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Abstract

We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations.

The theory is related to a description of extended structures in higher dimensions. Internal

symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous

subjects that are covered include physical topics concerning quantization, as well as mathemat-

ical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms

(= vortex or magnetic helicity).
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1 INTRODUCTION

The dynamics of fluids is described by a classical field theory, whose origins lie in the nineteenth

century, like Maxwell electrodynamics with which it shares some antecedents. The electromagnetic

theory has enjoyed much development: it passed into quantum physics, and the resulting quantum

electrodynamics served as a model for its non-Abelian generalization, Yang-Mills theory, which

today is at the center of a quantum field theoretic description for fundamental physics. We believe

that fluid dynamics can undergo a similar evolution and play a similar generative role in physics.

Modern (quantum) field theory has expanded concepts and calculational possibilities beyond

what was familiar to (classical) field theorists. One learned about higher and unexpected symme-

tries, which also facilitate partial or complete integrability of the relevant differential equations.

Topological and geometric concepts and structures, like solitons and instantons, were recognized

as encoding crucial dynamical information about the models. New entities like Pontryagin den-

sities and Chern-Simons terms entered into the description of kinematics and dynamics. Degrees

of freedom were enlarged and unified by new organizing principles based on non-Abelian and su-

persymmetries. Indeed application of field theory to particle physics has now evolved to a study

of extended structures like strings and membranes, whose mathematical description bears some

similarity to the theory of fluids.

The novelties introduced in particle field theories can be also developed for the non-particle field

theory of fluid dynamics. Correspondingly, fluid dynamics can illuminate some aspects of particle

physics, especially as concerns the extended structures that these days are the focus of attention

for particle physicists.

We begin by addressing the question of why fluid mechanics would be interesting in its own right.

Fluid mechanics, for most physical situations, is obtained from an underlying particle description by

suitable averages of Boltzmann-type equations. Recall that the Boltzmann equation for the single

particle distribution function f(X,P, t) is given by

∂f

∂t
+

P

m
· ∂f
∂X

+ F · ∂f
∂P

= C(f) (1.0.1)

where X,P, refer to the coordinates and momenta, the phase space variables, of a single particle

of mass m; F is the force acting on the particle. C(f) is the collision integral, which takes into

account particle interactions. In the special case of the collisonless limit, i.e., with C = 0, the

Boltzmann equation (1.0.1) is the equation for the distribution function for single particles obeying

the standard classical equations of motion. Solving the Boltzmann equation is not very easy.

The equilibrium distribution function is a solution of the equation; in particular, C(f) = 0 for the

equilibrium solution. The general strategy which has been used for solving equation (1.0.1) is to seek

a perturbative solution of the form f = f (0)+f (1)+..., where f (0) = np is the equilibrium distribution,

appropriately chosen for bosons and fermions. Transport coefficients and fluid equations of motion

can then be obtained from the perturbative corrections.
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This approach has the virtue of simplicity and does capture many of the general features of the

problem of deriving coarse-grained dynamics, fluid mechanics in particular, from the underlying

particle dynamics. However, there are two limitations: First because we are only taking care of the

single-particle distributions, and second because the treatment is essentially classical.

Regarding the first point, one could indeed try to be more general by starting with the completely

generalN -particle Liouville equation for the phase space distribution ρ(Xn,Pn), n = 1, 2, ..., N . The

one-particle distribution function is then given by
∫

dµN−1 ρ(Xn,Pn), the two-particle distribution

is given by
∫

dµN−2 ρ(Xn,Pn), etc., where dµN denotes the phase space volume for N particles. The

Liouville equation then leads to a hierarchy of kinetic equations, the so-called BBGKY (Bogolyubov-

Born-Green-Kirkwood-Yvon) hierarchy, involving higher and higher correlated n-particle distribu-

tion functions. (For the one-particle distribution function, we get the Boltzmann equation, but with

the collision integral given in terms of the two-particle distribution function.) To be able to solve

this infinite hierarchy of equations, one needs to truncate it, very often at just the single particle

distribution function. Therefore, even though a more general formulation is possible, the feasibility

of solving these equations limits the kinetic approach to dilute systems near equilibrium, where the

truncation can be justified.

Regarding the question of quantum corrections, the needed formalism is that of the Schwinger-

Dyson equations with a time-contour, the so-called Schwinger-Bakshi-Mahanthappa-Keldysh ap-

proach [1]. The Green’s functions are defined by the generating functional

Z[η] =
Trρ0 TC exp(iIint + iφ · η)

Trρ0

, (1.0.2)

where the time-integral goes from −∞ to ∞, folds back and goes from ∞ to −∞; TC denotes

ordering along this time-contour. φµ generically represents fields of interest, ηµ is a source function

and ρ0 is the thermal density matrix. One can represent Z[η] as a functional integral.

Z[η] =

∫

dµ[φ] exp(iIC(φ) + iφ · η) (1.0.3)

The action is again defined on the time-contour. The Green’s functions for which some of the

fields are on the forward time line and some are on the reverse time line will represent the effect of

statistical distributions. One has to solve the hierarchy of coupled Schwinger-Dyson equations which

follow from (1.0.3), again truncating them at a certain level to get a description of nonequilibrium

phenomena. In practice, one has to carry out semiclassical expansions to simplify these to the point

where a solution can be found and again we have a formalism of limited validity.

This discussion shows that we should expect that the regime of validity of the fluid dynamical

equations derived within kinetic theory or within the time-contour approach is rather limited,

basically a semiclassical regime for dilute systems not too far from equilibrium. However, fluid

dynamical equations can also be derived from very general principles, showing that they have a
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much wider regime of validity, and, indeed in practice, we apply them over such a wider range.

This is the ‘universality’ of fluid dynamics. It is this property which shows the value of a study of

fluid mechanics in its own right, rather than its derivation from an underlying description in some

approximation. It seems that a reconsideration of the whole setting and development of the ideas

of fluid mechanics in the context of modern concepts in particle physics is entirely appropriate. The

novelties introduced in particle field theories can be generalized to the non-particle field theory of

fluid dynamics. Correspondingly, fluid dynamics can illuminate some aspects of particle physics,

especially as concerns the extended structures that these days are the focus of attention for particle

physicists.

In this Introduction, we shall review Lagrange’s and Euler’s description of fluid kinematics and

dynamics, and we shall describe the mapping between the two. We shall discuss the Hamiltonian

(canonical) formulation, together with the associated Poisson brackets. We shall also present (con-

figuration space) Lagrangians for fluid motion; in the Eulerian case a Clebsch parameterization

is needed. Both nonrelativistic and relativistic systems in various spatial dimensions are treated.

These are standard topics and they are well known [2]. However, in our presentation of this famil-

iar material we shall approach the subject with an eye towards the various enhancements of fluid

mechanics, which comprise our current research and which are reviewed in the remainder of this

article.

1.1 Lagrange and Euler descriptions of a fluid and the relationship

between them.

The Lagrange description of a fluid focuses on the coordinates of the individual fluid particles.

These satisfy a Newtonian equation of motion (in the nonrelativistic case). On the other hand,

in Euler’s formulation, the fluid is described by a density ρ and velocity v, which are linked by a

continuity equation, while Euler’s equation describes the dynamics. Euler’s method is akin to a

classical field theory in physical space-time.

In fact one may exemplify the two approaches, and the relation between them, already for

a single particle, carrying mass m and located on the coordinate X(t), whose time evolution is

governed by a force F.

Ẍ(t) =
1

m
F(X(t)) (1.1.1)

(Over-dot denotes differentiation with respect to explicit time-dependence.) This is the “Lagrange”

description (of course it is Newton’s). Next, we introduce the Eulerian (single) particle density by

ρ(t, r) = mδ(X(t)− r). (1.1.2)

The delta function follows the dimensionality of space so that the volume integral of ρ is m. Dif-
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ferentiation (1.1.2) with respect to t leaves

ρ̇(t, r) = m
∂

∂X i
δ(X(t)− r)Ẋ i(t)

= − ∂

∂ri

(

Ẋ i(t)mδ(X(t)− r)

)

= − ∂

∂ri

[

vi(t, r)ρ(t, r)

]

, (1.1.3)

where the Eulerian velocity v is given by

v(t, r) = Ẋ(t) with r = X(t). (1.1.4)

Note that the velocity function v(t, r) is only defined at the point r = X(t); its value at other points

being undetermined and irrevelent. Evidently the continuity equation is satisfied as a consequence

of the above definitions.

ρ̇(t, r) +∇ · j(t, r) = 0 (1.1.5)

j(t, r) = v(t, r)ρ(t, r) = Ẋ(t)mδ(X(t)− r) (1.1.6)

To arrive at the dynamical Euler equation, we differentiate j with respect to time. From (1.1.6) it

follows that

ρ(t, r)v̇(t, r) + v(t, r)ρ̇(t, r) =

Ẍ(t)mδ(X(t)− r) + Ẋ(t)m
∂

∂Xj
δ(X(t)− r)Ẋj(t). (1.1.7a)

Use of the continuity equation on the left side and Newton’s equation (1.1.1) on the right leaves

ρ(t, r)v̇(t, r)− v(t, r)∇ ·
(

v(t, r)ρ(t, r)
)

=

F(X(t))δ(X(t)− r)− ∂

∂rj

(

Ẋ(t)Ẋj(t)mδ(X(t)− r)

)

. (1.1.7b)

Cancelling common terms gives Euler’s equation (for a single-particle “fluid”!).

v̇i(t, r) + vj(t, r)∂jv
i(t, r) =

1

m
F i(r) (1.1.7c)

[∂j denotes a derivative with respect to the components of a spatial vector, which can be X or r, or

below, x. If context does not determine unambiguously which vector is involved, it will be specified

explicitly, as in (1.1.7a,b).] Strictly speaking, (1.17c) only holds at the point r = X. Suitable

continuations of the function v(t, r) away from the point r = X can be found that make (1.1.7c)

hold everywhere. Such continuations represent the velocity field of a fictitious accompanying fluid,

of which X is one particle. For a complete dynamical description an appropriate expression for the

force F still needs to be given.

The same development holds for a collection of N particles: (1.1.1) becomes replaced by

Ẍn(t) =
1

mn

F

(

X1(t), ...,Xn(t)

)

. (1.1.8a)
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The particle label n ranges from 1 to N . We shall take the particles to be identical. Therefore the

mass does not carry the n label, and the force Fn has a functional dependence on Xn independent

of n, and is symmetric under exchange of the remaining N − 1 particle coordinates.

Ẍn(t) =
1

m
F

(

Xn(t); {Xk(t), k 6= n}
)

(1.1.8b)

The Eulerian mass density, velocity and current are defined as

ρ(t, r) = m

N
∑

n=1

δ(Xn(t)− r), (1.1.9)

j(t, r) = v(t, r)ρ(t, r) = m
N
∑

n=1

Ẋn(t)δ(Xn(t)− r). (1.1.10)

Similarly to the single-particle case, the function v(t,p) is defined only at the points r = Xn(t).

Evidently the continuity and Euler equations continue to hold.

For the true fluid formulation, we promote the discrete particle label n to a continuous label

x and the Lagrange coordinate Xn(t) becomes X(t,x). Frequently x is specified by the statement

that it describes the fluid coordinate X at initial time t = 0, i.e.

X(0,x) = x. (1.1.11)

Thus x is the comoving coordinate. Dynamics is again Newtonian.

Ẍ(t,x) =
1

m
F(X(t,x)) (1.1.12)

The density and velocity are now defined by

ρ(t, r) = ρ0

∫

dx δ(X(t,x)− r), (1.1.13)

j(t, r) = v(t, r)ρ (t, r) = ρ0

∫

dx Ẋ(t,x)δ(X(t,x)− r). (1.1.14)

The integration is over the entire relevant volume, be it 1-dimensional, 2-dimensional or 3-dimensional.

(The dimensionality of the measure will be specified only when formulas are dimension specific.) ρ0

is a background mass density, so that the volume integral of ρ is the total mass. In the above, we

assume that the particles that are nearby in space have similar velocities and thus the function of

discrete points v(t,Xn) goes over to a smooth continuous function v(t, r). This is the fundamental

assumption in classical fluids. The more general case calls for a phase space density (Boltzmann)

description of the collection of particles, which takes us away from the realm of classical Lagrange

fluids.
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The continuity and Euler equations follow as before, with the latter reading

v̇i(t, r) + vj(t, r)∂jv
i(t, r) =

1

m
F i(r). (1.1.15)

The determination of the force term in the above equation requires some discussion. For external

forces, F(r) is simply a known function of space. For internal particle forces, however, the force could

be a nonlocal function depending on the full distribution of particles in space. We shall postulate

that interparticle forces are short-range and thus depend only on the distribution of nearby particles.

For such forces, F would depend only on the density of particles and its derivatives at the point r.

Under additional assumptions of isotropicity, F will be proportional to the gradient of the density,

∇ρ. In this case, a standard argument shows that the right hand side of (1.1.15) should be set

to −1
ρ
∇P , where P is the pressure [2]. Thus once an equation of state is given, i.e. once the

dependence of P on ρ is known, we have a self-contained system of equations: the continuity and

Euler equations.

ρ̇(t, r) +∇ ·
(

v(t, r)ρ(t, r)

)

= 0 (1.1.16)

v̇(t, r) +

(

v(t, r) · ∇
)

v(t, r) = −1

ρ
∇P (ρ) (1.1.17)

A fluid obeying these equations is called “perfect”. Later this formalism will be generalized to

account for an internal symmetry. For that purpose, it will be useful to delineate explicitly the

effect of the δ functions in (1.1.13) and ((1.1.14). In the course of the x integral, x becomes

evaluated at a function χ(t, r), which is inverse to X(t, r).

X

(

t,χ(t, r)

)

= r (1.1.18a)

χ

(

t,X(t,x)

)

= x (1.1.18b)

(Uniqueness is assumed.) Thus the x integration sets X equal to r and also there is a Jacobian,

det∂Xi

∂xj for the X→ r transformation.

Consequently from (1.1.13) and (1.1.14) it follows that

ρ = ρ0
1

|det∂Xi

∂xj |x=χ

, (1.1.19)

v = Ẋ|x=χ. (1.1.20)

In other words X effects a diffeomorphism x → X ≡ r, while χ acts similarity for r → x. The

interchange between a dependent variable X and an independent variable r is called a hodographic

transformation.
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1.2 Lagrangian, Hamiltonian formulations and symmetries of dynamics

(i) Lagrangian and Hamiltonian functions for Lagrange fluid mechanics

Since the Lagrange method is essentially Newtonian, Lagrangian and Hamiltonian formulations for

(1.1.12) are readily constructed provided the force is derived from a potential V(X).

LL =

∫

dx

(

1

2
mẊ2 − V(X)

)

(1.2.1a)

F(X) = −∇V(X) (1.2.1b)

HL =

∫

dx

(

1

2m
P2 + V(X)

)

(1.2.2a)

P = mẊ (1.2.2b)

A canonical formulation for the Lagrange description of fluid motion follows in the usual way, so

that bracketing with HL and using conventional Poisson brackets for X and P reproduces the equa-

tion of motion (1.1.12).

(ii) Diffeomorphism symmetry of Lagrange fluid mechanics

In the discrete antecedent to the continuum formulation there is the obvious freedom of renaming

the n label. The continuum version of this freedom manifests itself in that the Lagrange formulation

of fluid dynamics enjoys invariance against volume-preserving diffeomorphisms of the continuous

label x.

An infinitesimal diffeomorphism of x, generated by a infinitesimal function f(x) reads

δfx = −f(x), (1.2.3a)

and this is volume-preserving when f is transverse.

∇ · f = 0 (1.2.3b)

Provided the Lagrange coordinate transforms as a scalar

δfX(t,x) = f(x) · ∇X(t,x), (1.2.4)

LL is invariant.

δfLL =

∫

dx

(

mẊ if j∂jẊ
i − ∂

∂X i
V(X)f j∂jX

i

)

=

∫

dxf j∂j

(

m

2
Ẋ2 − V(X)

)

(1.2.5)
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The last expression vanishes after partial integration by virtue of (1.2.3b). (Surface terms are

ignored.) Noether’s theorem then gives the constant of motion associated with the relabeling

symmetry (volume-preserving diffeomorphism).

Cf =

∫

dxẊ if j∂jX
i (1.2.6)

Since f is an arbitrary transverse function it can be stripped away from (1.2.6). Explicit formulas

reflect the spatial dimensionality of the system. In three dimensions we can present the transverse

f i as εijk∂j f̃
k, f̃k arbitrary, leading to conserved local vector quantities.

Ci
(3) = εijk∂jẊ

ℓ∂kX
ℓ (1.2.7)

In two dimensions f i involves a scalar function, f i = εij∂jf , and for planar systems the conserved

quantity is a local scalar.

C(2) = εij∂iẊ
k∂jX

k (1.2.8)

Finally, in one dimension, a “transverse” function is constant, so the constant of motion for lineal

systems remains integrated.

C(1) =

∫

dx1Ẋ∂x1X =

∫

dXẊ (1.2.9)

(iii) Hamiltonian function for Euler fluid mechanics

A Hamiltonian for the continuity and Euler equations (1.1.16), (1.1.17) is obtained from HL (1.2.2a)

by transforming to Eulerian variables. First, however, to ensure proper dimensionality the kinetic

term is divided by the spatial volume so that m is replaced by ρ0. Also to reproduce the pressure

form of the forces, we write V(X) as a function of the Jacobian, det∂Xi

∂xj . Thus HL reads

HL =

∫

dx

(

1

2
ρ0Ẋ

2 + V(|det∂X
i

∂xj
|/ρ0)

)

. (1.2.10)

The transformation to Eulerian variables is effected by multiplying (1.2.10) by unity, in the form
∫

drδ(X− r), and interchanging orders of integration. In this way HL becomes HE .

HE =

∫

dr

(

1

2
ρv2 +

ρ

ρ0
V(

1

ρ
)

)

(1.2.11)

Agreement with the pressure expression for the force, as in (1.1.17), is achieved when we identify

P (ρ) = − 1

ρ0

V ′(1/ρ) (1.2.12)

(Dash denotes derivative with respect to argument.) In the subsequent we drop the subscript E on

H and rename ρ
ρ0
V(1

ρ
) as V (ρ). Thus the Euler Hamiltonian reads

H =

∫

dr

(

1

2
ρv2 + V (ρ)

)

, (1.2.13)
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and the pressure is Legendre transform of V .

P (ρ) = ρV ′(ρ)− V (ρ) (1.2.14)

Conventional nomenclature for V ′(ρ) is enthalpy and
√

P ′(ρ) =
√

ρV ′′(ρ) is the sound speed s.

Bracketing the Hamiltonian with ρ and v should generate equations (1.1.16) and (1.1.17). To

verify this, we need to know the brackets of ρ,v with each other. These may be obtained from the

canonical brackets in the Lagrange formulation, the only non-vanishing one being

{Ẋ i(x), Xj(x′)} =
1

ρ0
δijδ(x− x′). (1.2.15)

Using the definitions of ρ and j in terms of X and Ẋ, eqs. (1.1.13) and (1.1.14), as well as the

canonical brackets (1.2.15), determines the brackets of ρ and j.

{ρ(r), ρ(r′)} = 0 (1.2.16)

{ji(r), ρ(r′)} = ρ(r)∂iδ(r− r′) (1.2.17)

{ji(r), jj(r′)} = jj(r)∂iδ(r− r′) + ji(r′)∂jδ(r− r′) (1.2.18)

Since j = vρ these in turn imply that the brackets for ρ and v take the form [3]

{vi(r), ρ(r′)} = ∂iδ(r− r′), (1.2.19)

{vi(r), vj(r′)} = −ωij(r)

ρ(r)
δ(r− r′), (1.2.20)

where

ωij(r) = ∂i vj(r)− ∂jvi(r) (1.2.21)

is called the fluid vorticity. [In the above expressions, (1.2.15)-(1.2.21), all quantities are at equal

times, so the time argument is omitted.] Of course the Jacobi identity is satisfied by the brackets.

It is now straight forward to verify from (1.2.16), (1.2.19)-(1.2.21) that bracketing with H

reproduces the equations of motion (1.1.16) and (1.1.17).

ρ̇ = {H, ρ} = −∇ · (vρ) (1.2.22)

v̇ = {H,v} = −(v ·∇)v −∇V ′(ρ) (1.2.23)

These equations may also be presented as continuity equations for a (nonrelativistic) energy

momentum tensor. The energy density

E =
1

2
ρv2 + V = T 00, (1.2.24)

together with the energy flux

T jo = ρvj(1
2
v2 + V ′), (1.2.25)
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obey

Ṫ oo + ∂jT
jo = 0. (1.2.26)

Similarly the momentum density, P, which in the nonrelativistic theory coincides with the current,

P i = ρvi = T oi, (1.2.27a)

and the stress tensor T ij

T ij = δij(ρV ′ − V ) + ρvivj = δijP + ρvivj, (1.2.27b)

satisfy

Ṫ oi + ∂jT
ji = 0. (1.2.28)

Note that T oi 6= T io because the theory is not Lorentz invariant, but T ij = T ji because it is invari-

ant against spatial rotations. (T µν is not, properly speaking, a “tensor”, but an energy-momentum

“complex”.) Because P = j, the current algebra (1.2.18) is also the momentum density algebra.

