quad 2 \checkmark \)

unbroken center symmetry ("zero form"): \(\text{tr} \Omega^p \rightarrow e^{\frac{2\pi ip}{N}} \text{tr} \Omega^p \)
1. dynamical abelianization $SU(N) \rightarrow U(1)^{N-1}$ at $1/NL$
2. weak coupling: $g = 4d$ gauge coupling frozen at $1/NL$

3. relevant d.o.f. at distances $\gg NL$: “dual Cartan gluons”

long distance theory of 3d Cartan gluons, dualize: \(e^2 d\sigma = *F \)

\[
\partial_i \sigma \sim \frac{L}{g^2} \epsilon_{ij} E_j, \quad j = 1, 2
\]

spatial gradient = 3d electric field

\[
\partial_0 \sigma \sim \frac{L}{g^2} F_{12}
\]

as we have N-1 Cartan dual photons

\[
\oint \sigma = 2\pi \lambda
\]

monodromy of “dual photon” around a spatial loop = electric charge inside

long distance theory, perturbative: \(L_{eff}^{pert.,3d} \sim \frac{g^2}{L} (\partial_\mu \vec{\sigma})^2 + \ldots \)
1. dynamical abelianization $SU(N) \to U(1)^{N-1}$ at $1/\text{NL}$

2. weak coupling

3. relevant d.o.f. at distances $>> \text{NL}$: “dual Cartan gluons”

4. mass gap & confinement due to the proliferation (not really ‘condensation’) of nonperturbative semiclassical objects

- monopole-instantons - dYM
- magnetic bions - SYM/QCD(adj)

two scales:

W-boson mass $M \sim \frac{1}{L}$

dual photon mass $m \sim M e^{-\frac{\mathcal{O}(1)\pi^2}{g^2}}$

like Polyakov, 1977... but different - locally 4d! - extra instanton, theta...

Kraan van Baal; Lee Yi ~1997

$$L^{dYM}_{eff} = M \left[(\partial_\mu \vec{\sigma})^2 - \sum_{i=1}^{N} m^2 \cos \vec{\alpha}_i \cdot \vec{\sigma} \right]$$

Unsal Yaffe 2008

$$L^{QCD(adj)/SYM}_{eff} = M \left[(\partial_\mu \vec{\sigma})^2 - \sum_{i=1}^{N} m^2 \cos (\vec{\alpha}_i - \vec{\alpha}_{i+1(\text{mod}N)}) \cdot \vec{\sigma} \right]$$

SYM: Seiberg Witten 1997...

QCD(adj): Unsal 2007
1. dynamical abelianization $SU(N) \rightarrow U(1)^{N-1}$ at I/NL
2. weak coupling
3. relevant d.o.f. at distances $>> NL$: “dual Cartan gluons”
4. mass gap & confinement due to the proliferation (not really ‘condensation’) of nonperturbative semiclassical objects

like Polyakov, 1977... but different - locally 4d! - extra instanton, theta...

$$L_{eff}^{dYM} = M \left[(\partial_\mu \vec{\sigma})^2 - \sum_{i=1}^{N} m^2 \cos \vec{\alpha}_i \cdot \vec{\sigma} \right]$$

$$= M \left[\sum_{a=1}^{N} (\partial_\mu \sigma^a)^2 - m^2 \cos(\sigma^a - \sigma^{a+1(modN)}) \cdot \vec{\sigma} \right]$$

$$L_{eff}^{QCD(adj)/SYM} = M \left[(\partial_\mu \vec{\sigma})^2 - \sum_{i=1}^{N} m^2 \cos(\vec{\alpha}_i - \vec{\alpha}_{i+1(modN)}) \cdot \vec{\sigma} \right]$$

$$= M \left[\sum_{a=1}^{N} (\partial_\mu \sigma^a)^2 - m^2 \cos(\sigma^a + \sigma^{a+2(modN)} - 2\sigma^{a+1(modN)}) \right]$$

Z_N cyclic structure - crucial for string properties [vs Seiberg-Witten]

Anber Sulejmanpasic EP 2015
Anber EP 2016
Shalchian EP 2017

$\sigma^a \rightarrow \sigma^{a+1(modN)}$ = center symmetry on magnetic variables
Studies of dynamics at small-L, using these effective theories, have branched out in different directions: phase structure, theta-dependence, deconfinement transition, addition of fundamental flavors, etc; can’t review all.

Will focus on confining string properties:
...mass gap & confinement
Studies of dynamics at small-L, using these effective theories, have branched out in different directions: phase structure, theta-dependence, deconfinement transition, addition of fundamental flavors, etc; can’t review all.