(iv) Symmetries of Euler fluid mechanics

The above continuity equations and other specific properties of the energy-momentum tensor

allow constructing constants of motion, which reflect symmetries of theory. The Hamiltonian =

energy,

E =

∫

dxE (time-translation), (1.2.29)

is constant as a consequence of time-translation invariance, while the constancy of the momentum,

P =

∫

dr P =

∫

dr j (space-translation), (1.2.30)

follows from space-translation invariance. The index symmetry of T ij is a consequence of rotational

invariance and ensures that the angular momentum,

M ij =

∫

dr (riPj − rjP i) (spatial rotation), (1.2.31)

is constant. The identity of the momentum density and the current density allows construction of

the Galileo boost constant of motion,

B = t P−
∫

dr rρ (velocity boost), (1.2.32)

whose time-independence signals invariance against velocity boosts. Finally, the total number

N =

∫

drρ (number), (1.2.33)
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is also conserved, as a consequence of the continuity equation (1.1.16). Upon bracketing with each

other, the constants (1.2.29)-(1.2.33) form the extended Galileo Lie algebra, and they generate

Galileo transformations on ρ and v. Brackets with N vanish; N provides the central extension for

the Galileo algebra in the {B,P} bracket.

Further constants of motion are present for specific forms of V . In particular if

2T 00 = δij T
ij, (1.2.34a)

which in d spatial dimensions requires that

V (ρ) = λ ρ1+ 2

d , (1.2.34b)

two more constants exist. They are the dilation,

D = 2tH −
∫

dr r ·P (dilation), (1.2.35)

and the special conformal generator.

K = t2H − tD − 1
2

∫

dr r2ρ (conformal transformation) (1.2.36)

The latter two, together with H , form the SO(2, 1) Lie algebra of the non-relativistic conformal

group, which they generate by bracketing. Together with remaining Galileo group elements this is

called the Schrödinger group [4].

Finally, in any dimension when

V (ρ) = λ/ρ, (1.2.37)

we are dealing with a Chaplygin gas and, as we shall discuss below, this model supports remarkable

higher symmetries related to relativistic extended objects [5].

What is the Eulerian image for the volume-preserving diffeomorphism symmetries of the La-

grange formulation discussed in Section 1.2 (ii)? First we note that the Eulerian variables ρ and

v do not respond to the volume-preserving transformations on the Lagrange variable X. This

is seen from (1.1.13), (1.1.14), (1.2.4). Also the associated constants of motion, summarized by

(1.2.6)-(1.2.9) do not possess in general simple Eulerian counterparts. But some do.

Let us begin with the 3-dimensional quantity in (1.2.7) and integrate it over a surface S̄ in the

X parameter space bounded by a closed curve ∂S̄. This gives the constant

A =

∫

S̄

dSiεijk∂j(∂kX
ℓẊℓ) =

∮

∂S̄

dX i ∂i X
ℓẊℓ. (1.2.38a)

Upon performing the diffeomorphism x→ χ, (1.2.38a) becomes expressed in terms of Euler variables

as

A =

∮

∂S

dr · v =

∫

S

dS · ω, (1.2.38b)
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where ∂S̄ is the (time-dependent) image of ∂S under the diffeomorphism. The above quantity,

known as the velocity circulation or vorticity flux, is therefore constant; this is Kelvin’s theorem.

[One can establish the result directly for (1.2.38b) from the equations of motion for Euler variables,

provided one takes into account the time-dependence of the contour ∂S.] Similarly conserved

velocity circulation exists also in 2-dimensional fluid mechanics; of course the integration surface or

contour then lie in the plane.

Additional important constants arise from the volume integrals of the Ci
(d), d = 1, 2, 3, in (1.2.7)-

(1.2.9). In three dimensions, we begin with (1.2.7) contracted with Ẋm∂iX
m and integrated over

volume.

C(3) =

∫

d3x εijk(Ẋm∂iX
m)∂j(Ẋ

n∂kX
n)

=

∫

d3x Ẋm∂jẊ
n εijk ∂iX

m∂kX
n (1.2.39a)

We use the identity εijk∂iX
m∂kX

n = εmℓn ∂xj

∂Xℓ det ∂Xp

∂xq , and multiply C(3) by unity in the form
∫

d3r δ(X− r) so that C(3) becomes

C(3) =

∫

d3r d3x Ẋm ∂Ẋn

∂xj
εmℓn ∂xj

∂Xℓ
det

∂Xp

∂xq
δ(X− r)

=

∫

d3rv · (∇× v) =

∫

d3rv · ω, (1.2.39b)

(apart from an irrelevant factor of ±ρ0). Conservation of C(3), called the vortex helicity, also follows

when the Euler equation (1.1.17) is applied to (1.2.39b).

An expression like C(3), with v an arbitrary 3-vector, is a well known mathematical entity,

called the Chern-Simons term. In the last twenty years, Chern-Simons terms have come to play a

significant role in physics and mathematics [6]. We shall have more to say about them, incarnated

in various contexts, but always in odd-dimensional space. Indeed the one-dimensional constant

(1.2.9), when written in terms of Euler variables reads

C(1) =

∫

d1rv. (1.2.40)

(Here “r” is not a radial coordinate, but lies on the real line.) This is just a 1-dimensional Chern-

Simons term. (We shall further discuss Chern-Simons terms in Sidebar B, below.)

Finally we turn to the planar constant C(2) (1.2.8). Taking it to the M th power, multiplying by

δ(X− r) and integrating over x and r gives

CM
(2) =

∫

d2x d2r(εij∂iẊ
k∂jX

k)M δ(X− r). (1.2.41a)
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The 2x2 matrix identity εij ∂Xk

∂xj = εmk ∂xi

∂Xmdet
∂Xp

∂xq converts the above to

CM
(2) =

∫

d2x d2r

(

∂Ẋk

∂xi
εmk ∂xi

∂Xm
det

∂Xp

∂xq

)M

δ(X− r)

=

∫

d2rρ

(

∂

∂rm
vk εmk/ρ

)M

=

∫

d2rρ

(

ω

ρ

)M

. (1.2.41b)

apart from irrelevant factors. Here ω is the planar vorticity εij∂iv
j. Thus in the plane there is a

denumarbly infinite set of particle relabeling constants. Again, time-independence of CN
(2) can be

established directly from (1.2.41b) with the help of the continuity and Euler equations (1.1.16),

(1.1.17).

The brackets of the above volume-integrated relabeling constants with the Euler Hamiltonian

vanish, because they are time-independent. But this does not depend on the specific form of the

Hamiltonian, since the fundamental brackets (1.2.16)-(1.2.21) give vanishing brackets for C(d) with

ρ and v. This is as it should be, because we have already remarked that the Eulerian variables

do not respond to the relabeling transformations. Quantities whose bracket vanishes with all the

elements of a (bracket) algebra, here ρ and v, are called Casimir invariants. So we see that the

relabeling symmetry gives rise to Casimir invariants in the Euler formulation for fluids. This has a

profound impact on the possibility of constructing a Lagrangian for Eulerian fluids.

Finally, let us remark that even though the volume-preserving diffeomorphism transformations

do not act on the Eulerian ρ and v, there remains in the formalism a related structure: The brackets

(1.2.18) of currents (equivalently, momentum densities) present a local realization of the full (not

merely volume-preserving) diffeomorphism algebra. For if we define for arbitrary f

jf =

∫

dr f(r) · j(r), (1.2.42)

then (1.2.18) implies

{jf1 , jf2} = jf12 , (1.2.43)

where f12 is the Lie bracket of f1 and f2

f i
12 = f j

1∂jf
i
2 − f j

2∂jf
i
1. (1.2.44)

(v) Lagrange function for Eulerian fluid mechanics

While constructing the Euler Hamiltonian is straightforward, for example by transforming the

Lagrange Hamiltonian, as in (1.2.10)-(1.2.13), an analogous construction for the Euler Lagrangian is

problematic. First, the equations for the variables ρ and v are first order in time, so the Lagrangian

should reproduce this. Second, time derivatives in the Lagrangian determine the canonical, bracket

structure, which ultimately should reproduce (1.2.16)-(1.2.21). However, direct transcription of
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LL (1.2.1a) to LE , analogous to the passage from HL in (1.2.2a) to HE (1.2.13), would yield

LE =
∫

dr (1
2
ρv2 − V (ρ)), which contains no time derivatives. So something else must be done.

Moreover, as we shall now explain, the presence of the Casimirs C(d) and N poses obstructions to

the construction of a Lagrangian, which must be overcome.

Before proceeding, we present a Sidebar on the relation between Lagrangians and the canonical

bracket structure.
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A. Sidebar on canonical formalism determined by a Lagrangian

(a) Easy case

We begin with a Lagrangian that is first order in time. This entails no loss of generality because

all second order Lagrangians can be converted to first order by the familiar Legendre transforma-

tion that produces a Hamiltonian: H(p, q) = pq̇ − L(q̇, q), where p ≡ ∂L/∂q̇. The equations of

motion gotten by taking the Euler-Lagrange derivative with respect to p and q of the Lagrangian

L(ṗ, p; q̇, q) ≡ pq̇ −H(p, q) coincide with the “usual” equations of motion obtained by taking the q

Euler-Lagrange derivative of L(q̇, q). [In fact L(ṗ, p; q̇, q) does not depend on ṗ.] Moreover, some La-

grangians possess only a first-order formulation (for example, Lagrangians for Schrödinger or Dirac

fields; also the Klein-Gordon Lagrangian in light-cone coordinates is first order in the light-cone

“time” derivative).

Denoting all variables by the generic symbol ξi, the most general first order Lagrangian is

L = ai(ξ)ξ̇
i −H(ξ). (A.1)

Note that although we shall ultimately be interested in fields defined on space-time, for present

didactic purposes it suffices to consider variables ξi(t) that are functions only of time. The Euler-

Lagrange equation that is implied by (A.1) reads

fij(ξ)ξ̇
j =

∂H(ξ)

∂ξi
(A.2)

where

fij(ξ) =
∂aj(ξ)

∂ξi
− ∂ai(ξ)

∂ξj
. (A.3)

The first term in (A.1) determines the canonical 1-form: ai(ξ)ξ̇
i dt = ai(ξ) dξi, while fij gives the

symplectic 2-form: dai(ξ) dξi = 1
2
fij(ξ) dξi dξj.

To set up a canonical formalism, we proceed directly. We do not make the frequently heard state-

ment that “the canonical momenta ∂L/∂ξ̇i = ai(ξ) are constrained to depend on the coordinates

ξ”, and we do not embark on Dirac’s method for constrained systems [7].

In fact, if the matrix fij possesses the inverse f ij there are no constraints. Then (A.2) implies

ξ̇i = f ij(ξ)
∂H(ξ)

∂ξj
. (A.4)

When one wants to express this equation of motion by bracketing with the Hamiltonian

ξ̇i = {H(ξ), ξi} = {ξj, ξi}∂H(ξ)

∂ξj
, (A.5)
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one is led to postulating the fundamental bracket as

{ξi, ξj} = −f ij(ξ). (A.6)

The bracket between functions of ξ is then defined by

{F1(ξ), F2(ξ)} = −∂F1(ξ)

∂ξi
f ij ∂F2(ξ)

∂ξj
. (A.7)

One verifies that (A.6), (A.7) satisfy the Jacobi identity by virtue of the Bianchi identity when f

is given by (6.3.41).

∂

∂ξi
fjk +

∂

∂ξj
fki +

∂

∂ξk
fij = 0 (A.8)

(b) Difficult case

When fij is singular, we may still proceed in the following manner [8]. Let us suppose that fij

possesses N zero modes pi
(n)

pi
(n)fij = 0

n = 1, ..., N. (A.9)

If we use a rank N projection operator P j
i that satifies

P j
i P

k
j = P k

i , P j
i fjk = 0, (A.10)

it is possible to find an inverse for fij on the projected subspace. Namely, the “inverse” f ij is

uniquely determined by

fikf
kj = δj

i − P j
i

fkj = −f jk, f ikP j
k = 0. (A.11)

Once f ij is constructed, we define the Poisson bracket for functions of ξi by (A.7).

It still remains to verify the Jacobi identity. An easy computation shows that (A.7) continues

to satisfy that identity provided

P j
i

δ

δξj
Fℓ = 0. (A.12)

Hence we use the brackets (A.7) only between functions Fℓ(ξ) that satisfy the admissability criterion

(A.12).
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(c) Obstructions to a canonical formalism

Our problem in connection with Eulerian fluid mechanics is in fact the inverse of what has been

summarized above. From (1.2.16), (1.2.19) and (1.2.20), we know the form of f ij and that the Jacobi

identity holds. We then wish to determine the inverse fij , and then ai from (6.3.41). Since we know

the Hamiltonian from (1.2.13), construction of the Lagrangian (A.1) should follow immediately.

However, an obstacle arises: Since there exist a Casimir invariants C(ξ) whose brackets with all

the ξi vanish, then

0 = {ξi, C(ξ)} = −f ij ∂

∂ξj
C(ξ) . (A.13)

That is, f ij has zero modes ∂
∂ξjC(ξ), and the inverse to f ij, namely the symplectic 2-form fij , does

not exist. In that case, something has to be done to neutralize the Casimirs.

(d) Canonical transformations

It is interesting, and will be later useful, to develop the theory further into a discussion of canonical

transformations [9]. A canonical trasfromation is a transformation on the phase space coordinates

ξi, given infinitesimally by a vector function,

δ ξi = −vi(ξ), (A.14)

which leaves the symplectic 2-form fij invariant.

δfij = vm ∂m fij + ∂i v
m fmj + ∂j v

m fim = 0 (A.15a)

[The exrpession in (A.15a) is the Lie derivative of fij with respect to the vector field vm.] Use of

the Bianchi identity (A.8) allows casting (A.15a) into

∂i(v
mfmj)− ∂j(v

mfmi) = 0. (A.15b)

This shows that the quantity vmfmi may be presented as

vmfmi =
∂G(ξ)

∂ξi
. (A.16)

G(ξ) is called a “generator” for the vector field vm. Conversely, when fmi possesses an inverse,

given any function G(ξ) on phase space we can define a vector field vm. Eq. (A.15b) is the general

requirement for vi to define a canonical transformation. Eq. (A.16) is a necessary and sufficient

condition, locally on phase space. If the phase space has non-trivial topology, one can have more

general solutions to the condition (A.15).

The change of a function F (ξ) on phase space, due to a canonical transformation, is given by

δF = − ∂F

∂ξm
vm(ξ)

= −∂G
∂ξi

f im ∂F

∂ξm
= {G,F} (A.17)
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where (A.6) and (A.7) and (A.16) have been used. This shows that indeed G generates the in-

finitesimal canonical transformation by Poisson bracketing.

Note that the bracket (A.17) has been established without the inverse 2-form f ij. This enjoys an

advantage over explicit evaluations relying on the methods presented above in (a), and especially in

(b), where a projected inverse is employed. Moreover we see that the admissability criterion (A.12)

is automatically satisfied by any generator G that solves (A.16). This follows immediately from

(A.9).

To construct a Lagrangian for Euler fluids, which leads to the correct equations of motion

(1.1.16), (1.1.17) and brackets (1.2.16)-(1.2.21), we must neutralize the Casimirs. In three and one

spatial dimensions, we must neutralize the velocity Chern-Simons terms (1.2.59) and (1.2.40), and

also the total number N . In two dimensions the Casimirs which must be neutralized comprise the

infinite tower (1.2.41), as well as N .

In three dimensions this is achieved in the following manner, based on an idea of C.C. Lin [10].

We use the Clebsch parameterization for the vector field v [11]. Any three-dimensional vector,

which involves three functions, can be presented as

v = ∇θ + α∇β, (1.2.45)

with three suitably chosen scalar functions θ, α, and β. This is called the Clebsch parameterization,

and (α, β) are called Gaussian potentials. In this parameterization, the vorticity reads

ω = ∇α×∇β, (1.2.46)

and the Lagrangian is taken as

L = −
∫

d3 rρ(θ̇ + αβ̇)−H|v=∇θ+α∇β, (1.2.47)

with v in H expressed as in (1.2.45). Thus the canonically conjugate pairs are (ρ, θ) and (ρα, β) re-

placing ρ and v. The phase space (ρ, θ, α, β) is 4-dimensional, corresponding to the four observables

ρ and v, and a straightforward calculation shows that the Poisson brackets (1.2.16), (1.2.19)-(1.2.21)

are reproduced with v constructed by (1.2.45).

But how has the obstacle presented by the Casimirs been overcome? Let us observe that in the

Clebsch parameterization C3 is given by

C3 =

∫

d3 rǫijk ∂iθ ∂jα∂kβ, (1.2.48)

which is just a surface integral

C3 =

∫

dS ·(θω). (1.2.49)
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In this form, C3 has no bulk contribution, and presents no obstacle to constructing a symplectic

2-form and a canonical 1-form in terms of (ρ, θ, α, β), which are defined in the bulk, that is, for all

finite r. Moreover, the brackets with N are no longer universally vanishing. Specifically with the

new dynamical variable θ we find

{N, θ} = −1. (1.2.50)

Note that the response of θ to a finite boost with velocity u

θ(t, r)→ θ(t, r− ut) + u · r− u2

2
t, (1.2.51)

contains the 1-cocycle u · r− u2

2
t, as is familiar from representations of the Galileo group.

A “derivation” of (1.2.47) can be given, based on ideas of Lin and earlier ones of Eckart [12]. We

begin with LE , the Euler transcription of the Lagrange Lagrangian, mentioned earlier and containing

no time derivatives. This is supplemented with constraints, enforced by Lagrange multipliers that

ensure various continuity equations.

L =

∫

d3 r

(

1

2
ρv2 − V (ρ) + θ(ρ̇+ ∇ · (vρ))− ρα(β̇ + v ·∇β)

)

(1.2.52)

The first two terms in the integrand reproduce LE ; the first multiplier, θ, enforces the mat-

ter/current continuity equation. The second continuity equation for β, enforced by the multiplier

ρα, is physically obscure. (Lin argues that it reflects the conservation of “initial data” for fluid

motion.) Varying v and eliminating it gives (1.2.47).

Let us carry out all the variations and re-derive the two Eulerian equations. For greater gener-

ality, useful for relativistic kinematics, we shall take an arbitrary kinetic energy ρT (v), rather than

the above non relativistic case T (v) = 1
2
v2, and define the momentum p be the derivative of T .

p ≡ ∂T (v)

∂v
(1.2.53)

Varying θ gives the continuity equation (1.1.16); varying α gives

β̇ + v ·∇β = 0, (1.2.54a)

and varying β gives a similar continuity equation for α.

α̇ + v ·∇α = 0 (1.2.54b)

Next we vary v to find

ρp− ρ(∇θ + α∇β) = 0. (1.2.55)

Thus in the general case it is p (rather than v) that is given by the Clebsch parameterization. With

(1.2.55) the Lagrangian (1.2.52) is rewritten, apart from a total time derivative, as

L =

∫

d3r

(

ρT (v)− V (ρ)− ρ(θ̇ + αβ̇)− ρv · p
)

. (1.2.56)
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Let h(p) be the Lagrange transform of T (v)

h(p) = p · v − T (v), (1.2.57a)

∂h(p)

∂p
= v, (1.2.57b)

and L becomes

L =

∫

d3r

(

− ρ(θ̇ + αβ̇)− ρh(p)− V (ρ)

)

. (1.2.58)

The remaining variable to vary is ρ.

θ̇ + αβ̇ + h(p) + V ′(ρ) = 0 (1.2.59a)

Differentiating with respect to ri converts this to

∂iθ̇ + ∂iαβ̇ + α∂iβ̇ = −∂h(p)

∂pj
∂ip

j − V ′′(ρ)∂iρ. (1.2.59b)

But according to (1.2.55) ∂ip
j = ∂jp

i+∂iα∂jβ−∂jα∂iβ. Thus the first term on the right in (1.2.59b)

is

−vi∂jp
i − ∂iαv

j∂jβ + vj∂jα∂iβ = −vj ∂p
i

∂vk
∂jv

k + ∂iαβ̇ − α̇∂iβ,

where we have used (1.2.74) and (1.2.55). Rearranging (1.2.59b) leads to

∂iθ̇ + α̇∂iβ + α∂iβ̇ + vj∂jp
i = −V ′′(ρ)∂iρ, (1.2.60a)

or

ṗi + vj∂jp
i = −V ′′(ρ)∂iρ. (1.2.60b)

With Newtonian kinematics pi = vi, and Euler’s equation is regained. With arbitrary kinematics

pi ≡ ∂T (v)
∂vi . Also, since δpi = ∂pi

∂vj δv
j = τ ijδvj where τ ij = ∂2T

∂vi∂vj , the above becomes

τ ik(v̇k + vj∂jv
k) = −V ′′(ρ)∂iρ, (1.2.61a)

or

v̇i + vj∂jv
i = −(τ−1)ijV ′′(ρ)∂jρ, (1.2.61b)

whenever the inverse to τ ij exists. For Newtonian kinematics τ ij = δij .

Note that the free Euler equation, (1.2.61b) with V ′′ = 0, is insensitive to the form of the kinetic

term T (v) (provided τ ij possess an inverse), and can be solved together with the continuity equation

(1.1.16). The general solution in the non-interacting case is presented in terms of posited initial

data.

ρ(t = 0, r) = ρ0(r) (1.2.62)

v(t = 0, r) = v0(r) (1.2.63)



Perfect Fluid Theory and its Extensions 25

Define the quantity χ(t, r) by the equation

r = tv0

(

χ(t, r)
)

+ χ(t, r). (1.2.64)

Then (1.1.16) and (1.1.17) (with ∇P = 0) are solved by

ρ(t, r) = ρ0(χ)|det∂χ
i

∂rj
|, (1.2.65)

v(t, r) = v0(χ). (1.2.66)

This result is verified by differentiation; alternatively it may be derived from (1.1.13), (1.1.14), with

X(t,x) taken in the absense of forces to be a linear function of t.

In one dimension, we parameterize the velocity as a derivative of a potential θ,

v = θ′, (1.2.67)

and the phase space consist of (ρ, θ). The Casimir (1.2.40) again becomes a surface term (only

endpoints contribute) and is neutralized in the bulk. The two variables are the conjugate pair (ρ, θ),

which capture the two degrees of freedom (ρ, v). Of course lineal fluids possesses no vorticity, so the

velocity bracket (1.2.20) vanishes, while (1.2.19) is verified. [In an alternative approach to lineal

fluids, we replace θ(r) by 1
2

∫

dr′ε(r−r′)v(r′) and the canonical 1-form
∫

drθρ̇ is −1
2

∫

drdr′ρ(r)ε(r−
r′)v̇(r′),where ε is the ±1 step function. Evidently this leads to a spatially non-local, but otherwise

completely satisfactory canonical formulation for fluids on a line.]

Two dimensions presents the additional problem that the number of physical variables is three:

(ρ,v), but an odd number cannot form a symplectic structure. At the same time there is an

infinite number of Casimirs, (1.2.41). One may then conclude, heuristically, that it should be

possible to neutralize an infinite number of non-local Casimirs by suppressing one local degree of

freedom, thereby decreasing the effective variables from three to two, an even number with which

one can build a symplectic structure. But it is not known how to effect this suppression; rather the

Lin/Clebsch method is adopted, which increases the degrees of freedom to four and the Lagrangian

(1.2.47) is used in two dimensions as well.

Finally note that the Lagrangian in (1.2.47), apart from a total time derivative, can also be

written as

L = −
∫

dr[ρ(θ̇ + αβ̇) + ρv · (∇θ + α∇β)] + LE

= −
∫

drjµ(∂µθ + α∂µβ) + LE . (1.2.68)

Although we are dealing with nonrelativistic dynamics, we have used covariant notation for the

canonical 1-form, with jµ = (cρ, ρv) and ∂µ = (1
c

∂
∂t
,∇). This formulation becomes our starting

point for the relativistic generalization, discussed in Section 1.4 below. (That is why we have intro-

duced the velocity of light c in the above definitions; of course it disappears in the nonrelativistic
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theory, where it has no role.)

B. Sidebar on Clebsch parameterization and the Chern-Simons term

We elaborate on the Clebsch parameterization for a vector field [11], which was presented for

the velocity vector in (1.2.45). Here we shall use the notation of electromagnetism and discuss the

Clebsch parameterization of a vector potential A, which also leads to the magnetic field B = ∇×A.

(Of course the same observations apply when the vector in question is the velocity field v, with

∇× v giving the vorticity.)

The familiar parameterization of a three-component vector employs a scalar function θ (the

“gauge” or “longitudinal” part) and a two-component transverse vector AT : A = ∇θ + AT ,

∇ · AT = 0. This decomposition is unique and invertible (on a space with simple topology). In

contrast, the Clebsch parameterization uses three scalar functions, θ, α, and β,

A = ∇θ + α∇β, (B.1)

which are not uniquely determined by A (see below). The associated magnetic field reads

B = ∇×A = ∇α×∇β. (B.2)

Repeating the above in form notation, the 1-form A = Ai dr
i is presented as

A = dθ+α dβ, (B.3)

and the 2-form is

dA = dα dβ . (B.4)

Darboux’s theorem [13] ensures that the Clebsch parameterization is attainable locally in space [in

the form (B.3)]. Additionally, an explicit construction of α, β, and θ can be given by the following

procedure [14].

Solve the equations
dx

Bx
=

dy

By
=

dz

Bz
, (B.5a)

which may also be presented as

εijk drj Bk = 0. (B.5b)

Solutions of these relations define two surfaces, called “magnetic surfaces”, that are given by equa-

tions of the form

Sn(r) = constant (n = 1, 2). (B.6)
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It follows from (B.5) that these also satisfy

B ·∇Sn = 0 (n = 1, 2), (B.7)

that is, the normals to Sn are orthogonal to B, or B is parallel to the tangent of Sn. The intersection

of the two surfaces forms the so-called “magnetic lines”, that is, loci that solve the dynamical system

dr(τ)

dτ
= B

(

r(τ)
)

, (B.8)

where τ is an evolution parameter. Finally, the Gaussian potentials α and β are constructed as

functions of r only through a dependence on the magnetic surfaces,

α(r) = α
(

Sn(r)
)

,

β(r) = β
(

Sn(r)
)

, (B.9)

so that

∇α×∇β = (∇S1 ×∇S2)ε
mn ∂α

∂Sm

∂β

∂Sn
. (B.10)

Evidently as a consequence of (B.7), ∇α×∇β in (B.10) is parallel to B, and because B is divergence-

free α and β can be adjusted so that the norm of ∇α×∇β coincides with |B|. Once α and β have

been fixed in this way, θ can easily be computed from A− α∇β.

Neither the individual magnetic surfaces nor the Gauss potentials are unique. [By viewing

A as a canonical 1-form, it is clear that the expression (B.3) retains its form after a canonical

transformation of α, β.] One may therefore require that the Gaussian potentials α and β simply

coincide with the two magnetic surfaces: α = S1, β = S2. Nevertheless, for a given A and B it may

not be possible to solve (B.5) explicitly.

The Chern-Simons integrand A ·B becomes in the Clebsch parameterization

A ·B = ∇θ · (∇α×∇β) = ∇ · (θ B) = B ·∇θ. (B.11)

Thus having identified the Gauss potentials α and β with the two magnetic surfaces, we deduce

from (B.7) and (B.11) three equations for the three functions (θ, α, β) that comprise the Clebsch

parameterization.

B ·∇α = B ·∇β = 0

B ·∇θ = Chern-Simons density A ·B (B.12)

Eq. (B.11) also shows that in the Clebsch parameterization the Chern-Simons density becomes

a total derivative.

A ·B = ∇ · (θB) (B.13)
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This does not mean that the Clebsch parameterization is unavailable when the Chern-Simons inte-

gral over all space is nonzero. Rather for a nonvanishing integral and well-behaved B field, one must

conclude that the Clebsch function θ is singular either in the finite volume of the integration region

or on the surface at infinity bounding the integration domain. Then the Chern-Simons volume

integral over (Ω) becomes a surface integral on the surfaces (∂Ω) bounding the singularities.
∫

Ω

d3rA ·B =

∫

∂Ω

dS · (θB) (B.14)

Eq. (B.14) shows that the Chern-Simons integral measures the magnetic flux, modulated by θ and

passing through the surfaces that surround the singularities of θ.

The following explicit example illustrates the above points.

Consider the vector potential whose spherical components are given by

Ar = (cos Θ)a′(r),

AΘ = −(sin Θ)
1

r
sin a(r),

AΦ = −(sin Θ)
1

r

(

1− cos a(r)
)

. (B.15)

(r, and Θ, Φ denote the conventional radial coordinate and the polar, azimuthal angles.) The

function a(r) is taken to vanish at the origin, and to behave as 2πν at infinity (ν integer or half-

integer). The corresponding magnetic field reads

Br = −2(cos Θ)
1

r2

(

1− cos a(r)
)

,

BΘ = (sin Θ)
1

r
a′(r) sin a(r),

BΦ = (sin Θ)
1

r
a′(r)

(

1− cos a(r)
)

, (B.16)

and the Chern-Simons integral – also called the “magnetic helicity” in the electrodynamical context

– is quantized (in multiples of 16π2) by the behavior of a(r) at infinity.
∫

d3rA ·B = −8π

∫ ∞

0

dr
d

dr

(

a(r)− sin a(r)
)

= −16π2ν. (B.17)

In spite of the nonvanishing magnetic helicity, a Clebsch parameterization for (B.15) is readily

constructed. In form notation, it reads

A = d(−2Φ) +2
(

1−
(

sin2 a

2

)

sin2 Θ
)

d
(

Φ + tan−1
[

(

tan
a

2

)

cos Θ
])

. (B.18)

The magnetic surfaces can be taken from formula (B.18) to coincide with the Gauss potentials.

S1 = 2
(

1−
(

sin2 a

2

)

sin2 Θ
)

= constant

S2 = Φ + tan−1
[

(

tan
a

2

)

cos Θ
]

= constant (B.19)
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The magnetic lines are determined by the intersection of S1 and S2.

cos
a

2
= ε cos(Φ− φ0)

sin Θ =

√

1− ε2

1− ε2 cos2(Φ− φ0)
(B.20)

where ε and φ0 are constants. The potential θ = −2Φ is multivalued. Consequently the “surface”

integral determining the Chern-Simons term reads

∫

d3rA ·B =

∫

d3r∇ · (−2ΦB) = −4π

∫ ∞

0

r dr

∫ π

0

dΘBΦ

∣

∣

∣

Φ=2π
. (B.21)

That is, the magnetic helicity is the flux of the toroidal magnetic field through the positive-x (x, z)

half-plane.

Finally we remark on a subtle property of the Clebsch decomposition when used in variational

calculations [15]. Consider an “action” of the form

I = I0(B) +
µ

2

∫

Ω

d3rA ·B. (B.22)

Variation of A gives

δI =

∫

Ω

d3r(∇× B + µB) · δA, (B.23)

where B(r) ≡ δI0(B)
δB(r)

. Demanding that I be stationary against variations of A requires the vanishing

of the term in parentheses, which is transverse, since the transverse part of the variation δA is

arbitrary.

∇× B + µB = 0, (B.24)

Now let us examine the same problem in the Clebsch parameterization. The Chern-Simons contri-

bution to (B.22) reads, according to (B.11)

µ

2

∫

Ω

d3r∇ · (θB) =
µ

2

∫

∂Ω

d S · θB. (B.25)

In the gauge θ = 0 (B.25) vanishes, and in any gauge it has no bulk contribution, so its variation

will never produce the second left-hand term in (B.24). So how is (B.24) regained?

Returning to (B.22), we accept the fact that the variation of the last term vanishes, while the

variation of the first leaves

δI =

∫

Ω

d3r(∇× B) · (∇β δα−∇α δβ). (B.26)
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Since δα and δβ are arbitrary, I is stationary provided

(∇× B) ·∇β = 0, (B.27a)

(∇× B) ·∇α = 0. (B.27b)

We obtain two equations, which imply by (B.12),

∇× B + µ(r)B = 0. (B.28)

Transversality of ∇×B and B further requires that B ·∇µ(r) = 0, i.e., a non-vanishing ∇µ(r)

(= non-constant µ) must lie in the (∇α,∇β) plane.

Since (B.28) is weaker than the parameteriztion-independent (B.24), we conclude that the

Clebsch paramterization is somewhat incomplete, when used in variational calculations that ignore

surface terms. This is similar to the fact that in the Clebsch parameterization gauge potentials,

which carry a non-vanishing Chern-Simons term (= velocities with non-vanishing vortex helicity),

encode the non-vanishing value in a surface term.

In Section 7.4, we shall present a different method, based on group theory, for obtaining the

Clebsch parameterization. This approach is then generalized to non-Abelian vector fields.

1.3 Irrotational fluids

The simplification found for 1-dimensional fluids, (1.2.67), presenting the velocity as a derivative

of a velocity potential θ, can be extended to two-and three-dimensional fluids that are irrotational:

the vorticity vanishes.

ω = ∇× v = 0 (1.3.1)

v = ∇θ (1.3.2)

The Clebsch parameterization (1.2.45) holds trivially; the potentials α, β, the Casimirs C(d) van-

ish, and N obeys (1.2.50). This removes the obstruction to a canonical formalism. The Lagrangian

(1.2.47) becomes

L = −
∫

dr ρθ̇ −H|v=∇θ, (1.3.3)

and this can be derived by the Eckart procedure as in (1.2.52) - (1.2.58), where now only the

continuity equation is enforced by the Lagrange multiplier θ, and the Gaussian potentials α and β

are omitted.

The Euler equation (1.1.17), with the pressure P expressed in terms of the enthalpy V ′(ρ) as in

(1.2.14) may be integrated once to give the Bernoulli equation.

θ̇ +
1

2
(∇θ)2 = −V ′(ρ) (1.3.4)
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This also follows by bracketing θ with H in (1.3.3), since now there is only one non-vanishing and

canonical bracket.

{θ(r), ρ(r′)} = δ(r− r′) (1.3.5)

Observe that the Bernoulli equation (1.3.3) allows for the possibility of expressing ρ in terms of

θ̇+ 1
2
(∇θ)2, through the inverse to V ′. One can then eliminate ρ in the continuity equation, leaving

a single (non-linear) equation for θ.

1.4 Relativistic fluids

We discuss the formalism for describing relativistic fluids; only the Euler approach is treated. Usu-

ally the dynamics of a relativistic fluid is presented in terms of the energy-momentum tensor, θµν ,

and the equations of motion are just the conservation equations ∂µθ
µν = 0. This is analogous

to the nonrelativistic situation mentioned previously, where the nonrelativistic energy momentum

complex T µν encapsulates the equations of motion for a nonrelativistic fluid. [We denote the rela-

tivistic energy-momentum tensor by θµν , to distinguish it from the nonrelativistic T µν introduced

in (1.2.24)-(1.2.28). The limiting relation between the two is given below.] But we shall begin with

a Lagrange density.

Inspired by the suggestive formula (1.2.68), we consider

L = −jµaµ − f(
√

jµjµ). (1.4.1)

Here jµ is the current Lorentz vector jµ = (cρ, j) [16]. The aµ comprise a set of auxiliary variables;

in the relativistic analog of irrotational fluids we take aµ = ∂µθ, more generally

aµ = ∂µθ + α∂µβ, (1.4.2)

so that the Chern-Simons density of ai is a total derivative [compare (1.2.48), (1.2.49)]. The

function f depends on the Lorentz invariant jµjµ = c2ρ2 − j2 and encodes the specific dynamics

(equation of state).

The energy momentum tensor for L is

θµν = −gµνL+
jµjν√
jαjα

f ′(
√

jαjα). (1.4.3)

[One way to derive (1.4.3) from (1.4.1) is to embed that expression in an external metric tensor gµν ,

which is then varied; in the variation jµ and aµ are taken to be metric-independent and jµ = gµνj
ν .]

Furthermore, varying jµ in (1.4.1) shows that

aµ = − jµ√
jαjα

f ′(
√

jαjα), (1.4.4)

so that (1.4.3) becomes

θµν = −gµν [nf
′(n)− f(n)] + uµuνnf

′(n). (1.4.5)



32 R.Jackiw

We have introduced the proper velocity uµ by factoring jµ, as suggested by Eckart.

jµ = nuµ uµuµ = 1 (1.4.6)

One sees that n is proportional to the proper density and 1/n is proportional to the specific volume.

Eq. (1.4.5) identifies the proper energy density e and the pressure P (which coincides with L)

through the conventional formula [17]

θµν = −gµνP + uµuν(P + e). (1.4.7)

Therefore, in our case

e = f(n) (1.4.8)

P = nf ′(n)− f(n) . (1.4.9)

The thermodynamic relation involving entropy S reads

P d
(1

n

)

+ d
( e

n

)

∝ dS, (1.4.10)

where the proportionality constant is determined by the temperature. With (1.4.8) and (1.4.9) the

left side of (1.4.10) vanishes and we verify that entropy is constant, that is, we are dealing with an

isentropic system, as has been stated in the very beginning.

For the free system, the pressure vanishes, so we choose f(n) = cn.

L0 = −jµaµ − c
√

jµjµ (1.4.11)

Other forms for f give rise to relativistic fluid mechanics with other equations of state.

Taking the divergence or θµν in (1.4.5) leaves

∂µθµν = −nf ′′(n)∂νn+ nuµ∂µ(uνf
′(n)) + ∂µ(nuµ)uνf

′(n). (1.4.12)

The first two terms on the right are orthogonal to uν, the last one is parallel. So the vanishing of

the divergence of θµν implies the continuity equation.

0 = ∂µ(nuµ) = ∂µj
µ (1.4.13)

The vanishing of the remaining components is equivalent to

uµ(∂νuµ − ∂µuν)f
′(n) + (gνµ − uνuµ)∂

µnf ′′(n) = 0. (1.4.14)

This is the relativistic Euler equation.

The same two equations follow from the Lagrange density (1.4.1). Variation of θ and the Gauss

potentials α and β gives the current continuity equation (1.4.13) and equations satisfied by α and

β

uµ ∂µα = 0 = uµ ∂µβ (1.4.15)
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Variation of jµ gives (1.4.4), whose curl reads

(∂ν uµ − ∂µ uν)f
′(n) + (uµ ∂ν n− uν ∂µ n)f ′′(n) = ∂µ aν − ∂ν aµ = ∂µα∂νβ − ∂να∂µβ. (1.4.16)

Contracting this with uµ makes the right side vanish by virtue of (1.4.15) and the left side coincides

with (1.4.14).

It is especially intriguing to notice that θµν is symmetric but T µν is not. To make the connection

we recall that uµ = 1/
√

1− v2/c2(1,v/c), we observe that n =
√

ρ2c2 − j2, set j = vρ and conclude

that n = ρc
√

1− v2/c2 ∼ ρc − (ρv2/2c). Also f(n) is chosen to be cn + V (n/c), and thus P =

nf ′(n)− f(n) = (n/c)V ′(n/c)− V (n/c). It follows that

θoo =
nc− (v2n/c3)V ′

1− v2/c2
+ V ≈ ρc2 − ρv2/2

1− v2/c2
+ V (ρ)

≈ ρc2 +
ρv2

2
+ V (ρ) = ρc2 + T oo . (1.4.17)

Thus, apart from the relativistic “rest energy” ρc2, θoo passes to T oo. The relativistic energy flux is

cθjo (because ∂
∂xµ θ

µo = 1
c
θ̇oo + ∂jθ

jo).

cθjo =
vj

1− v2/c2

(

nc +
n

c
V ′
)

≈ vj ρc
2 − ρv2/2 + ρV ′(ρ)

1− v2/c2

≈ jjc2 + ρvj
(

v2/2 + V ′(ρ)
)

= jjc+ T jo (1.4.18)

Again, apart from the O(c2) current, associated with the O(c2) rest energy in θoo, T jo is obtained

in the limit. The momentum density is θoi/c (because θµν has dimension of energy density).

θoi/c =
vi/c2

1− v2/c2

(

nc+
n

c
V ′
)

≈ ρvi = P i (1.4.19)

Finally, the momentum flux is obtained directly from θij .

θij = δij
(n

c
V ′ − V

)

+
vivj

c2 − v2

(

nc+
n

c
V ′
)

≈ δij
(

ρV ′(ρ)− V (ρ)
)

+ vivjρ = T ij (1.4.20)
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2 SPECIFIC MODELS (d 6= 1)

We now examine irrotational models, both relativistic and nonrelativistic, for which we shall specify

an explicit force law and discuss further properties.

2.1 Two models, mostly in spatial dimensions d 6= 1.

(i) Galileo-invariant nonrelativistic model: Chaplygin gas

Recall that the nonrelativistic Lagrangian for irrotational motion reads

LGalileo =

∫

dr
(

θρ̇− ρ(∇θ)2

2
− V (ρ)

)

, (2.1.1)

where ∇θ = v. The Hamiltonian density H is composed of the last two terms beyond the canonical

1-form
∫

dr θρ̇

H =

∫

dr
(

ρ
(∇θ)2

2
+ V (ρ)

)

=

∫

drH. (2.1.2)

Varying (2.1.1) with respect to ρ produces the Bernoulli equation (1.3.4 ). Various expressions for

V appear in the literature. V (ρ) ∝ ρn is a popular choice, appropriate for the adiabatic equation

of state. We shall be specifically interested in the Chaplygin gas [5].

V (ρ) = λ/ρ, λ > 0 (2.1.3)

According to what we said before, the Chaplygin gas has enthalpy V ′ = −λ/ρ2, negative pressure

P = −2λ/ρ, and speed of sound s =
√

2λ/ρ (hence λ > 0).

Chaplygin introduced his equation of state as a mathematical approximation to the physically

relevant adiabatic expressions with n > 0. (Constants are arranged so that the Chaplygin formula

is tangent at one point to the adiabatic profile.) Also it was realized that certain deformable solids

can be described by the Chaplygin equation of state. These days negative pressure is recognized as

a possible physical effect: exchange forces in atoms give rise to negative pressure; stripe states in the

quantum Hall effect may be a consequence of negative pressure; the recently discovered cosmological

constant may be exerting negative pressure on the cosmos, thereby accelerating expansion.