Will focus on confining string properties:
...mass gap & confinement

electric field lines
Will focus on confining string properties:
...mass gap & confinement

$\vec{\nabla}_\sigma$ field lines - dual: $\partial_i \sigma \sim \frac{L}{g^2} \epsilon_{ij} E_j, \; j = 1, 2$
Will focus on confining string properties:
...mass gap & confinement

kinetic term $M \int d^2x (\vec{\nabla} \sigma)^2$

= electrostatic energy of dipole in dual picture
Will focus on confining string properties:
...mass gap & confinement

\[\sigma = \theta_2 - \theta_1 \]

however, nonperturbative potential term \(Mm^2 \int d^2x \cos \sigma \)
abhors the spread of flux

\(\vec{\nabla} \sigma \) field lines (dual)
The Hamiltonian setup and "edge" modes

\[\sigma = 2\pi \]

\[q \quad \quad \quad \quad \quad \quad \quad q^* \]

\[\sigma = 0 \quad \partial_z \sigma \sim E_y \]

\[M \int d^2x (\nabla \sigma)^2 \sim \frac{(2\pi)^2}{\Delta} \] (energies per unit length)

perturbative:
prefer the spread of flux

\[M m^2 \int d^2x \cos \sigma \sim m^2 \Delta \]

nonperturbative:
abhors the spread of flux

compromise
\[\Delta \sim \frac{1}{m} \]
The Hamiltonian setup and “edge” modes

QCD

\[QCD \]

\[a \]

adj

\[a^2 \]

pert.,

\[\partial_z \sigma \sim E_y \]

\[M \int d^2 x (\nabla \sigma)^2 \sim \frac{(2\pi)^2}{\Delta} \]

perturbative:
preference for the spread of flux

compromise

\[\Delta \sim \frac{1}{m} \]

nonperturbative:
abhorring the spread of flux

\[M \int d^2 x \cos \sigma \sim m^2 \Delta \]
The Hamiltonian setup and "edge" modes

\[\sigma = 2\pi \]

\[\sigma = 0 \quad \partial_z \sigma \sim E_y \]

\[M \int d^2x (\nabla \sigma)^2 \sim \frac{(2\pi)^2}{\Delta} \]

perturbative:
prefer the spread of flux

compromise

\[\Delta \sim \frac{1}{m} \]

Comments:

- this is of course the physics of the 3d Polyakov Model

- as well as that of the MIT Bag Model a model of the YM vacuum
 \(m \sim \) bag constant [relevant later!]

- novelty and interest due to locally-4d nature
 and the unbroken center symmetry of dYM, SYM, QCD(adj)
 [in Polyakov: no analogue of center & no vacuum angle: all due to locally 4d nature!]

\[M m^2 \int d^2x \cos \sigma \sim m^2 \Delta \]

nonperturbative:
abhors the spread of flux

theoretically controlled!
not a "model"...
The role of the unbroken center, "mesons" and "baryons"
dYM vs. Seiberg-Witten theory - the other theory with calculable abelian confinement:

contour plot of nonperturbative potential for dYM SU(3):

- Dual photon plane (2 dim basis)
- Unit cell of su(3) weight lattice - fundamental domain for SU(3) dual photons
- Minima of potential, degenerate
The role of the unbroken center, “mesons” and “baryons”

contour plot of nonperturbative potential for dYM SU(3):

Z_3 symmetry clear = unbroken center

monodromy of dual photons confining quarks of weight \(w_1 \), etc.

N monopoles “condense” so non-composite strings (later)

dYM:

(1+P+P^2)w_1=0

“baryon vertex” (DW junction)
The role of the unbroken center, “mesons” and “baryons”
dYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

Seiberg-Witten theory: N-1 monopoles condense

[Diagram showing Seiberg-Witten theory with mesons and baryons]

only linear baryons
(more dramatic for N>3)

N monopoles condense
so non-composite strings (later)

dYM:

\[(1+P+P^2)wl=0\]

“baryon vertex”
(DW junction)
The role of the unbroken center, “mesons” and “baryons”

dYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

Seiberg-Witten theory: N-1 monopoles condense

- only linear baryons
 (more dramatic for N>3)

- N monopoles condense
 so non-composite strings
 (later)

study of “meson” and “baryon” spectra reveals some similarities... especially large-N counting

Aitken Cherman Yaffe EP 2017

dYM:

- (1+P+P^2)wl=0

 “baryon vertex”
 (DW junction)
Switch to SYM/QCD(adj)!

The role of the unbroken center, “mesons” and “baryons”

SYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

dual photon plane

- **periodicities:**
 - w_1, w_2: weight vectors of SU(3)

- **3 vacua - 1, 2, 3**
 - broken discrete chiral symmetry (preserve center symmetry 120 degree rotn + w_k shift)
The role of the unbroken center, “mesons” and “baryons”

SYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

for, e.g., a weight of the fundamental, say \(w_1 \)
The role of the unbroken center, “mesons” and “baryons”

SYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

for, e.g., a weight of the fundamental, say \(w_1\)
The role of the unbroken center, “mesons” and “baryons”
SYM vs. Seiberg-Witten theory - the other 4d theory with calculable abelian confinement:

for, e.g., a weight of the fundamental, say w1

i.e. strings confining fundamental quarks have a “double-DW” structure...
i.e. strings confining fundamental quarks have a “double-DW” structure...