For any form of V , the model possesses the Galileo symmetry, discussed previously as appropriate

to nonrelativistic dynamics. There are a total of 1
2
(d+ 1)(d+ 2) Galileo generators in d space plus

one time dimensions. Together with the central term, N , we have a total of 1
2
(d + 1)(d + 2) + 1

generators.

A useful consequence of symmetry transformations is that they map solutions of the equations

of motion into new solutions. Of course, “new” solutions produced by Galileo transformations are

trivially related to the old ones: they are simply shifted, boosted or rotated.
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But we shall now turn to the specific Chaplygin gas model, with V (ρ) = λ/ρ, which possesses

additional and unexpected symmetries.

The Chaplygin gas action and consequent Bernoulli equation for the Chaplygin gas in (d, 1)

space-time read

IChaplygin
λ =

∫

dt

∫

dr
(

θρ̇− ρ(∇θ)2

2
− λ

ρ

)

(2.1.4)

θ̇ +
(∇θ)2

2
=

λ

ρ2
(2.1.5)

This model possesses further space-time symmetries beyond those of the Galileo group [18]. First,

there is a one-parameter (ω, dimensionless) time rescaling transformation

t→ T = eωt, (2.1.6)

under which the fields transform as

θ(t, r)→ θω(t, r) = eωθ(T, r), (2.1.7)

ρ(t, r)→ ρω(t, r) = e−ωρ(T, r). (2.1.8)

Second, in d spatial dimensions, there is a vectorial, d-parameter (ω, dimension inverse velocity)

space-time mixing transformation.

t→ T (t, r) = t+ ω · r + 1
2
ω2θ(T,R) (2.1.9)

r→ R(t, r) = r + ω θ(T,R) (2.1.10)

Note that the transformation law for the coordinates involves the θ field itself. Under this transfor-

mation, the fields transform according to

θ(t, r)→ θω(t, r) = θ(T,R), (2.1.11)

ρ(t, r)→ ρω(t, r) = ρ(T,R)
1

|J | , (2.1.12)

with J the Jacobian of the transformation linking (T,R)→ (t, r).

J = det









∂T

∂t

∂T

∂rj

∂Ri

∂t

∂Ri

∂rj









=
(

1− ω ·∇θ(T,R)− ω2

2
θ̇(T,R)

)−1

(2.1.13)

(The time and space derivatives in the last element are with respect to t and r.) One can tell the

complete story for these transformations: The action (2.1.4) is invariant; Noether’s theorem gives

the conserved quantities, which for the time rescaling is

S = tH −
∫

dr ρθ (time rescaling), (2.1.14)
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while for the space-time mixing one finds

G =

∫

dr (rH− θP) (space-time mixing). (2.1.15)

The time independence of S and G can be verified with the help of the equations of motion

(continuity and Bernoulli) [19]. Poisson bracketing the fields θ and ρ with S and G generates the

appropriate infinitesimal transformation on the fields. Note that unlike the Galileo constants of

motion, the new constants of motion cannot be locally expressed in terms of v: their integrands

depends locally on θ = ∇
∇2 · v.

So now the total number of generators is the sum of the previous 1
2
(d+ 1)(d+ 2) + 1 with 1 + d

additional ones.
1
2
(d+ 1)(d+ 2) + 1 + 1 + d = 1

2
(d+ 2)(d+ 3) (2.1.16)

When one computes the Poisson brackets of all these with each other one finds the Poincaré Lie

algebra in one higher spatial dimension, that is, in (d + 1, 1)-dimensional space-time, where the

Poincaré group possesses 1
2
(d+ 2)(d+ 3) generators. Moreover, one verifies that (t, θ, r) transform

linearly as a (d+ 2) Lorentz vector in light-cone components, with t being the “+” component and

θ the “−” component. [20]

Presently, we shall use these additional symmetries to generate new solutions from old ones,

but, in contrast to the Galileo transformations, the new solutions will be nontrivially linked to the

former ones. Note that the additional symmetry holds even in the free theory.

Before proceeding, let us observe that ρ may be eliminated by using the Bernoulli equation to

express it in terms of θ. In this way, one is led to the following ρ-independent action for θ in the

Chaplygin gas problem:

IChaplygin
λ = −2

√
λ

∫

dt

∫

dr

√

θ̇ +
(∇θ)2

2
. (2.1.17)

Although this operation is possible only in the interacting case, the interaction strength disappears

from the equations of motion.

∂

∂t

1
√

θ̇ + (∇θ)2

2

+ ∇ · ∇θ
√

θ̇ + (∇θ)2

2

= 0 (2.1.18)

λ merely serves as an overall factor in the action.

The action (2.1.17) looks unfamiliar; yet it is Galileo invariant. [The combination θ̇ + 1
2
(∇θ)2

responds to Galileo transformations without a 1-cocycle; see (1.2.71).] Also (2.1.17) possesses the

additional symmetries described above, with θ transforming according to the previously recorded

equations.

Let us discuss some solutions. For example, the free theory is solved by

θ(t, r) =
r2

2t
(2.1.19)
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which corresponds to the velocity

v(t, r) =
r

t
. (2.1.20)

Galileo transformations generalize this in an obvious manner into a set of displaced, rotated and

boosted solutions. Performing on the above formula for θ the new transformations of time-rescaling

and space-time mixing (2.1.6), (2.1.7), (2.1.9)-(2.1.11), we find that the solution is invariant.

We can find a solution similar to (2.1.19) in the interacting case, for d > 1, which we henceforth

assume. (The d = 1 case will be separately discussed in Section 3.) One verifies that a solution is

θ(t, r) = − r2

2(d− 1)t
ρ(t, r) =

√

2λ

d
(d− 1)

|t|
r

=

√

2λ

d

1

v
(2.1.21)

v(t, r) = − r

(d− 1)t
j(t, r) = −ǫ(t)

√

2λ

d
r̂. (2.1.22)

Note that the speed of sound, s =
√

2λ/ρ =
√
dv, exceeds v. Again this solution can be translated,

rotated, and boosted. Moreover, the solution is time-rescaling–invariant. However, the space-time

mixing transformation (2.1.9)-(2.1.13) produces a wholly different solution. This is best shown

graphically, where the d = 2 case is exhibited (see Figure) [21].

Another interesting solution, which is essentially one-dimensional (lineal), even though it exists

in arbitrary spatial dimension, is given by

θ(t, r) = Θ(n̂ · r) + u · r− 1
2
t
(

u2 − (n̂ · u)2
)

.

v(t, r) = u + n̂Θ′(n̂ · r) (2.1.23)

Here n̂ is a spatial unit vector, u is an arbitrary vector with dimension of velocity, while Θ is an

arbitrary function with static argument. The corresponding charge density is time-independent.

ρ(t, r) =

√
2λ

|n̂ · u + Θ′(n̂ · r)| =
2λ

|n̂ · v| (2.1.24)

The current is static and divergenceless.

j(t, r) =
√

2λ
( v

|n̂ · v|
)

(2.1.25)

The sound speed s =
√

2λ/ρ = |n̂ · v| is smaller than v.

Finally, we record a planar static solution to (2.1.18), which depends on two orthogonal unit

vectors n̂1, and n̂2 [22].

θ(t, r) = Θ(n̂1 · r/n̂2 · r).

v(t, r) =
(n̂1(n̂2r)− n̂2(n̂1 · r))

(n̂2r)2
Θ′(n̂1 · r/n̂2 · r) (2.1.26)
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This gives the density

ρ =

√
2λ

v
(2.1.27)

Now the sound speed coincides with v.

(ii) Lorentz-invariant relativistic model: Born-Infeld model

We now turn to a Lorentz-invariant generalization of our Galileo-invariant Chaplygin model in

(d, 1)-dimensional space-time. We already know from (1.2.73)–(1.2.78) how to construct the free

Lagrangian with a relativistic kinetic energy.

T (v) = −c2
√

1− v2/c2 (2.1.28)

Mass has been scaled to unity, and we retain the velocity of light c to keep track of the nonrelativistic

c→∞ limit. Evidently, the momentum is

p =
∂T (v)

∂v
=

v
√

1− v2/c2
. (2.1.29)

Thus the free relativistic Lagrangian, with current conservation enforced by the Lagrange multi-

plier θ, reads [compare (1.2.72), with Gaussian potentials, α and β omitted]

L̄Lorentz
0 =

∫

dr
(

−c2ρ
√

1− v2/c2 + θ
(

ρ̇+ ∇ · (vρ)
)

)

. (2.1.30)

This may be presented in a Lorentz-covariant form in terms of a current four-vector jµ = (cρ,vρ).

L̄Lorentz
0 of equation (2.1.30) is thus equivalent to [compare (1.4.11)]

L̄Lorentz
0 =

∫

dr
(

−jµ∂µθ − c
√

jµjµ

)

. (2.1.31)

Eliminating v in (2.1.30), we find that p is irrotational,

p =
∂T

∂v
=

v√
1− v2/c2

= ∇θ, v =
∇θ

√

1 + (∇θ)2/c2
, (2.1.32)

and the free Lorentz-invariant Lagrangian reads

LLorentz
0 =

∫

dr
(

θρ̇− ρc2
√

1 + (∇θ)2/c2
)

. (2.1.33)

To find LGalileo
0 [(2.1.1) with V = 0] as the nonrelativistic limit of LLorentz

0 in (2.1.33), a nonrel-

ativistic θ variable must be extracted from its relativistic counterpart. Calling the former θNR and

the latter, which occurs in (2.1.33), θR, we define

θR ≡ −c2t+ θNR. (2.1.34)



40 R.Jackiw

It then follows that apart from a total time derivative

LLorentz
0 −−−−→

c→∞
LGalileo

0 . (2.1.35)

Next, one wants to include interactions. While there are many ways to build Lorentz-invariant

interactions, we seek an expression that reduces to the Chaplygin gas in the nonrelativistic limit.

Thus, we choose

LBorn-Infeld
a =

∫

dr
(

θρ̇−
√

ρ2c2 + a2
√

c2 + (∇θ)2
)

, (2.1.36)

where a is the interaction strength [23]. (The reason for the nomenclature will emerge presently.)

We see from (2.1.4) that, as c→∞,

LBorn-Infeld
a −−−−→

c→∞
LChaplygin

λ=a2/2 . (2.1.37)

[Again θNR is extracted from θR as in (2.1.34) and a total time derivative is ignored.]

Although it perhaps is not obvious, (2.1.36) defines a Poincaré-invariant theory, and this will

be explicitly demonstrated below. Therefore, LBorn-Infeld
a possesses Poincaré symmetries in (d, 1)

space-time, with a total of 1
2
(d+ 1)(d+ 2) + 1 generators, where the last “ + 1” refers to the total

number N =
∫

dr ρ.

When a = 0, the model is free and elementary. It was demonstrated previously [eqs. (1.2.73)–

(1.2.81)] that the free equations of motion are precisely the same as in the nonrelativistic free

model, so the complete solution (1.2.84)–(1.2.86) works here as well. For a 6= 0, in the presence of

interactions, one can eliminate ρ as before, and one is left with a Lagrangian just for the θ field. It

reads

LBorn-Infeld
a = −a

∫

dr
√

c2 − (∂µθ)2. (2.1.38)

This is a Born-Infeld-type theory for a scalar field θ; its Poincaré invariance is manifest, and

again, the elimination of ρ is only possible with nonvanishing a, which however disappears from the

dynamics, serving merely to normalize the Lagrangian.

Although manifestly Lorentz covariant, the Lagrangian (2.1.38) is not of the form (1.4.1). To

achieve that expression, we choose f(n) = c
√
a2 + n2, so that the pressure P becomes

P = − a2c√
a2 + n2

. (2.1.39)

This leads to the Chaplygin pressure as c → ∞ with λ = a2/2. Now the Lagrange density L = P

coincides with (1.4.1 ) when jµ is written as

jµ =
a∂µθ

√

c2 − (∂µθ)2
,

n = a

√

(∂µθ)2

c2 − (∂µθ)2
. (2.1.40)
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The equations of motion that follow from (2.1.36) read

ρ̇+ ∇ ·
(

∇θ

√

ρ2c2 + a2

c2 + (∇θ)2

)

= 0, (2.1.41)

θ̇ + ρc2

√

c2 + (∇θ)2

ρ2c2 + a2
= 0 . (2.1.42)

The density ρ can be evaluated in terms of θ from (2.1.42); then (2.1.41) becomes

∂α
( 1
√

c2 − (∂µθ)2
∂αθ
)

= 0, (2.1.43)

which also follows from (2.1.38). After θNR is extracted from θR as in (2.1.34), we see that in the

nonrelativistic limit LBorn-Infeld
a (2.1.36) or (2.1.38) becomes LChaplygin

λ of (2.1.4) or (2.1.17),

LBorn-Infeld
a −−−−→

c→∞
LChaplygin

λ=a2/2 , (2.1.44)

and the equations of motion (2.1.41)–(2.1.43) reduce to (2.1.5) and (2.1.18).

In view of all the similarities to the nonrelativistic Chaplygin gas, it comes as no surprise that

the relativistic Born-Infeld theory possesses additional symmetries. These additional symmetry

transformations, which leave (2.1.36) or (2.1.38) invariant, involve a one-parameter (ω, dimesionless)

reparameterization of time, and a d-parameter (ω, dimension velocity) vectorial reparameterization

of space. Both transformations are field dependent [24].

The time transformation is given by an implicit formula involving also the field θ,

t→ T (t, r) =
t

coshω
− θ(T, r)

c2
tanhω, (2.1.45)

while the field transforms according to

θ(t, r)→ θω(t, r) =
θ(T, r)

coshω
+ c2t tanhω . (2.1.46)

[We record here only the transformation on θ; how ρ transforms can be determined from the

(relativistic) Bernoulli equation, (2.1.42), which expresses ρ in terms of θ. Moreover, (2.1.46)

is sufficient for discussing the invariance of (2.1.38).] The infinitesimal generator, which is time

independent by virtue of the equations of motion, is [25]

S =

∫

dr
(

c4tρ+ θ
√

ρ2c2 + a2
√

c2 + (∇θ)2
)

,

=

∫

dr(c4tρ+ θH) (time reparameterization). (2.1.47)
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A second class of transformations involving a reparameterization of the spatial variables is

implicitly defined by

r→ R(t, r) = r +
ω

c2
θ(t,R) + ω̂(ω̂ · r)

(
√

1 +
ω2

c2
− 1

)

, (2.1.48)

θ(t, r)→ θω(t, r) =

√

1 +
ω2

c2
θ(t,R) + ω · r. (2.1.49)

The time-independent generator of the infinitesimal transformation reads [25]

G =

∫

dr(c2rρ+ θρ∇θ),

=

∫

dr(c2rρ+ θP) (space reparameterization). (2.1.50)

Of course the Born-Infeld action (2.1.36) or (2.1.38) is invariant against these transformations,

whose infinitesimal form is generated by the constants.

With the addition of S and G to the previous generators, the Poincaré algebra in (d + 1, 1)

dimension is reconstructed, and (t, r, θ) transforms linearly as a (d+ 2)-dimensional Lorentz vector

(in Cartesian components). Note that this symmetry also holds in the free, a = 0, theory.

It is easy to exhibit solutions of the relativistic equation (2.1.43), which reduce to solutions of

the nonrelativistic, Chaplygin gas equation (2.1.18) [after −c2t has been removed, as in (2.1.34)].

For example

θ(t, r) = −c
√

c2t2 +
r2

d− 1
(2.1.51)

solves (2.1.43) and reduces to (2.1.21). The relativistic analog of the lineal solution (2.1.23) is

θ(t, r) = Θ(n̂ · r) + u · r− ct
√

c2 + u2 − (n̂ · u)2. (2.1.52)

[Note that the above profiles continue to solve (2.1.43) even when the sign of the square root is

reversed, but then they no longer possess a nonrelativistic limit.]

Additionally there exists an essentially relativistic solution, describing massless propagation in

one direction: according to (2.1.43), θ can satisfy the wave equation ⊓⊔θ = 0, provided (∂µθ)
2 = con-

stant, as for example with plane waves,

θ(t, r) = f(n̂ · r± ct), (2.1.53)

where (∂µθ)
2 vanishes. Then ρ reads, from (2.1.42),

ρ = ∓ a
c2
f ′ . (2.1.54)
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2.2 Common ancestry: the Nambu-Goto action

The “hidden” symmetries and the associated transformation laws for the Chaplygin and Born-Infeld

models may be given a coherent setting by considering the Nambu-Goto action for a p-brane in

(p+ 1) spatial dimensions, moving on (p+ 1, 1)-dimensional space-time. In our context, a p-brane

is simply a p-dimensional extended object: a 1-brane is a string, a 2-brane is a membrane and so

on. A p-brane in (p+ 1) space divides that space in two.

The Nambu-Goto action reads

ING =

∫

dφ0 dφLNG =

∫

dφ0 dφ1 · · ·dφp
√
G, (2.2.1)

G = (−1)p det
∂Xµ

∂φα

∂Xµ

∂φβ
. (2.2.2)

Here Xµ is a (p + 1, 1) “target space-time” (p-brane) variable, with µ extending over the range

µ = 0, 1, . . . , p, p + 1. The φα are “world-volume” variables describing the extended object with α

ranging α = 0, 1, . . . , p; φr, r = 1, . . . , p, parameterizes the p-dimensional p-brane that evolves in

φ0.

The Nambu-Goto action is parameterization invariant, and we shall show that two different

choices of parameterization (“light-cone” and “Cartesian”) lead to the Chaplygin gas and Born-

Infeld actions, respectively. For both parameterizations we choose (X1, . . . , Xp) to coincide with

(φ1, . . . , φp), renaming them as r (a p-dimensional vector). This is usually called the “static param-

eterization”. (The ability to carry out this parameterization globally presupposes that the extended

object is topologically trivial; in the contrary situation, singularities will appear, which are spuri-

ous in the sense that they disappear in different parameterizations, and parameterization-invariant

quantities are singularity-free.)

(i) Light-cone parameterization

For the light-cone parameterization we define X± as 1√
2
(X0 ± Xp+1). X+ is renamed t and

identified with
√

2λφ0. This completes the fixing of the parameterization and the remaining variable

is X−, which is a function of φ0 and φ, or after redefinitions, of t and r. X− is renamed as θ(t, r)

and then the Nambu-Goto action in this parameterization coincides with the Chaplygin gas action

IChaplygin
λ in (2.1.17) [26].

(ii) Cartesian parameterization

For the second, Cartesian parameterization X0 is renamed ct and identified with cφ0. The re-

maining target space variable Xp+1, a function of φ0 and φ, equivalently of t and r, is renamed

θ(t, r)/c. Then the Nambu-Goto action reduces to the Born-Infeld action
∫

dt LBorn-Infeld
a , (2.1.38)

[26].
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(iii) Hodographic transformation

There is another derivation of the Chaplygin gas from the Nambu-Goto action that makes use

of a hodographic transformation, in which independent and dependent variables are interchanged.

Although the derivation is more involved than the light-cone/static parameterization used in Section

2.2(i) above, the hodographic approach is instructive in that it gives a natural definition for the

density ρ, which in the above static parameterization approach is determined from θ by the Bernoulli

equation (2.1.5).

We again use light-cone combinations: 1√
2
(X0 +Xp+1) is called τ and is identified with φ0, while

1√
2
(X0 − Xp+1) is renamed θ. At this stage the dependent, target-space variables are θ and the

transverse coordinates X : X i, (i = 1, . . . , p), and all are functions of the world-volume parameters

φ0 = τ and φ : φr, (r = 1, . . . , p); ∂τ indicates differentiation with respect to τ = φ0, while ∂r

denotes derivatives with respect to φr. The induced metric Gαβ = ∂Xµ

∂φα

∂Xµ

∂φβ takes the form

Gαβ =

(

Goo Gos

Gro −grs

)

=

(

2∂τθ − (∂τX)2 ∂sθ − ∂τX · ∂sX

∂rθ − ∂rX · ∂τX −∂rX · ∂sX

)

. (2.2.3)

The Nambu-Goto Lagrangian now leads to the canonical momenta

∂LNG

∂∂τX
= p, (2.2.4)

∂LNG

∂∂τ θ
= Π, (2.2.5)

and can be presented in first-order form as

LNG = p · ∂τX + Π∂τθ +
1

2Π
(p2 + g) + ur(p · ∂rX + Π∂rθ), (2.2.6)

where g = det grs and

ur ≡ ∂τX · ∂rX− ∂rθ (2.2.7)

acts as a Lagrange multiplier. Evidently the equations of motion are

∂τX = − 1

Π
p− ur∂rX, (2.2.8a)

∂τθ =
1

2Π2
(p2 + g)− ur∂rθ, (2.2.8b)

∂τp = −∂r

( 1

Π
ggrs∂sX

)

− ∂r(u
rp), (2.2.8c)

∂τΠ = −∂r(u
rΠ). (2.2.8d)

Also there is the constraint

p · ∂rX + Π∂rθ = 0. (2.2.9)
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[That ur is still given by (2.2.7) is a consequence of (2.2.8a) and (2.2.9).] Here grs is inverse to grs, and

the two metrics are used to move the (r, s) indices. The theory still possesses an invariance against

redefining the spatial parameters with a τ -dependent function of the parameters; infinitesimally:

δφr = −f r(τ,φ), δθ = f r∂rθ, δX
i = f r∂rX

i. This freedom may be used to set ur to zero and Π

to −1.

Next the hodographic transformation is performed: Rather than viewing the dependent variables

p, θ, and X as functions of τ and φ, X(τ,φ) is inverted so that φ becomes a function of τ and X

(renamed t and r, respectively), and p and θ also become functions of t and r. It then follows from

the chain rule that the constraint (2.2.9) (at Π = −1) becomes

0 =
∂X i

∂φr

(

pi − ∂

∂X i
θ
)

, (2.2.10)

and is solved by

p = ∇θ . (2.2.11)

Moreover, according to the chain rule and the implicit function theorem, the partial derivative with

respect to τ at fixed φ [this derivative is present in (2.2.6)] is related to the partial derivative with

respect to τ at fixed X = r by

∂τ = ∂t + ∇θ ·∇, (2.2.12)

where we have used the new name “t” on the right. Thus the Nambu-Goto Lagrangian – the φ

integral of the Lagrange density (2.2.6) (at ur = 0, Π = −1) – reads

LNG =

∫

dφ
(

p ·∇θ − θ̇ −∇θ ·∇θ − 1
2
(p2 + g)

)

. (2.2.13a)

But use of (2.2.11) and of the Jacobian relation dφ = dr det ∂φs

∂Xi = dr√
g

shows that

LNG =

∫

dr
(

− 1√
g
θ̇ − 1

2
√
g
(∇θ)2 − 1

2

√
g
)

. (2.2.13b)

With the definition
√
g =
√

2λ/ρ, (2.2.13c)

LNG becomes, apart from a total time derivative

LNG = 1√
2λ

∫

dr
(

θρ̇− ρ(∇θ)2

2
− λ

ρ

)

. (2.2.13d)

Up to an overall factor, this is just the Chaplygin gas Lagrangian in (2.1.4).

The present derivation has the advantage of relating the density ρ to the Jacobian of the X→ φ

transformation: ρ =
√

2λdet ∂φs

∂Xi . (This in turn shows that the hodographic transformation is just

exactly the passage from Lagrangian to Eulerian fluid variables.)
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2.3 Interrelations

The relation to the Nambu-Goto action explains the origin of the hidden (p+1, 1) Poincaré group in

our two nonlinear models on (p, 1) space-time: the (p+ 1, 1)Poincaré invariance is what remains of

the reparameterization invariance of the Nambu-Goto action after choosing either the light-cone or

Cartesian parameterizations. (In this context, recall that the light-cone subgroup of the Poincaŕe

group is isomorphic to the Galileo group in one lower dimension [27]) Also the nonlinear, field

dependent form of the transformation laws leading to the additional symmetries is understood: it

arises from the identification of some of the dependent variables (Xµ) with the independent variables

(φα).

The complete integrability of the d = 1 Chaplygin gas and Born-Infeld model is a consequence

of the fact that both descend from a string in 2-space; the associated Nambu-Goto theory being

completely integrable. We shall discuss this in Section 3.

We observe that in addition to the nonrelativistic descent from the Born-Infeld theory to the

Chaplygin gas, there exists a mapping of one system on another, and between solutions of one

system and the other, because both have the same p-brane ancestor. The mapping is achieved by

passing from the light-cone parameterization to the Cartesian, or vice-versa. Specifically this is

accomplished as follows.

(i) Chaplygin gas → Born-Infeld:

Given θNR(t, r), a nonrelativistic solution, determine T (t, r) from the equation

T +
1

c2
θNR(T, r) =

√
2 t. (2.3.1)

Then the relativistic solution is

θR(t, r) =
1√
2
c2T − 1√

2
θNR(T, r) = c2(

√
2T − t). (2.3.2)

(ii) Born-Infeld → Chaplygin gas:

Given θR(t, r), a relativistic solution, find T (t, r) from

T +
1

c2
θR(T, r) =

√
2 t. (2.3.3)

Then the nonrelativistic solution is

θNR(t, r) =
1√
2
c2T − 1√

2
θR(T, r) = c2(

√
2T − t). (2.3.4)

The relation between the different models is depicted in the Figure below.



Perfect Fluid Theory and its Extensions 47

p

p p

p

Dualities and other relations between nonlinear equations.

A final comment: Recall that the elimination of ρ, both in the nonrelativistic (Chaplygin)

and relativistic (Born-Infeld) models is possible only in the presence of interactions. Nevertheless,

the θ-dependent (ρ-independent) resultant Lagrangians contain the interaction strengths only as

overall factors; see (2.1.17) and (2.1.38). It is these θ-valued Lagrangians that correspond to the

Nambu-Goto action in various parameterizations. Let us further recall the the Nambu-Goto action

also carries an overall multiplicative factor: the p-brane “tension”, which has been suppressed

in (2.2.1). Correspondingly, for a “tensionless” p-brane, the Nambu-Goto expression vanishes,

and cannot generate dynamics. This suggests that an action for “tensionless” p-branes could be

the noninteracting fluid mechanical expressions (2.1.4), (2.1.36), with vanishing coupling strengths

λ and a, respectively. Furthermore, we recall that the noninteracting models retain the higher,

dynamical symmetries, appropriate to a p-brane in one higher dimension.
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3 SPECIFIC MODELS (d = 1)

In this Section, we shall discuss nonrelativistic/relativistic models in one spatial dimension. Com-

plete integrability has been established for both the Chaplygin gas [28] and the Born-Infeld theory

[29]. We can now understand this to be a consequence of the complete integrability of the Nambu-

Goto 1-brane (string) moving on 2-space (plane), which is the antecedent of both models. [Therefore,

it suffices to discuss only the Chaplygin gas, since solutions of the Born-Infeld model can then be

obtained by the mapping (2.3.1)–(2.3.2).]

As remarked previously, in one dimension there is no vorticity, and the nonrelativistic velocity v

can be presented as a derivative with respect to the single spatial variable of a potential θ. Simi-

larly, the relativistic momentum p = v/
√

1− v2/c2 is a derivative of a potential θ. In both cases

the potential is canonically conjugate to the density ρ governed by the canonical 1-form
∫

dx θρ̇.

Moreover, it is evident that at the expense of a spatial nonlocality, one may replace θ by its an-

tiderivative, which is p both nonrelativistically and relativistically (nonrelativistically p = v), so

that in both cases the Lagrangian reads

L = −1
2

∫

dx dy ρ(x)ε(x− y)ṗ(y)−H . (3.0.1)

For the Chaplygin gas and the Born-Infeld models, H is given respectively by

HChaplygin =

∫

dx
(

1
2
ρp2 +

λ

ρ

)

(3.0.2)

HBorn-Infeld =

∫

dx
(
√

ρ2c2 + a2
√

c2 + p2
)

. (3.0.3)

The equations of motion are, respectively

Chaplygin gas: ρ̇+
∂

∂x
(pρ) = 0, (3.0.4)

ṗ +
∂

∂x

(p2

2
− λ

ρ2

)

= 0, (3.0.5)

or
∂

∂t

1
√

θ̇ + p2

2

+
∂

∂x

p
√

θ̇ + p2

2

= 0. (3.0.6)

Born-Infeld model: ρ̇+
∂

∂x

(

p

√

ρ2c2 + a2

c2 + p2

)

= 0, (3.0.7)

ṗ+
∂

∂x

(

ρc2

√

c2 + p2

ρ2c2 + a2

)

= 0, (3.0.8)

or
∂

c2∂t

(

θ̇
√

c2 − 1
c2
θ̇2 + p2

)

− ∂

∂x

(

p
√

c2 − 1
c2
θ̇2 + p2

)

= 0. (3.0.9)
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In the above, eqs. (3.0.6) and (3.0.9) result by determining ρ in terms of θ (p = θ′; dash indicates

differentation with respect to spatial argument) from (3.0.5) and (3.0.8), and using that expression

for ρ in (3.0.4) and (3.0.7).

3.1 Chaplygin gas on a line

(i) Specific solutions

Classes of solutions for a Chaplygin gas in one dimension can be given in closed form. For

example, to obtain general, time-rescaling–invariant solutions, we make the Ansatz that θ ∝ 1/t.

Then (2.1.18) or (3.0.6) leads to a second-order nonlinear differential equation for the x-dependence

of θ. Therefore solutions involve two arbitrary constants, one of which fixes the origin of x (we

suppress it); the other we call k, and take it to be real. The solutions then read

θ(t, x) = − 1

2k2t
cosh2 kx . (3.1.1)

[Other solutions can be obtained by relaxing the reality condition on k and/or shifting the argument

kx by a complex number. In this way one finds that θ can also be 1
2k2t

sinh2 kx, 1
2k2t

sin2 kx,
1

2k2t
cos2 kx; but these lead to singular or unphysical forms for ρ.] The density corresponding to

(3.1.1) is found from (2.1.5) or (3.0.5) to be

ρ(t, x) =
√

2λ
k |t|

cosh2 kx
. (3.1.2)

The velocity/momentum v = p = θ′ is

v(t, x) = p(t, x) = − 1

kt
sinh kx cosh kx, (3.1.3)

while the sound speed

s(t, x) =
cosh2 kx

k |t| , (3.1.4)

is always larger than |v|. Finally, the current j = ρ ∂θ
∂x

exhibits a kink profile,

j(t, x) = −ε(t)
√

2λ tanh kx, (3.1.5)

which is suggestive of complete integrability.

Another particular solution is the Galileo boost of the static profiles (2.1.24), (2.1.25):

p(t, x) = p(x− ut), (3.1.6)

ρ(t, x) =

√
2λ

|p− u| . (3.1.7)
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Here u is the boosting velocity and p(x − ut) is an arbitrary function of its argument (provided

p 6= u). Clearly this is a constant profile solution, in linear motion with velocity u [30].

Further evidence for complete integrability is found by identifying an infinite number of constants

of motion. One verifies that the following quantities

I±n =

∫

dx ρ
(

p±
√

2λ

ρ

)n

, n = 0,±1, . . . (3.1.8)

are conserved.

The combinations p ±
√

2λ
ρ

are just the velocity (±) the sound speed, and they are known as

Riemann coordinates.

R± = p±
√

2λ

ρ
(3.1.9)

The equations of motion for this system [continuity (3.0.4) and Euler (3.0.5)] can be succinctly

presented in terms of R±:

Ṙ± = −R∓R
′
± . (3.1.10)

(ii) General solution for the Chaplygin gas on a line

The general solution to the Chaplygin gas can be found by linearizing the governing equations

(continuity and Euler) with the help of a Legendre transform, which also effects a hodographic

transformation that exchanges the independent variables (t, x) with the dependent ones (ρ, θ);

actually instead of ρ we use the sound speed s =
√

2λ/ρ and instead of θ we use the momentum

p = θ′.

Define

ψ(p, s) = θ(t, x)− tθ̇(t, x)− xθ′(t, x) . (3.1.11)

From the Bernoulli equation we know that

θ̇ = −1
2
p2 + 1

2
s2 . (3.1.12)

Thus

ψ(p, s) = θ(t, x) +
t

2
(p2 − s2)− xp, (3.1.13)

and the usual Legendre transform rules govern the derivatives.

∂ψ

∂p
= tp− x (3.1.14a)

∂ψ

∂s
= −ts (3.1.14b)
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It remains to incorporate the continuity equation (3.0.4) whose content must be recast by the

hodographic transformation. This is achieved by rewriting equation (3.0.4) in terms of s =
√

2λ/ρ

∂s

∂t
+ p

∂s

∂x
− s∂p

∂x
= 0 (3.1.15)

Next (3.1.15) is presented as a relation between Jacobians

∂(s, x)

∂(t, x)
+ p

∂(t, s)

∂(t, x)
− s∂(t, p)

∂(t, x)
= 0, (3.1.16a)

which is true because here ∂x/∂t = ∂t/∂x = 0. Eq. (3.1.16a) implies, after multiplication by

∂(t, x)/∂(s, p)

0 =
∂(s, x)

∂(s, p)
+ p

∂(t, s)

∂(s, p)
− s ∂(t, p)

∂(s, p)

=
∂x

∂p
− p ∂t

∂p
− s ∂t

∂s
. (3.1.16b)

The second equality holds because now we take ∂s/∂p = ∂p/∂s = 0. Finally, from (3.1.13), (3.1.14)

it follows that (3.1.16b) is equivalent to

∂2ψ

∂p2
− ∂2ψ

∂s2
+

2

s

∂ψ

∂s
= 0 . (3.1.16c)

This linear equation is solved by two arbitrary functions of p ± s (p ± s being just the Riemann

coordinates)

ψ(p, s) = F (p+ s)− sF ′(p+ s) +G(p− s) + sG′(p− s) (3.1.17)

In summary, to solve the Chaplygin gas equations, we choose two functions F and G, construct

ψ as in (3.1.17), and regain s (=
√

2λ/ρ), p (= θ′), and θ from (3.1.13), (3.1.14). In particular, the

solution (3.1.1), (3.1.2) corresponds to

F (z) = G(−z) = ± z

2k
ln z, (3.1.18)

where the sign is correlated with the sign of t.

C. Sidebar on the integrability of the cubic potential in d=1

Although it does not belong to the models that we have discussed, the cubic potential for 1-

dimensional motion, V (ρ) = ℓρ3/3, is especially interesting because it is secretly free [see (1.2.34b)]

– a fact that is exposed when Riemann coordinates are employed. For this problem these read

R± = p ±
√

2ℓρ and again they are just the velocity (±) the sound speed. In contrast to (3.1.10)

the Euler and continuity equations for this system decouple: Ṙ± = −R±R
′
±. Indeed, it is seen that
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R± satisfy essentially the free Euler equation [compare with (1.2.61b) at V ′′ = 0 and identify R±

with v]. Consequently, the solution (1.2.62)–(1.2.66) works here as well.

Recall the previous remark in Section 1.2 (iv) on the Schrödinger group [Galileo and SO(2,1)]:

in one dimension the cubic potential is invariant against this group of transformations, and in

all dimensions the free theory is invariant. Therefore a natural speculation is that the secretly

noninteracting nature of the cubic potential in one dimension is a consequence of Schrödinger group

invariance.

Another interesting fact about a one-dimensional nonrelativistic fluid with cubic potential is

that it also arises in a collective, semiclassical description of nonrelativistic free fermions in one

dimension, where the cubic potential reproduces fermion repulsion [31]. In spite of the nonlinearity

of the fluid model’s equations of motion, there is no interaction in the underlying fermion dynamics.

Thus, the presence of the Schrödinger group and the equivalence to free equations for this fluid

system is an understandable consequence.

3.2 Born-Infeld model on a line

Since the Born-Infeld system is related to the Chaplygin gas by the transformation described in

Section 2.3, there is no need to discuss separately Born-Infeld solutions. Nevertheless, the for-

mulation in terms of Riemann coordinates is especially succinct and gives another view on the

Chaplygin/Born-Infeld relation.

The Riemann coordinates R± for the Born-Infeld model are contructed by first defining

1

c
θ′ = p/c = tanφp,

a/ρc = tanφρ, (3.2.1)

and

R± = φp ± φρ . (3.2.2)

The 1-dimensional version of the equations of motion (2.1.41), (2.1.42), that is, (3.0.7), (3.0.8) can

be presented as

Ṙ± = −c(sinR∓)R′
± . (3.2.3)

The relation to the Riemann description of the Chaplygin gas can now be seen in two ways: a

nonrelativistic limit and an exact transformation. For the former, we note that at large c, φp ≈ p/c,

φρ ≈ a/ρc so that

RBorn-Infeld
± ≈ 1

c

(

p± a

ρ

)

=
1

c
R′Chaplygin

±

∣

∣

∣

λ=a2/2
. (3.2.4)
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Moreover, the equation (3.2.3) becomes, in view of (3.2.4),

1

c
ṘChaplygin

± = −RChaplygin
∓

1

c

∂

∂x
RChaplygin

± , (3.2.5)

so that (3.1.10) is regained. On the other hand, for the exact transformation we define new Riemann

coordinates in the relativistic, Born-Infeld case by

R± = c sinR± . (3.2.6)

Evidently (3.2.3) implies that R± satisfies the nonrelativistic equations (3.1.10), (3.2.5) when R±

solves the relativistic equation (3.2.3). Expressing R± and R± in terms of the corresponding nonrel-

ativistic and relativistic variables produces a mapping between the two sets. Calling pNR, ρNR and

pR, ρR the momentum and density of the nonrelativistic and of the relativistic theory, respectively,

the mapping implied by (3.2.6) is

pNR =
c2ρRpR

√

(p2
R + c2)(ρ2

Rc
2 + a2)

,

ρNR =
1

c2

√

(p2
R + c2)(ρ2

Rc
2 + a2) . (3.2.7)

As can be checked, this maps the Chaplygin equations into the Born-Infeld equations. But the

mapping is not canonical.

We record the infinite number of constants of motion, which put into evidence the (by now

obvious) complete integrability of the Born-Infeld equations on a line. The following quantities are

time-independent:

I±n = acn−1

∫

dx
(φp ± φρ)

n

sin φρ cos φp
, n = 0,±1, . . . (3.2.8)

The nonrelativistic limit takes the above into (3.1.8), while expressing I±n in terms of R± according

to (3.2.6) shows that the integrals in (3.2.8) gives rise to a series of the integrals in (3.1.8).

In the relativistic model ρ need not be constrained to be positive (negative ρ could be interpreted

as antiparticle density). The transformation p→ −p, ρ→ −ρ is a symmetry and can be interpreted

as charge conjuguation.

Further, p and ρ appear in an equivalent way. As a result, this theory enjoys a duality transfor-

mation.

ρ→ ± a
c2
p p→ ±c

2

a
ρ (3.2.9)

Under the above, both the canonical structure and the Hamiltonian remain invariant. Solutions

are mapped in general to new solutions. Note that the nonrelativistic limit is mapped to the

ultra-relativistic one under the above duality. Self-dual solutions, with ρ = ± a
c2
p, satisfy

ρ̇ = ∓c ∂
∂x
ρ′, (3.2.10)
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and are, therefore, the chiral relativistic solutions that were presented at the end of Section 2.1(ii).

In the self-dual case, when p is eliminated from the canonical 1-form and from the Hamiltonian with

the help of (3.2.9), one arrives at an action for ρ, which coincides (apart from irrelevant constants)

with the self-dual action, constructed some time ago [32].

{

1
2

∫

dt dx dy ρ̇(x)ǫ(x− y)p(y)−
∫

dt dx
√

ρ2c2 + a2
√

c2 + p2 dt

}∣

∣

∣

∣

p= c2

a
ρ

=
2c2

a

{

1
4

∫

dt dx dy ρ̇(x)ǫ(x− y)ρ(y)− c

2

∫

dt dx
(

ρ2(x) +
a2

c2

)

}

(3.2.11)

3.3 General solution of the Nambu-Goto theory for a (p=1)-brane

(string) in two spatial dimensions (on a plane)

The complete integrability of the 1-dimensional Chaplygin gas and Born-Infeld theory, as well as

the relationships between the two, derives from the fact that the different models descend by fixing

in different ways the parameterization invariance of the Nambu-Goto theory a for string on a plane.

At the same time, the equations governing the planar motion of a string can be solved completely.

Therefore it is instructive to see how the string solution produces the Chaplygin solution [20].

We follow the development in Section 2.2(iii). The Nambu-Goto action reads

ING =

∫

dφ0 LNG, (3.3.1a)

LNG =

∫

dφ1 LNG, (3.3.1b)

LNG =
[

− det
∂Xµ

∂φα

∂Xµ

∂φβ

]1/2

. (3.3.1c)

Here Xµ, µ = 0, 1, 2, are string variables and (φ0, φ1) are its parameters. As in Section 2.2(iii), we

define light-cone combinations X± = 1√
2
(X0±X2), rename X− as θ, and choose the parameteriza-

tion X+ = φ0 ≡ τ . After suppressing the superscripts on φ1 and X1, we construct the Nambu-Goto

Lagrange density as

LNG = det1/2

(

2∂τθ − (∂τX)2 u

u −(∂φX)2

)

, (3.3.2)

u = ∂φθ − ∂τX∂φX. (3.3.3)

Equations of motion are presented in Hamiltonian form:

p =
∂LNG

∂∂τX
, Π =

∂LNG

∂∂τ θ
, (3.3.4)
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∂τX = − 1

Π
p− u∂φX, (3.3.5a)

∂τθ =
1

2Π2

(

p2 + (∂φX)2
)

− u∂φθ, (3.3.5b)

∂τp = −∂φ

( 1

Π
∂φX

)

− ∂φ(up), (3.3.5c)

∂τΠ = −∂φ(uΠ), (3.3.5d)

and there is the constraint

p∂φX + Π∂φθ = 0 . (3.3.6)

There still remains the reparameterization freedom of replacing φ by an arbitrary function of τ

and φ; this freedom may be used to set u = 0, Π = −1. Consequently, in the fully parameterized

equations of motion eq. (3.3.5d) disappears; instead of (3.3.5a) and (3.3.5c), we have ∂τX = p,

∂τp = ∂2
φX, which imply

(∂2
τ − ∂2

φ)X = 0, (3.3.7a)

(3.3.5b) reduces to

∂τθ = 1
2

[

(∂τX)2 + (∂φX)2
]

, (3.3.7b)

and the constraint (3.3.6) requires

∂φθ = ∂τX∂φX . (3.3.7c)

Solution to (3.3.7a) is immediate in terms of two functions F±,

x(τ, φ) = F+(τ + φ) + F−(τ − φ) (3.3.8)

and then (3.3.7b), (3.3.7c) fix θ.