in SYM, QCD(adj), and dYM at theta=Pi (chiral -> CP)

- strings can end on DWs
- quarks are deconfined on DWs

Originally advocated by S.-J. Rey/Witten 1997 using M theory (M2 ends on wrapped M5)...

here: QFT, semiclassical (“boring”!), no SUSY, no BPS, ... explicit, not heuristic
i.e. strings confining fundamental quarks have a “double-DW” structure...

in SYM, QCD(adj), and dYM at theta=Pi (chiral -> CP)

- strings can end on DWs
- quarks are deconfined on DWs

added bonus, 2 yrs later: turns out can be interpreted as due to discrete 1-form anomaly matching

Gaiotto, Kapustin, Komargodski, Seiberg, 2017
Z_N chiral/Z_N 1-form center mixed ‘t Hooft anomaly means that in a gapped theory the two symmetries can not be unbroken at the same time (unless TQFT)

in vacua: Z_N chiral broken, center preserved

on DW between Z_N vacua: Z_N chiral restored, center broken=deconfined quarks

- semiclassical construction makes the realization of this matching obvious...
 [as usual with ‘t Hooft anomaly, one has to make assumptions on phase - not needed here]

- in SYM and QCD(adj) there is also a “baryon vertex”, unlike Seiberg-Witten...skip
The final piece of ‘data’ I want to present is on the properties of k-strings in dYM and the large-N limit

Shalchian EP 2017
Cherman EP 2016
Shalchian EP 2017

k-strings: take k pairs of fundamental quarks and antiquarks, e.g. k=2, and bring close together:

\[
\begin{align*}
q & \quad T_1 \quad q^* \\
q & \quad T_1 \quad q^*
\end{align*}
\]

usually expect \(T_2 < T_1 \)

and that \(T_k \) depends only on N-ality

at infinite-N \(T_k = k T_1 \) as glueball exchange suppressed

Results:

1. In dYM, for any k, the lowest tension k-string is the one sourced by quarks in the highest weight of the k-index antisymmetric [we gave detailed variational argument, as well as analytic, numeric results - separate talk].

Higher tension k-strings unstable to decay by creation of W-bosons.
2. We find in dYM a (sort-of) “square-root of Casimir” law

\[
\left(\frac{T_k}{T_1} \right)_{dYM} \leq \sqrt{\frac{k(N-k)}{N}}
\]

first (and last) seen in MIT Bag Model

[Johnson Thorn 1974]

not an accident, as the physics of the Bag is repeated word-for-word in dYM, albeit for the Cartan components only: balancing “EM flux” energy and “Bag” energy gives square root of Casimir!

[Johnson Thorn 1974 Hasenfratz Kuti 1978]

- at large-N: \(\frac{T_k}{T_1} \leq \sqrt{k} \) - meaning k-strings are not free, but interacting at large N

3. This brings us to another aspect of the large-N story in dYM, SYM, QCD(adj):

\[
L = M \left[\sum_{a=1}^{N} (\partial_{\mu} \sigma^a)^2 - m^2 \cos(\sigma^a - \sigma^{a+1(\text{mod}N)}) \right]
\]

expanding cosine: an extra latticized dimension of N sites appears w/ spacing 1/m

mass gap \(\sim \sin \frac{\pi q}{N} \) vanishes at infinite N

yet k-string tensions stay finite

all in double-scaling large-N, small-L, fix \(\frac{NL\Lambda}{L} \ll 1 \) : “like” T-duality???
Summary:

Studying dYM, QCD(adj), SYM on a small circle gives a theoretical laboratory elucidating many difficult to study nonperturbative effects: mass gap, confinement, (aspects of) chiral symmetry breaking; all within asymptotically free QFT.

The setup divorces “nonperturbative” from “strong coupling”. It shows the importance of semiclassical configurations not appreciated before: composite magnetic bions, neutral bions etc. that I didn’t talk about; also show need to complexify path integral...

Confinement in this regime is abelian, like in Seiberg-Witten theory, and unlike real QCD, where no scale separation between Cartan and non-Cartan components exists.

Nonetheless, many features come close to the real world, due to the unbroken Z_N center symmetry, the crucial difference with SW theory. I focused here on the confining strings, showing that they exhibit interesting properties and manifest different nontrivial phenomena in a calculable setup. The large-N limit and whether there is large-N transition as L is increased towards R^4 poses an intriguing question.

Continuity in L with real YM theory and QCD is difficult to establish analytically and lattice studies will be needed (some are underway); much evidence supports it.

Novel anomaly matchings may be useful to give further support of large-L continuity. (Cherman et al, Tanizaki et al 2017)

Finally, if not yet made clear, my attitude to the story I told you is that it gives a rare theoretically controlled handle into nonperturbative physics and this alone makes it fun and worth exploring!

Thank you!