θ(τ, φ) =

∫ τ+φ

dz
[

F ′
+(z)

]2
+

∫ τ−φ

dz
[

F ′
−(z)

]2
(3.3.9)

This completes the description of a string moving on a plane.

But we need to convert this information into a solution of the Chaplygin gas, and we know from

Section 2.2(iii) that this can be accomplished by a hodographic transformation: instead of X and

θ as a function of τ and φ, we seek φ as a function of τ and X, and this renders θ to be a function

of τ and X as well. The density ρ is determined by the Jacobian |∂X/∂φ|.
Replace τ by t and X by x and define φ to be f(t, x). Then from (3.3.8) it follows that

x = F+

(

t+ f(t, x)
)

+ F−
(

t− f(t, x)
)

. (3.3.10)
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This equation may be differentiated with respect to t and x, whereupon one finds

ḟ = −F
′
+(t+ f) + F ′

−(t− f)

F ′
+(t+ f)− F ′

−(t− f)
, (3.3.11a)

f ′ =
1

F ′
+(t+ f)− F ′

−(t− f)
. (3.3.11b)

Thus the procedure for constructing a Chaplygin gas solution is to choose two functions F±,

solve the differential equations (3.3.11) for f , and then the fluid variables are

θ(t, x) =

∫ t+f(t,x)
[

F ′
+(z)

]2
dz+

∫ t−f(t,x)
[

F ′
−(z)

]2
dz, (3.3.12)

√
2λ

ρ
=
∣

∣F ′
+(t+ φ)− F ′

−(t− φ)
∣

∣ . (3.3.13)

One may verify directly that (3.3.12) and (3.3.13) satisfy the required equations: Upon differ-

entiating (3.3.12) with respect to t and x, we find

θ̇ = (F ′
+)2(1 + ḟ) + (F ′

−)2(1− ḟ)

= −2F ′
+F

′
− (3.3.14a)

θ′ = (F ′
+)2f ′ − (F ′

−)2f ′

= F ′
+ + F ′

−. (3.3.14b)

The second equalities follow with the help of (3.3.11). From (3.3.14) one sees that

θ̇ + 1
2
(θ′)2 = 1

2
(F ′

+ − F ′
−)2 =

λ

ρ2
(3.3.15)

the last equality being the definition (3.3.13). Thus the Bernoulli (Euler) equation holds. For the

continuity equation, we first find from (3.3.13) and (3.3.14)

ρ̇ = ± ∂

∂t

√
2λ

F ′
+ − F ′

−

= ∓
√

2λ

(F ′
+ − F ′

−)2

[

F ′′
+(1 + ḟ)− F ′′

−(1− ḟ)
]

= ± 2
√

2λ

(F ′
+ − F ′

−)3

(

F ′′
+F

′
− + F ′′

−F
′
+

)

, (3.3.16a)

∂

∂x
(ρθ′) =

∂

∂x

(

±
√

2λ
F ′

+ + F ′
−

F ′
+ − F ′

−

)

= ∓
√

2λ

(F ′
+ − F ′

−)2

(

F ′′
+F

′
− + F ′′

−F
′
+

)

f ′

= ∓ 2
√

2λ

(F ′
+ − F ′

−)3

(

F ′′
+F

′
− + F ′′

−F
′
+

)

. (3.3.16b)
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The last equalities follow from (3.3.11); since (3.3.16a) and (3.3.16b) sum to zero, the continuity

equation holds.

We observe that the differentiated functions F ′
± are just the Riemann coordinates: from (3.3.14b)

and (3.3.13) [with the absolute value ignored] we have

p±
√

2λ

ρ
≡ R± = 2F ′

± . (3.3.17)

Also it is seen with the help of (3.3.11) that the Riemann formulation (3.1.10) of the Chaplygin

equations is satisfied by 2F ′
±.

The constants of motion (3.1.8) become proportional to

I±n ∝
∫

dx
1

F ′
+ − F ′

−

[

F ′
±
]n

=

∫

dx
∂f

∂x

[

F ′
±(t± f)

]n

∝
∫

dz
[

F ′
±(z)

]n
. (3.3.18)

Finally we remark that the solution (3.1.1), (3.1.2) corresponds to

F+(z) = −F−(z) = ± ln z

2k
. (3.3.19)

There exists a relation between the two functions F and G in (3.1.17), which encode the Chaplygin

gas solution in the linearization approach of Section 3.1(ii), and the above two functions F±, which

do the same job in the Nambu-Goto approach. The relation is that 2F ′
+ is inverse to 2F ′′ and 2F ′

−

is inverse to 2G′′, that is,

2F ′′[2F ′
+(z)] = z,

2G′′[2F ′
−(z)] = z. (3.3.20)
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4 SUPERSYMMETRIC FLUID MECHANICS

As explained in Section 1, classical fluids describe particles moving collectively. The fluid inherits its

mechanical properties, such as energy, nomentum and angular momentum from the corresponding

underlying particle properties.

One consequence of this is that classical fluids cannot carry intrinsic spin. To be precise, the

angular momentum with respect to the center of mass of a small volume V scales as its mass (which

scales as V ) times the residual velocity of the fluid about the center of mass (which scales like ℓ- the

linear dimension of V ) times the distance to the center of mass (which also scales like ℓ). Therefore,

the self-angular momentum density scales lie ℓ2, and goes to zero with ℓ.

The inclusion of a spin density in fluids can be achieved in an essentially quantum mechani-

cal formulation by introducing Grassmann (anticommuting) variables in the description, the spin

density being represented as a bilinear in the Grassmann variables. This description reveals the pos-

sibility of implementing within fluid mechanics supersymmetry transformations, which effectively

mix spin and kinematical degrees of freedom. Particular forms of the Hamiltonian, generalizing the

classical Chaplygin gas, admit these supersymmetry transformations as an invariance and generate

conserved quantities.

Supersymmetry poses severe restrictions in the dynamics. In general, supersymmetric extended

objects cannot be formulated in arbitrary dimensions, and this holds true for supersymmetric fluids.

It is natural, therefore, that the supersymmetric Chaplygin models are essentially related to, and

derive from, higher-dimensional supersymmetric membrane actions in a way similar to the one

already exposed in Section 2.2. As such, they also enjoy nontrivial higher-dimensional relativistic

symmetries which are not apparent from their action.

In the following we shall analyze the case of planar [33] and lineal [34] fluids, which devolve from

the motion of membranes or strings in (3 + 1) or (2 + 1) dimensional spacetimes, respectively.

Lineal and planar supersymmetric fluid models seem to exhaust the possibilities for the super-

symmetric Nambu-Goto/fluid connection. For a higher dimensional generalization, the reduction

program would begin with a p-brane in p+ 2 dimensional space-time, giving rise to a fluid in p+ 1

dimensional space-time. While there are no constraints on p in the purely bosonic case, supersym-

metric extensions are greatly constrained: the list of possible “fundamental” super p-branes (i.e.

with only scalar supermultiplets in the world-volume) contains only the above two cases: p = 2 in

four dimensions and p = 1 in three dimensions [35].

4.1 Supersymmetric fluid in (2 + 1) dimensions

We begin by positing the fluid model. The Chaplygin gas Lagrangian is supplemented by Grassmann

variables ψa that are Majorana spinors [real, two-component: ψ∗
a = ψa, a = 1, 2, (ψ1ψ2)

∗ = ψ∗
1ψ

∗
2].
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The associated Lagrange density reads

L = −ρ(θ̇ − 1
2
ψψ̇)− 1

2
ρ(∇θ − 1

2
ψ∇ψ)2 − λ

ρ
−
√

2λ

2
ψα ·∇ψ . (4.1.1)

Here αi are two (i = 1, 2), 2× 2, real symmetric Dirac “alpha” matrices; in terms of Pauli matrices

we can take α1 = σ1, α2 = σ3. Note that the matrices satisfy the following relations, which are

needed to verify subsequent formulas.

ǫabα
i
bc = ǫijαj

ac

αi
abα

j
bc = δijδac − ǫijǫac

αi
abα

i
cd = δacδbd − δabδcd + δadδbc (4.1.2)

ǫab is the 2× 2 antisymmetric matrix ǫ ≡ iσ2. In equation (4.1.1) λ is a coupling strength which is

assumed to be positive. The Grassmann term enters with coupling
√

2λ, which is correlated with

the strength of the Chaplygin potential V (ρ) = λ/ρ in order to ensure supersymmetry, as we shall

show below. It is evident that the velocity should be defined as

v = ∇θ − 1
2
ψ∇ψ . (4.1.3)

The Grassmann variables directly give rise to a Clebsch formula for v, and provide the Gauss

potentials. The two-dimensional vorticity reads ω = ǫij∂iv
j = −1

2
ǫij∂iψ∂jψ = −1

2
∇ψ ×∇ψ. The

variables {θ, ρ} remain a canonical pair, while the canonical 1-form in (4.1.1) indicates that the

canonically independent Grassmann variables are
√
ρψ so that the antibracket of the ψ’s is

{ψa(r), ψb(r
′)} = − δab

ρ(r)
δ(r− r′) . (4.1.4)

One verifies that the algebra (1.2.16) - (1.2.21) is satisfied, and further, one has

{θ(r), ψ(r)} = − 1

2ρ(r)
ψ(r)δ(r− r′), (4.1.5)

{v(r), ψ(r′)} = −∇ψ(r)

ρ(r)
δ(r− r′), (4.1.6)

{P(r), ψ(r′)} = −∇ψ(r)δ(r− r′) . (4.1.7)

The momentum density P is given by the bosonic formula P = vρ, but the Grassmann variables

are hidden in v, by virtue of (4.1.3).

The equations of motion read

ρ̇+ ∇ · (vρ) = 0, (4.1.8)

θ̇ + v ·∇θ = 1
2
v2 +

λ

ρ2
+

√
2λ

2ρ
ψα ·∇ψ, (4.1.9)

ψ̇ + v ·∇ψ =

√
2λ

ρ
α ·∇ψ, (4.1.10)
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and together with (4.1.1) they imply

v̇ + v ·∇v = ∇
λ

ρ2
+

√
2λ

ρ
(∇ψ)α ·∇ψ . (4.1.11)

All these equations may be obtained by bracketing with the Hamiltonian

H =

∫

d2r
(

1
2
ρv2 +

λ

ρ
+

√
2λ

2
ψα ·∇ψ

)

=

∫

d2rH (4.1.12)

when (1.2.16), (1.2.20) as well as (4.1.4)–(4.1.6) are used.

We record the components of the energy-momentum “tensor”, and the continuity equations they

satisfy. The energy density E = T oo, given by

E = 1
2
ρv2 +

λ

ρ
+

√
2λ

2
ψα ·∇ψ = T oo, (4.1.13)

satisfies a continuity equation with the energy flux T jo.

T jo = ρvj
(

1
2
v2 − λ

ρ2

)

+

√
2λ

2
ψαjv ·∇ψ − λ

ρ
ψ∂jψ +

λ

ρ
ǫjkψǫ∂kψ (4.1.14)

Ṫ oo + ∂jT
jo = 0 (4.1.15)

This ensures that the total energy, that is, the Hamiltonian, is time-independent. Conservation of

the total momentum

P =

∫

d2rP (4.1.16)

follows from the continuity equation satisfied by the momentum density P i = T oi and the momen-

tum flux, that is, the stress tensor T ij .

T ji = ρvivj − δij
(2λ

ρ
+

√
2λ

2
ψα ·∇ψ

)

+

√
2λ

2
ψαj∂iψ (4.1.17)

Ṫ oi + ∂jT
ji = 0 (4.1.18)

But T ij is not symmetric in its spatial indices, owing to the presence of spin in the problem.

However, rotational symmetry makes it possible to effect an “improvement”, which modifies the

momentum density by a total derivative term, leaving the integrated total momentum unchanged

(provided surface terms can be ignored) and rendering the stress tensor symmetric. The improved

quantities are

P i
I = T oi

I = ρvi + 1
8
ǫij∂j(ρψǫψ), (4.1.19)

T ij
I = ρvivj − δij

(2λ

ρ
+

√
2λ

2
ψα ·∇ψ

)

+

√
2λ

4

(

ψαi∂jψ + ψαj∂iψ
)

− 1
8
∂k

[

(ǫkivj + ǫkjvi)ρψǫψ
]

, (4.1.20)

Ṫ oi
I + ∂jT

ij
I = 0 . (4.1.21)
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It immediately follows from the symmetry of T ij
I that the angular momentum

M =

∫

d2r ǫijriPj
I =

∫

d2r ρǫijrivj + 1
4

∫

d2r ρψǫψ (4.1.22)

is conserved. The first term is clearly the orbital part (which still receives a Grassmann contribution

through v), whereas the second, coming from the improvement, is the spin part. Indeed, since
i
2
ǫ = 1

2
σ2 ≡ Σ, we recognize this as the spin matrix in (2+1) dimensions. The extra term in

the improved momentum density (4.1.19), 1
8
ǫij∂j(ρψǫψ), can then be readily interpreted as an

additional localized momentum density, generated by the nonhomogeneity of the spin density. This

is analogous to the magnetostatics formula giving the localized current density jm in a magnet in

terms of its magnetization m: jm = ∇×m. All in all, we are describing a fluid with spin.

Also the total number

N =

∫

d2r ρ (4.1.23)

is conserved by virtue of the continuity equation (4.1.8) satisfied by ρ. Finally, the theory is Galileo

invariant, as is seen from the conservation of the Galileo boost,

B = tP−
∫

d2r rρ (4.1.24)

which follows from (4.1.8) and (4.1.16). The generators H,P,M,B and N close on the (extended)

Galileo group. [The theory is not Lorentz invariant in (2 + 1)-dimensional space-time, hence the

energy flux T jo does not coincide with the momentum density, improved or not.]

We observe that ρ can be eliminated from (4.1.1) so that L involves only θ and ψ. From (4.1.9)

and (4.1.10) it follows that

ρ =
√
λ
(

θ̇ − 1
2
ψψ̇ + 1

2
v2
)−1/2

. (4.1.25)

Substituting into (4.1.1) produces the supersymmetric generalization of the Chaplygin gas Lagrange

density in (2.1.17).

L = −2
√
λ
{

√

2θ̇ − ψψ̇ + (∇θ − 1
2
ψ∇ψ)2 + 1

2
ψα ·∇ψ

}

(4.1.26)

Note that the coupling strength has disappeared from the dynamical equations, remaining only as a

normalization factor for the Lagrangian. Consequently the above elimination of ρ cannot be carried

out in the free case, λ = 0.

4.2 Supersymmetry

As we said earlier, this theory possesses supersymmetry. This can be established, first of all, by

verifying that the following two-component supercharges are time-independent Grassmann quanti-

ties.

Qa =

∫

d2r
[

ρv · (αabψb) +
√

2λψa

]

(4.2.1)
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Taking a time derivative and using the evolution equations (4.1.8)–(4.1.11) establishes that Q̇a = 0.

Next, the supersymmetric transformation rule for the dynamical variables is found by con-

structing a bosonic symmetry generator Q, obtained by contracting the Grassmann charge with a

constant Grassmann parameter ηa, Q = ηaQa, and commuting with the dynamical variables. Using

the canonical brackets one verifies the following field transformation rules.

δρ = {Q, ρ} = −∇ · ρ(ηαψ) (4.2.2)

δθ = {Q, θ} = −1
2
(ηαψ) ·∇θ − 1

4
(ηαψ) · ψ∇ψ +

√
2λ

2ρ
ηψ (4.2.3)

δψ = {Q,ψ} = −(ηαψ) ·∇ψ − v ·αη −
√

2λ

ρ
η (4.2.4)

δv = {Q,v} = −(ηαψ) ·∇v +

√
2λ

ρ
η∇ψ (4.2.5)

Supersymmetry is reestablished by determining the variation of the action
∫

dt d2rL consequent to

the above field variations: the action is invariant. One then reconstructs the supercharges (4.2.1)

by Noether’s theorem. Finally, upon computing the bracket of two supercharges, one finds

{ηa
1Qa, η

b
2Qb} = 2(η1η2)H, (4.2.6)

which again confirms that the charges are time-independent.

{H,Qa} = 0 (4.2.7)

Additionally a further, kinematical, supersymmetry can be identified. According to the equa-

tions of motion the following two supercharges are also time-independent.

Q̄a =

∫

d2r ρψa (4.2.8)

Q̄ = η̄aQ̄a effects a shift of the Grassmann field.

δ̄ρ = {Q̄, ρ} = 0 (4.2.9)

δ̄θ = {Q̄, θ} = −1
2
(η̄ψ) (4.2.10)

δ̄ψ = {Q̄, ψ} = −η̄ (4.2.11)

δ̄v = {Q̄,v} = 0 (4.2.12)

This transformation leaves the Lagrangian invariant, and Noether’s theorem reproduces (4.2.8).

The algebra of these charges closes on the total number N ,

{η̄a
1Q̄a, η̄

b
2Q̄b} = (η̄1η̄2)N, (4.2.13)



Perfect Fluid Theory and its Extensions 63

while the algebra with the generators (4.2.1), closes on the total momentum, together with a central

extension, proportional to volume of space Ω =
∫

d2r.

{η̄aQ̄a, η
bQb} = (η̄αη) ·P +

√
2λ (η̄ǫη)Ω (4.2.14)

The supercharges Qa, Q̄a, together with the Galileo generators (H,P,M,B), and with N form a

superextended Galileo algebra. The additional, nonvanishing brackets are

{M,Qa} = 1
2
ǫabQb, (4.2.15)

{M, Q̄a} = 1
2
ǫabQ̄b, (4.2.16)

{B, Qa} = αabQ̄b . (4.2.17)

4.3 Supermembrane connection

The equations for the supersymmetric Chaplygin fluid devolve from a supermembrane Lagrangian,

LM . We shall give two different derivations of this result, which make use of two different parame-

terizations for the parameterization-invariant membrane action and give rise, respectively, to (4.1.1)

and (4.1.26). The two derivations follow what has been done in the bosonic case in Sections 2.2 (i)

and 2.2 (iii).

We work in a light-cone gauge-fixed theory: The supermembrane in 4-dimensional space-time

is described by coordinates Xµ (µ = 0, 1, 2, 3), which are decomposed into light-cone components

X± = 1√
2
(X0 ± X3) and transverse components X i {i = 1, 2}. These depend on an evolution

parameter φ0 ≡ τ and two space-like parameters φr {r = 1, 2}. Additionally there are two-

component, real Grassmann spinors ψ, which also depend on τ and φr. In the light-cone gauge, X+

is identified with τ , X− is renamed θ, and the supermembrane Lagrangian is [36]

LM =

∫

d2φLM = −
∫

d2φ {
√
G− 1

2
ǫrs∂rψα∂sψ ·X}, (4.3.1)

where G = detGαβ.

Gαβ =

(

Goo Gos

Gro −grs

)

=

(

2∂τθ − (∂τX)2 − ψ∂τψ us

ur −grs

)

(4.3.2)

G = gΓ

Γ ≡ 2∂τθ − (∂τX)2 − ψ∂τψ + grsurus

grs ≡ ∂rX · ∂sX , g = det grs

us ≡ ∂sθ − 1
2
ψ∂sψ − ∂τX · ∂sX (4.3.3)
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Here ∂τ signifies differentiation with respect to the evolution parameter τ , while ∂r differentiates

with respect to the space-like parameters φr; grs is the inverse of grs, and the two are used to move

the (r, s) indices. Note that the dimensionality of the transverse coordinates X i is the same as of

the parameters φr, namely two.

(i) Hodographic transformation

To give our first derivation following the procedure in Section 2.2(iii), we rewrite the Lagrangian in

canonical, first-order form, with the help of bosonic canonical momenta defined by

∂LM

∂∂τX
= p = −Π∂τX−Πur∂rX, (4.3.4a)

∂LM

∂∂τ θ
= Π =

√

g/Γ . (4.3.4b)

(The Grassmann variables already enter with first-order derivatives.) The supersymmetric extension

of (2.2.6) then takes the form

LM = p · ∂τX + Π∂τθ − 1
2
Πψ∂τψ +

1

2Π
(p2 + g) + 1

2
ǫrs∂rψα∂sψ ·X

+ ur
(

p · ∂rX + Π∂rθ − 1
2
Πψ∂rψ

)

. (4.3.5)

In (4.3.5) ur serves as a Lagrange multiplier enforcing a subsidiary condition on the canonical vari-

ables, and g = det grs. The equations that follow from (4.3.5) coincide with the Euler-Lagrange

equations for (4.3.1). The theory still possesses an invariance against redefining the spatial param-

eters with a τ -dependent function of the parameters. This freedom may be used to set uτ to zero

and fix Π at −1. Next we introduce the hodographic transformation, as in Section 2.2(iii), whereby

independent-dependent variables are interchanged, namely we view the φr to be functions of X i. It

then follows that the constraint on (4.3.5), which with Π = −1 reads

p · ∂rX− ∂rθ + 1
2
ψ∂rψ = 0, (4.3.6)

becomes

∂rX ·
(

p−∇θ + 1
2
ψ∇ψ

)

= 0 . (4.3.7)

Here p, θ and ψ are viewed as functions of X, renamed r, with respect to which acts the gradient

∇. Also we rename p as v, which according to (4.3.7) is

v = ∇θ − 1
2
ψ∇ψ . (4.3.8)

As in Section 2.2(iii), from the chain rule and the implicit function theorem it follows that

∂τ = ∂t + ∂τX ·∇, (4.3.9)
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and according to (4.3.4a) (at Π = −1, ur = 0) ∂τX = p = v. Finally, the measure transforms

according to d2φ → d2r 1√
g
. Thus the Lagrangian for (4.3.5) becomes, after setting ur to zero and

Π to −1,

LM =

∫

d2r√
g

(

v2 − θ̇ − v·∇θ + 1
2
ψ(ψ̇ + v ·∇ψ)− 1

2
(v2 + g)

− 1
2
ǫrs ψαi ∂jψ ∂sX

j ∂rX
i
)

. (4.3.10a)

But ǫrs∂sX
j∂rX

i = ǫij det ∂rX
i = ǫij

√
g. After

√
g is renamed

√
2λ/ρ, (4.3.10a) finally reads

LM =
1√
2λ

∫

d2r
(

−ρ(θ̇ − 1
2
ψψ̇)− 1

2
ρ(∇θ − 1

2
ψ∇ψ)2 − λ

ρ
−
√

2λ

2
ψα×∇ψ

)

. (4.3.10b)

Upon replacing ψ by 1√
2
(1− ǫ)ψ, this is seen to reproduce the Lagrange density (4.1.1), apart from

an overall factor.

(ii) Light-cone parameterization

For our second derivation, we return to (4.3.1)–(4.3.7) and use the remaining reparameterization

freedom to equate the two X i variables with the two φr variables, renaming both as ri. Also τ is

renamed as t. This parallels the method in Section 2.2(i). Now in (4.3.1)–(4.3.3) grs = δrs, and

∂τX = 0, so that (4.3.3) becomes simply

G = Γ = 2θ̇ − ψψ̇ + u2 (4.3.11)

u = ∇θ − 1
2
ψ∇ψ . (4.3.12)

Therefore the supermembrane Lagrangian (4.3.1) reads

LM = −
∫

d2r

{
√

2θ̇ − ψψ̇ +
(

∇θ − 1
2
ψ∇ψ

)2
+ 1

2
ψα×∇ψ

}

. (4.3.13)

Again a replacement of ψ by 1√
2
(1−ǫ)ψ demonstrates that the integrand coincides with the Lagrange

density in (4.1.26) (apart from a normalization factor).

(iii) Further consequences of the supermembrane connection

Supermembrane dynamics is Poincaré invariant in (3+1)-dimensional space-time. This invariance

is hidden by the choice of light-cone parameterization: only the light-cone subgroup of the Poincaré

group is left as a manifest invariance. This is just the (2 + 1) Galileo group generated by H , P, M ,

B, and N . (The light-cone subgroup of the Poincaré group is isomorphic to the Galileo group in one

lower dimension. [27]) The Poincaré generators not included in the above list correspond to Lorentz

transformations in the “−” direction. We expect therefore that these generators are “dynamical”,
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that is, hidden and unexpected conserved quantities of our supersymmetric Chaplygin gas, similar

to the situation with the purely bosonic model.

One verifies that the following quantities

S = tH −
∫

d2r ρθ (4.3.14)

G =

∫

d2r(rH− θPI − 1
8
ψαα ·PIψ)

=

∫

d2r(rH− θP − 1
4
ψαα ·Pψ) (4.3.15)

are time-independent by virtue of the equations of motion (4.1.8)–(4.1.11), and they supplement

the Galileo generators to form the full (3 + 1) Poincaré algebra, which becomes the super-Poincaré

algebra once the supersymmetry is taken into account. Evidently (4.3.14), (4.3.15) are the super-

symmetric generalizations of (2.1.14), (2.1.15).

We see that planar fluid dynamics can be extended to include Grassmann variables, which also

enter in a supersymmetry-preserving interaction. Since our construction is based on a supermem-

brane in (3+1)-dimensional space-time, the fluid model is necessarily a planar Chaplygin gas. In

the next section we shall derive a lineal version of the supersymmetric Chaplygin gas starting from

a superstring in (2+1)-dimensional space-time.

4.4 Supersymmetric fluid in (1 + 1) dimensions

The one-dimensional case is in principle simpler since, in one spatial dimension, the canonical struc-

ture can be straightforwardly realized. The physical implications of adding Grassmann variables,

however, are somewhat limited since there is no vorticity and no spin in one space dimension.

Nevertheless, a supersymmetric version of the lineal Chaplygin gas can be constructed. This

is achieved along the same lines as in 2+1 dimensions, by considering a superstring moving on

a plane and again fixing the parametrization invariance. The construction is analogous to what

has already been done in one higher dimension: the Nambu-Goto action for a supermembrane in

(3+1)-dimensions gives rise, in a specific parametrization, to a supersymmetric planar Chaplygin

gas.

As we shall demonstrate, the supersymmetric extension enjoys the same integrability properties

as the purely bosonic, lineal Chaplygin gas, as a consequence of the complete integrability for the

dynamics of the superstring on the plane.

(i) Superstring formulation

We begin with the Nambu-Goto superstring in 3-dimensional space-time,
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I = −
∫

dτdσ (
√
g − iǫij∂iX

µψ̄γµ∂jψ), (4.4.1)

where

g = −det{Πµ
i Π

ν
j ηµν}, (4.4.2)

Πµ
i = ∂iX

µ − iψ̄γµ∂iψ . (4.4.3)

In these expressions µ, ν are spacetime indices running over 0, 1, 2 and i, j are world-sheet indices

denoting τ and σ. We now go to the light-cone gauge where we define X± = 1√
2
(X0 ±X2). X+ is

identified with the timelike parameter τ , X− is renamed θ, and the remaining transverse component

X1 is renamed x. We can choose a 2-dimensional Majorana representation for the γ-matrices:

γ0 = σ2, γ1 = −iσ3, γ2 = iσ1,

such that ψ is a real, two-component spinor. A remaining fermionic gauge choice sets

γ+ψ = 0,

where γ± = 1√
2
(γ0 ± γ2). Thus ψ is further reduced to a real, one-component Grassmann field.

Finally we define the complex conjugation of a product of Grassmann fields (ψ1ψ2)
⋆ = ψ⋆

1ψ
⋆
2 so as to

eliminate i from Grassmann bilinears in our final expression. The light-cone gauge-fixed Lagrange

density becomes:

L = −
√

gΓ +
√

2ψ∂σψ, (4.4.4)

where

g = (∂σx)
2, (4.4.5)

Γ = 2∂τθ − (∂τx)
2 − 2

√
2ψ∂τψ +

u2

g
, (4.4.6)

u = ∂σθ − ∂τx∂σx−
√

2ψ∂τψ . (4.4.7)

In the above equations, ∂σ and ∂τ denote partial derivatives with respect to the spacelike and

timelike world-sheet coordinates. The canonical momenta

p =
∂L

∂(∂τx)
=

√

g

Γ
(∂τx+

u

g
∂σx), (4.4.8)

Π =
∂L

∂(∂τθ)
= −

√

g

Γ
, (4.4.9)

satisfy the constraint equation

p∂σx+ Π∂σθ −
√

2Πψ∂σψ = 0 (4.4.10)
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and can be used to recast L into the form

L = p∂τx+ Π∂τθ +
1

2Π
(p2 + g) +

√
2ψ∂σψ −

√
2Πψ∂τψ + u(p∂σx+ Π∂σθ −

√
2Πψ∂σψ), (4.4.11)

where u is now a Lagrange multiplier enforcing the constraint. We use the remaining parameteri-

zation freedom to fix u = 0 and Π = −1 and perform a hodographic transformation, interchanging

independent with dependent variables. The partial derivatives transform by the chain rule:

∂σ = (∂σx)∂x =
√
g∂x , (4.4.12)

∂τ = ∂t + (∂τx)∂x = ∂t + v∂x , (4.4.13)

and the measure transforms with a factor of 1/
√
g. Finally, after renaming

√
g as
√

2λ/ρ, we obtain

the Lagrangian for the Chaplygin “super” gas in (1+1)-dimensions,

L =
1√
2λ

∫

dx {−ρ(θ̇ − 1

2
ψψ̇)− 1

2
ρv2 − λ

ρ
+

√
2λ

2
ψ ψ′} , (4.4.14)

where according to (4.4.8) and (4.4.10) (at u = 0 and Π = −1)

v = p = θ′ − 1

2
ψψ′ . (4.4.15)

We have used ρ and v in anticipation of their role as the fluid density and velocity, and we demon-

strate below that they indeed satisfy appropriate equations of motion. For convenience we have also

rescaled ψ everywhere by a factor of 2−3/4. The Lagrangian (4.4.14) agrees with the limiting case of

the planar fluid in (4.1.1). We note that as for the planar case, a more straightforward derivation

leads to the fluid Lagrangian of (4.4.14) with ρ integrated out. Specifically, if the parameterization

freedom is used directly to equate the spacelike and timelike coordinates σ and τ with x and t, we

obtain

L′ = −
∫

dx
(

√

2θ̇ − ψψ̇ + v2 − 1

2
ψ ψ′

)

, (4.4.16)

where v is defined as in (4.4.15). This form of the Lagrangian can be obtained from (4.4.14) after

ρ is eliminated using the equations of motion for θ and ψ, shown below.

(ii) Supersymmetric Chaplygin gas

(a) Equations of motion

The following equations of motion are obtained by variation of the Lagrangian (4.4.14).

ρ̇+ ∂x(ρv) = 0 (4.4.17)

ψ̇ +
(

v +

√
2λ

ρ

)

ψ′ = 0 (4.4.18)

θ̇ + vθ′ =
1

2
v2 +

λ

ρ2
−
√

2λ

2ρ
ψψ′ (4.4.19)

v̇ + vv′ = ∂x

( λ

ρ2

)

(4.4.20)
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Naturally, there are only three independent equations of motion as (4.4.20) is obtained from (4.4.18),

(4.4.19) and (4.4.15). Equations (4.4.17) and (4.4.20) are seen to be just the continuity and Euler

equations for the Chaplygin gas. Note that these do not see the Grassmann variables directly.

We now pass to the Riemann coordinates, which for this system are (velocity ± sound speed√
2λ/ρ):

R± =
(

v ±
√

2λ

ρ

)

. (4.4.21)

In terms of the Riemann coordinates, the equations of motion obtain the form

Ṙ± = −R∓R
′
±, (4.4.22)

ψ̇ = −R+ψ
′, (4.4.23)

θ̇ = −1

2
R+R− −

1

2
R+ψψ

′ . (4.4.24)

The equations in (4.4.22) contain the continuity and Euler equations and are known to be integrable.

It is readily verified that equation (4.4.23) for ψ is solved by any function of R−,

ψ = Ψ(R−), (4.4.25)

and hence the fluid model is completely integrable. That this is the case should come as no surprise

considering that we began with an integrable world-sheet theory.

At this point it may seem curiously asymmetric that equation (4.4.23) for the Grassmann field

should contain the R+ Riemann coordinate and not the R− companion coordinate. In fact, the

reverse would have been the case if the sign of the
√

2λ term in (4.4.14) had been opposite. The

entire model is consistent with this substitution, which is just the choice of identifying
√
g with plus

or minus the sound speed
√

2λ/ρ.

The energy-momentum tensor is constructed from (4.4.14), and its components are

T 00 = H =
1

2
ρv2 +

λ

ρ
−
√

2λ

2
ψψ′, (4.4.26)

T 01 = P = ρv, (4.4.27)

T 10 =
ρv

2
R+R− −

√
2λ

2
R+ψψ

′, (4.4.28)

T 11 = ρR+R− . (4.4.29)

The expected conserved quantities of the system, the generators of the Galileo group, are verified
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to be time-independent using the equations of motion. We have

N =

∫

dx ρ, (4.4.30)

P =

∫

dx ρv, (4.4.31)

H =

∫

dx
(1

2
ρv2 +

λ

ρ
−
√

2λ

2
ψψ′

)

, (4.4.32)

B =

∫

dx ρ(x− vt) =

∫

dxxρ− tP, (4.4.33)

Although some generators look purely bosonic, there are still Grassmann fields hidden in v according

to its definition (4.4.15).

In going to Riemann coordinates, we can observe a ladder of conserved charges of the form

I±n =

∫

dx ρRn
± . (4.4.34)

The first few values of n above give

I±0 = N, (4.4.35)

I±1 = P ±
√

2λΩ, (4.4.36)

I+
2 = 2H , (4.4.37)

where Ω is used to denote the length of space
∫

dx. (Note that I−2 , would correspond to the

Hamiltonian of the theory with
√

2λ replaced by its negative).

In Section (4.2) we identified two different supersymmetry generators, which correspond in one

space dimension to the time independent quantities

Q̃ =

∫

dx ρψ, (4.4.38)

Q =

∫

dx ρ
(

v −
√

2λ

ρ

)

ψ . (4.4.39)

These are again special cases (n = 0 and n = 1) of a ladder of conserved supercharges described by

Qn =

∫

dx ρRn
−ψ . (4.4.40)

We see that the supercharges evaluated on the solution (4.4.25) reproduce the form of the bosonic

charges (3.1.8).

Let us observe that there exist further bosonic and fermionic conserved charges. For example,

one may verify that the bosonic charges
∫

dx ρRn
±

(R′
±
ρ

)m

(4.4.41)

∫

dx ρRn
−

(ψψ′

ρ

)

(4.4.42)
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are conserved, as are the fermionic charges

∫

dx ρRn
−

(ψ′

ρ

)

. (4.4.43)

Conserved expressions involving higher derivatives may also be constructed. The conservation of

these quantities is easily understood when the string world-sheet variables are used. Then the above

are written as
∫

dσRn
±(∂σR±)m,

∫

dσRn
−(ψ∂σψ), and

∫

dσRn
−(∂σψ), respectively. Furthermore when

R± are evaluated on solutions, they become functions of τ ± σ [see Section 3.3], so that integration

over σ extinguishes the τ dependence, leaving constant quantities.

(b) Canonical structure

The equations of motion (4.4.17)-(4.4.19) can also be obtained by Poisson bracketing with the

Hamiltonian (4.4.26) if the following canonical brackets are postulated.

{θ(x), ρ(y)} = δ(x− y) (4.4.44)

{θ(x), ψ(y)} = − ψ
2ρ
δ(x− y) (4.4.45)

{ψ(x), ψ(y)} = −1

ρ
δ(x− y) (4.4.46)

where the last bracket, containing Grassmann arguments on both sides is understood to be the

anti-bracket. With these one verifies that the conserved charges in (4.4.30)-(4.4.33) generate the

appropriate Galileo symmetry transformations on the dynamical variables ρ, θ, and ψ. Correspond-

ingly the supercharges (4.4.38),(4.4.39) generate super transformations.

δ̃ρ = 0 δρ = −η∂x(ρψ) (4.4.47)

δ̃θ = −1

2
ηψ δθ = −1

2
ηR+ψ (4.4.48)

δ̃ψ = −η δψ = −ηψψ′ − ηR− (4.4.49)

which leave the Lagrangian (4.4.14) invariant. The algebra of the bosonic generators reproduces

the algebra of the (extended) Galileo group. The algebra of the supercharges is

{η̄Q, ηQ} = 2η̄ηH, (4.4.50)

{η̄Q̃, ηQ̃} = η̄ηN, (4.4.51)

{η̄Q̃, ηQ} = η̄η(P −
√

2λΩ), (4.4.52)

{B,Q} = Q̃ . (4.4.53)
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(c) Additional symmetries of the fluid model

As mentioned above, since the fluid model descends from the superstring, it should possess an

enhanced symmetry beyond the Galileo symmetry in (1+1)-dimensions. In fact, the following

conserved charges effecting time rescaling and space-time mixing are also verified:

D = tH −
∫

dx ρθ , (4.4.54)

G =

∫

dx (xH− θP) , (4.4.55)

The Galileo generators supplemented by D and G together satisfy the Lie algebra of the (2+1)-

dimensional Poincaré group, with N , P , and H corresponding to the three translations and with

B, D and G forming the (2+1)-dimensional Lorentz group SO(2, 1):

{

B,D
}

= B,
{

G,B
}

= D,
{

D,G
}

= G , (4.4.56)

with Casimir

C = B ◦G+ G ◦B +D ◦D . (4.4.57)

Adjoining the supercharges results in the super-Poincaré algebra of (2+1)-dimensions. The Lorentz

charges do not belong to the infinite towers of constants of motion mentioned earlier. Rather, they

act as raising and lowering operators. One verifies for the Qn and I+
n :

{

B, I+
n

}

= −nI+
n−1,

{

D, I+
n

}

= (n− 1)I+
n ,

{

G, I+
n

}

= (n
2
− 1)I+

n+1,
{

B,Qn

}

= −nQn−1,
{

D,Qn

}

= (n− 1
2
)Qn,

{

G,Qn

}

= (n
2
− 1

2
)Qn+1.

(4.4.58)

(Note that the {B, I+
2 } bracket coincides with {B, 2H}, which should equal −2P according to the

Galileo algebra. But the above result, viz. −2I+
1 , gives −2(P −

√
2λΩ). This central addition arises

from a term of the form
∫

dxdy
√

2λxδ′(x− y), whose value is ambiguous, depending on the order

of integration.) The brackets with the I−n do not close, but the I−n can be modified by the addition

of another tower of constant quantities, namely those of (4.4.42):

Ĩ−n = I−n −
√

2λn(n− 1)

∫

dxRn−2
− ψψ′ . (4.4.59)

The modified constants obey the same algebra as I+
n

{

B, Ĩ−n
}

= −nĨ−n−1,
{

D, Ĩ−n
}

= (n− 1)Ĩ−n ,
{

G, Ĩ−n
}

= (n
2
− 1)Ĩ−n+1. (4.4.60)

Evidently I+
n , Ĩ−n , and Qn provide irreducible, infinite dimensional representations for SO(2, 1), with

the Casimir, in adjoint action, taking the form l(l + 1), and l = 1 for I+
n , Ĩ−n , and l = 1/2 for Qn.

We inquire about the algebra of the towers of extended charges I+
n , Ĩ−n , and Qn. While some

(bosonic) brackets vanish, others provide new constants of motion like those in (4.4.41)-(4.4.43)
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and their generalizations with more derivatives. Thus it appears that one is dealing with an open

(super) algebra.

A final comment: We have presented supersymmetric versions of fluid dynamical models in two

and one space dimension. These models enjoy supersymmetry as well as extra “dynamical” symme-

tries tracing back to their origin in higher dimensional supermembrane models. Other investigations

of supersymmetric fluids are reported in Ref. [37].

There remain some obvious open questions. One is what other fluid interactions can be obtained

from the rich factory of (super)branes. For example, string theory D-branes have gauge fields living

on them. Such gauge fields would presumably remain in passing to a fluid model and may thus

provide a model of (super)magnetohydrodynamics from D-branes.

Another question is the construction and properties of fluid models with Grassmann variables

in arbitrary dimensions. Such models would not descend from supermembrane models and, conse-

quently, would not enjoy supersymmetry or other extended symmetries. Note, nevertheless, that

Grassmann Gauss potentials ψ can be used even in the absence of supersymmetry. For example,

the above models with the last explicitly fermion-dependent term omitted, possess a conventional,

bosonic Hamiltonian without supersymmetry, while the Grassmann variables are hidden in v and

occur only in the canonical 1-form. These models would describe fluids with fundamental spin de-

grees of freedom and it would be worthwhile to explore their physical properties in this description.
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5 NON-ABELIAN FLUIDS

5.1 Introduction

In this Section we generalize fluid dynamics to systems with non-Abelian charges. We begin with

some comments on the physical contexts in which such a generalization might be useful and the

scope and limitations of possible approaches to the problem.

The quintessential example of a physical system with non-Abelian charges is the quark-gluon

plasma. High energy collisions of heavy nuclei can produce a plasma state of quarks and gluons.

This new state of matter has recently been of great interest both theoretically and in experiments at

the RHIC facility and at CERN. In fact, there is growing evidence that such a state has already been

achieved at the RHIC facility [38]. In attempting a theoretical description, there are basically two

approaches that we can use. Since the plasma is at high temperatures, one can argue that the average

energy per particle is high enough to justify the use of perturbative Quantum Chromodynamics

by virtue of asymptotic freedom. However, it is known that because of the infrared divergences

various resummations, such as summing hard thermal loop contributions, have to be done before

a perturbative expansion with control of the infrared degres of freedom can be set up [39]. One

has to address also the question of chromomagnetic screening, because unlike the Abelian plasma,

there can be spatial screening of magnetic type interactions [40]. The expected end result is then

a good description valid at high temperatures and for plasma states that are not too far from

equilibrium, since one is perturbing around the equilibrium state. An alternative approach, which

may be more suitable for nondilute plasmas or for situations far from equilibrium, would be to use

a fluid mechanical description.

We begin by observing that many of the general comments given in the introduction, on deriving

fluid mechanics from an underlying particle theory by statistical averages, will apply in the non-

Abelian context as well. Specifically for the quark-gluon plasma, some work along these lines was

done many years ago using single particle kinetic equations [41]. The one-particle kinetic equation

takes the form

P µ

[

∂

∂Xµ
+ gQaF

a
µν

∂

∂Pν

+ gfabcA
b
µQc

∂

∂Qa

]

f(X,P,Q) = C(f). (5.1.1)

Here f(X,P,Q) is the one-particle distribution function and C is the collision integral term taking

account of scatterings of the particles. Aa
µ and F a

µν are the potential and field for a non-Abelian

theory based on a gauge group with structure constants fabc. Here Qa represents the classical color

charge of the particle.

It may be interesting to note that, for a collisonless plasma, i.e., with C = 0, the Boltzmann

equation (5.1.1) is the equation for the distribution function for single particles obeying the standard

classical equations of motion for non-Abelian particles – the so-called Wong equations [42] – which
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are

m
dXµ

dτ
= P µ,

m
dPµ

dτ
= gQaF

a
µνP

ν, (5.1.2)

m
dQa

dτ
= −gfabc(P

µAb
µ)Qc.

As we shall see shortly, the motion of the color degrees of freedom can also be described in a phase

space way; the appropriate space is the Lie group modulo the maximal torus.

The Boltzmann equation (5.1.1) is invariant under gauge transformations in the sense that if

f(X,P,Q) solves (5.1.1), then so does f(X,P, U−1QU). As in the Abelian case, one may, in a

dilute system, seek a perturbative solution of the form f = f (0) + gf (1) + ..., where f (0) = np is the

equilibrium distribution; the perturbative corrections can then give the transport coefficients and

fluid equations of motion [41]. Such an approach suffers from the same limitations mentioned in

the introduction, namely, that it can only be justified for dilute systems near equilibrium and in

a semiclassical approximation. However, the fact that the equations for the Abelian fluid have a

fairly large regime of validity, despite the fact that it can be derived from an underlying particle

theory in a limited context, then prompts us to ask for an a priori derivation of a non-Abelian

fluid mechanics, which incorporates the non-Abelian degrees of freedom, coupling to a non-Abelian

gauge field, etc. This theory may be valid for dense, nonperturbative and nondilute systems. This

is the goal of this section. In proceeding with the development of such a theory, it is useful to keep

in mind some guidelines or desirable features. First of all, a canonical or symplectic formulation (at

least in the conservative limit) is important for quantization, so we should aim for this. At the same

time, the analysis based on the kinetic equations still remains useful to us as a guide for arriving

at the equations of interest. Our analysis is based on the paper in Ref [43].

5.2 Non-Abelian Euler variables

A possible form for the non-Abelian Euler fluid variables may be inferred from the single-particle

equations of motion (5.1.2) by a procedure analogous to what was one in Section 1.1 for the Abelian

case.

The single-particle non-Abelian current is defined in terms of the Lagrange variables Xµ and

Qa,

Jµ
a (t, r) =

∫

dτ Qa(τ)
dXµ(τ)

dτ
δ(X0(τ)− ct) δ(X(τ)− r). (5.2.1)

With the parametrization X0(τ) = cτ ,

ρa(t, r) = Qa(t) δ(X(t)− r), (5.2.2)

Ja(t, r) = Qa(t) Ẋ(t) δ(X(t)− r). (5.2.3)
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This generalizes (1.1.2) and (1.1.6) by inclusion of the dynamical non-Abelian charge Qa which

satisfies (5.1.2), so that Jµ
a is covariantly conserved.

(Dµ J
µ)a ≡ ∂µJ

µ
a + fabcA

b
µJ

µ
c = 0 (5.2.4)

(In the present case, the current is defined without the mass factor and it is normalized by Qa.)

Passage to the fluid description is achieved as in Section 1.1. In the many-particle case, dynamical

quantities are decorated with the particle label n, as in (1.1.8)-(1.1.10), which is summed in the

definition of the current. Then in the continuum fluid limit, n is replaced by the continuous variable

x and the charge and current densities read

ρa(t, r) =

∫

d3x Qa(t,x) δ(X(t,x)− r), (5.2.5)

Ja(t, r) =

∫

d3x Qa(t,x) Ẋ(t,x) δ(X(t,x)− r), (5.2.6)

with Qa(t,x) satisfying

Q̇a(t,x) + fabc

[

cAb
0(t,X(t,x)) + Ẋ(t,x) ·Ab(t,X(t,x))

]

Qc(t,x) = 0. (5.2.7)

[Notice that replacing a discrete sum by an integral over x forces Qa(t,x) to be a charge density.]

Observe that, just as in the Abelian case discussed in Section 1.1, the x-integration evaluates x

at χ(t, r), the inverse of X, and the Jacobian factor | det ∂X i/∂xj |x=χ is just the Abelian charge

density ρ [see (1.1.18), (1.1.19)]. Thus the non-Abelian quantities factorize.

ρa(t, r) = Qa(t, r) ρ(t, r) (5.2.8)

Ja(t, r) = Qa(t, r) ρ(t, r) v(t, r) (5.2.9)

Equivalently

Jµ
a (t, r) = Qa(t, r) j

µ(t, r), (5.2.10)

where

Qa(t, r) = Qa(t,x)|x=χ, (5.2.11)

ρ(t, r) Qa(t, r) =

∫

dxQa(t,x) δ(X(t,x)− r). (5.2.12)

As a consequence of its definition, the Abelian current factor jµ = (cρ,vρ) satisfies its own continuity

equation (1.1.16). Moreover, differentiating (5.2.12) with respect to time and using (1.1.16) and

(5.2.7) results in an equation for Q̇a,

Q̇a(t, r) + v(t, r) · ∇Qa(t, r) = −fabc

[

cAb
0(t, r) + v(t, r) ·Ab(t, r)

]

Qc(t, r) (5.2.13)

which can also be written as

jµ(DµQ)a = 0. (5.2.14)
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This is analogous to the Abelian equations (1.2.74). Equations (5.2.13) and (5.2.14) can be un-

derstood from the fact that the covariantly conserved current (5.2.1), (5.2.4) factorizes according

to (5.2.10) into a group variable Qa and a conserved Abelian current jµ. Consistency of (1.1.16),

(5.2.4) and (5.2.10) then enforces (5.2.14). Evidently this is a generalization of the particle Wong

equation (5.1.2); thereofre we shall refer to it as the fluid Wong equation.

We recognize that the formulas (5.2.5) and (5.2.6) are the non-Abelian version of the Lagrange

variable-Euler variable correspondence [see (1.1.3) and (1.1.4)]. Also, (5.2.7) is the field generaliza-

tion of the particle Wong equation, presented in the Lagrange formalism, and (5.2.13) and (5.2.14)

are the Euler version of the same. The decomposition of the non-Abelian current in (5.2.10) is the

non-Abelian version of the Eckart decomposition (1.4.6). Indeed, (5.2.10) may be further factored

as in (1.4.6).

Jµ
a (t, r) = Qa(t, r) n(t, r) uµ(t, r) (5.2.15)

In the remainder of Section 5, we are guided in our construction of a dynamical model for non-

Abelian fluid mechanics and “color” hydrodynamics by the above properties of the non-Abelian

current, which follow from the very general arguments, based on a particle picture for the substratum

of a fluid. In Sidebar G, at the end of this Section, we present a different model, based on a field

theoretic fluid substratum.

5.3 Constructing the action

The equations of motion for the non-Abelian fluid in the Euler formulation include the kinematical

equations: continuity (5.2.4) and Wong (5.2.14) that are satisfied by the non-Abelian current, which

is factorized as in (5.2.10)-(5.2.15). Still needed is the Euler force equation, analogous to (1.4.14),

which specifies the dynamics. We present this by constructing an action whose variation reproduces

the kinematical equations and gives a model for the dynamical equation.

The algebra underlying the non-Abelian theory is realized with anti-Hermitian generators Ta

satisfying

[T a, T b] = fabc T
c, (5.3.1)

and normalized by

tr T aT b = −1

2
δab. (5.3.2)

In a canonical particle theory we expect that the algebra (5.3.1) is reproduced by Poisson brackets

for corresponding symmetry generators. In a field theory, we expect to find a copy of (5.3.1) at each

point in space, leading to the Poisson brackets

{ρa(r), ρb(r
′)} = fabc ρc(r) δ(r− r′), (5.3.3)

which generalize (1.2.16). [A common time argument is suppressed.] Upon quantization the brackets

become commutators and acquire the factor i/~. (Schwinger terms do not spoil the quantum algebra
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unless there are anomalies in the gauge symmetry [44]. Of course, we assume that the theory is

anomaly-free.)

The action which leads to the commutation rules (5.3.3) is the field theoretic version of the

Kirillov-Kostant form, which for a particle (not a field) reads

IKK = 2n

∫

dt trT 3g−1ġ. (5.3.4)

where n is a normalization constant and we have taken the group SU(2) as a concrete example:

g ∈ SU(2), g = exp(T aϕa), T
a = σa/2i and σa are Pauli matrices. The action (5.3.4) is invariant

under g → g exp T 3 ϕ, modulo surface terms. Therefore, the theory governed by (5.3.4) is defined on

the 2-dimensional sphere SU(2)/U(1) = S2. The observables are given by qa = −2 tr (g T 3 g−1 T a),

one can show that they obey commutation rules {qa, qb} = εabcqc, which is the single-particle version

of (5.3.3). Upon quantization, the quantum Hilbert space will consist of one unitary irreducible

representation of the group SU(2) with the highest weight or j-value given by j = 1
2
n. The

symplectic 2-form associated with (5.3.4) is the field of a magnetic monopole on the two-sphere

S2 = SU(2)/U(1). The Dirac quantization rule requires that n be an integer, consistent with j

being half-integral. Interpreting the single irreducible representation of the group as representing

the charge degrees of freedom, the action (5.3.4) describes a single particle with SU(2) non-Abelian

charges. One can in fact use (5.3.4) as part of an action for the Wong equations of motion [8], [45].

More generally, consider a Lie group G with H denoting its Cartan subgroup (or maximal torus).

The required generalized action is given by

I0 =

r
∑

s=1

ns

∫

dt trK(s)g
−1ġ (5.3.5)

where g ∈ G and ns are the highest weights defining a unitary irreducible respresentation of G, K(s)

are the diagonal generators of the Cartan subalgebra H of G. The summation in (5.3.5) extends

up to the rank r of the algebra, but some of the n’s could vanish. The action (5.3.5) is invariant

under g → gh, h ∈ H and time independent, so that the phase space is G/H , which is known to

be a Kähler (and symplectic) space. Quantization leads to a finite dimensional Hilbert space which

carries a unitary irreducible representation of G labelled by the highest weights ns.

Given this structure, we see that field theoretic generalization, which would give rise to (5.3.3),

appears as
∫

dt dr
∑r

s=1 n(s) tr (K(s) g
−1 ġ), where now ns and g depend on r, while the K(s) remain

as constant elements of the Cartan subalgebra of the group. Thus we take as the Lagrange density

for our non-Abelian fluid dynamics the formula

L =

r
∑

s=1

jµ
(s)2 trK(s)g

−1Dµg − f(n(1), n(2), . . . , n(r)) + Lgauge. (5.3.6)

Here jµ
(s) are a set of Abelian currents; they may be taken to be in the Eckart form jµ

(s) = n(s)u
µ
(s),

where uµ’s are four-velocity vectors, with uµ
(s)u(s)µ = 1. As far as the variational problem of this
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action is concerned, we regard n(s) as given by jµ
(s) via n(s) =

√

jµ
(s)jµ(s). The space and time

components of the currents are given by jµ
(s) = (cρ(s), ρ(s)v(s)), ρ(s) = n(s)u

0
(s). In equation (5.3.6)

n(s) are the invariant densities for the diagonal directions of the Lie algebra.

Comparison with the usual form of the action for an Abelian fluid shows that what we have

obtained is the non-Abelian analogue of the irrotational part of the flow. In the Abelian case,

and without the gauge field coupling, equation (5.3.6) entails a single contribution, s = 1, and

2tr(K1g
−1∂µg) = −∂µθ, with vanishing vorticity. In the non-Abelian case, the vorticity is still

nonvanishing. One can easily generalize (5.3.6) to include the other Gaussian components of the

Clebsch parametrized vector which couples to jµ
(s). This gives the Lagrangian

L =

r
∑

s=1

jµ
(s)

{

2trK(s)g
−1Dµg + aµ(s)

}

− f(n(1), n(2), . . . , n(r)) + Lgauge (5.3.7)

where aµ(s) is given by

aµ(s) = α(s)∂µβ(s). (5.3.8)

For the rank - one group SU(2), with its single Cartan element, the s-sum in (5.3.6) is exhausted

by a single element. We see that the SU(2) fluid has one component. For higher rank groups, the

non-Abelian fluid can have up to r components, but fewer - indeed even just a single flow - are

possible when some of the densities n(s) vanish. Mathematically, single-component fluids are the

simplest, but physically it is unclear what kinematical regimes of a quark-gluon plasma, for example,

would admit or even require such a reduction in flows.

The covariant derivative in (5.3.6), namely,

Dµg = ∂µg + Aµg, (5.3.9)

involves a dynamical non-Abelian gauge potential Aµ = Aa
µT

a whose dynamics is provided by

Lgauge. The first term in L contains the canonical 1-form for our theory and determines the sym-

plectic structure ad the canonical brackets. We have added the Hamiltonian density part, the

function f(n(1), n(2), . . . , n(r)) which describes the fluid dynamics. The theory is invariant under

gauge transformations with group element U

g → U−1g

Aµ → U−1 (Aµ + ∂µ)U .
(5.3.10)

where U ∈ G. In Side bar D we show that the canonical structure of our theory leads to the

charge-density algebra (5.3.3).

D. Sidebar on the charge density algebra

The portion of the Lagrange density (5.4.1) that determines the Poisson bracket is

Lcanonical = ρ 2trKg−1ġ = ρ 2trQġg−1 . (D.1)
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where Q ≡ gKg−1. The phase space is parameterized by the scalar density ρ and parameteris ϕa

specifying the elements g of the group G. Thus the phase space is identified as as

{set of all maps ρ (r) = R3 → R+, g(r) = R3 → G}

With a parametrization of the group element, e.g. g(ϕ) = eT aϕa , one sees that ġg−1 has the form

ϕ̇aC
a
b(ϕ)T b, where the non-singular matrix Ca

b(ϕ) is defined by

Ca
b(ϕ)T b =

∂g(ϕ)

∂ϕa

g−1(ϕ) . (D.2)

Thus

Lcanonical = −ρ ϕ̇aC
a
bQb = −ϕ̇aC

a
bρb (D.3)

We give a new name to the combination Ca
bρb,

Πa ≡ −Ca
bρb (D.4)

The (D.3) reads

Lcanonical = Πaϕ̇a (D.5)

Consequently, applying the formalism explained in Sidebar A(a), we conclude immediately that Πa

and ϕa are canonically conjugate. Moreover, the charge density can be expressed in terms of Πa

and cba, the inverse to Ca
b,

ρa = −cabΠb . (D.6)

The non-Abelian charge density ρa is a function of (t, r) and for (5.3.3) we need the bracket

with another density evaluated at (t, r′). (The common t-dependence is suppressed.) Since the

dependence of cab on ϕ involves no spatial derivatives of ϕ, it is clear that the brackets will be local

in r− r′, just as is the bracket between ϕ and Π.

{ρa(r), ρb(r
′)} =

(

caa′

∂cbb′

∂ϕa′

Πb′ − a↔ b

)

δ (r− r′)

=

(

−caa′cbc′
∂Cc′

c′′

∂ϕa′

cc
′′

b′Π
b′ − a↔ b

)

δ (r− r′)

=

(

caa′cbc′
∂Cc′

c′′

∂ϕa′

ρc′′ − a↔ b

)

δ (r− r′) (D.7)

To evaluate the derivative with respect to ϕ, return to (D.2) and observe

∂Cc′

c′′

∂ϕa′

= − ∂

∂ϕa′

2tr
∂g

∂ϕc′
g−1T c′′

= −2tr

(

∂2g

∂ϕa′∂ϕc′
g−1 − Cc′

d′T
d′Ca′

d′′T
d′′
)

T c′′ (D.8)
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The first term in the parentheses is symmetric in (a′, c′); when inserted in (D.7) it produces a sym-

metric contribution in (a, b) and does not contribute when antisymmetrization in (a, b) is effected.

What is left establishes (5.3.3).

{ρa(r), ρb(r
′)} =

(

caa′cbc′C
c′

d′C
a′

d′′2trT d′T d′′T c′′ρc′′ − a↔ b
)

δ (r− r′)

= −
(

2trT aT bT c′′ρc′′ − a↔ b
)

δ (r− r′)

= −2trfabdT
dT c′′ρc′′δ (r− r′)

= fabcρc(r)δ (r− r′) (D.9)

For simplicity here we examined the single-channel case. The multi-channel case can be treated

similarly.

It is instructive to rederive the above result by using the general theory of canonical transfor-

mations, described in Sidebar A (a), (d).

From (D.3) we see that the canonical 1-form has components

aρ = 0,

aϕa
= −ρCa

bQb = −Ca
b ρb (D.10)

[These generalize ai in (A.1).] The symplectic 2-form [generalizing fij in (A.3)] reads

fρρ(r, r
′) = 0,

fρϕa
(r, r′) = −δ(r − r′)Ca

bQb,

fϕaϕb
(r, r′) = δ(r− r′) ρCa

cC
b
dQe fcde. (D.11)

(The delta-function arises because the 1-form is a function of the coordinates and involves no

coordinated derivatives.) It follows form (A.12) that the generator of an infinitesimal canonical

transformation

δρ = −vρ

δϕa = −vϕa (D.12)

obeys
∫

dr′[vϕafϕaρ] = vϕa Ca
bQb =

δG

δρ
(D.13a)

∫

dr′[vρ fρϕa
+ vϕb fϕb ϕa

] = −vρCa
bQb − vϕb ρCa

cC
b
dQe fcde =

δG

δϕa
(D.13b)

Let us now consider the left translation of g: δg = ǫa T
a g, or equivalently δϕa = ǫb c

b
a,

δQa = fabc ǫbQc, δρa = fabc ǫb ρc. Here ǫa is a function of r. Thus we have vρ = 0, vϕa = ǫb c
b
a and

(D.13) are solved by

G = −
∫

dr ρQa ǫa = −
∫

dr ǫa ρ
a . (D.14)
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From the general theory (A.13), we learn that by Poisson bracketing G generates the above trans-

formation on any function of the phase space variables. Thus

{∫

dr ǫa(r) ρa(r), ρb(r
′)

}

= −δρb(r
′)

= fabc ǫb (r′) ρc (r′) . (D.15)

Stripping away the arbitrary function ǫa(r) reproduces (D.9).

Next we consider a right translation of g by the Lie algebra element K, present in the canonical

1-form: δg = gKλ, or equivalently δϕa = λQb c
b
a, leading to vρ = 0, vϕa = −λQb c

b
a. Here λ is

a function of r. Eqs. (D.13) are now solved by

G = −
∫

dr λ ρ , (D.16)

when K is normalized to tr K2 = −1
2
. It then follows from (A.13), that once λ is stripped away,

{ρ(r), g(r′)} = −δ(r− r′) gK . (D.17)

and

{ρ(r), ρ(r′)} = 0 . (D.18)

5.4 Equations of motion

In working out the equations of motion and other consequences of this theory, it is instructive to

consider first the simpler case of a single flow. This is obtained for G = SU(2), but could also occur

in higher rank groups.

(i) Single component flow

The single flow Lagrangian takes the form

L = jµ2trKg−1Dµg − f(n) + Lgauge , (5.4.1)

where K = σ3/2i. Now we have a single Abelian current jµ which can be decomposed as

jµ = (cρ,vρ) = nuµ , uµuµ = 1 . (5.4.2)

The current Jµ
a to which Aa

µ couples is easily worked out from (5.4.1). Upon defining

gKg−1 ≡ Q = QaT
a , (5.4.3)
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we find

Jµ
a = (cρa,Ja) = Qaj

µ = Qa n u
µ , (5.4.4)

ρa = ρQa.

Qa may be thought of as the charge of a single particle, with ρa = ρQa as the non-Abelian charge

density at the point r. Notice that this is of the Eckart form where the currents are given by charge

densities multiplied by the velocity vector. This agrees with the general discussion in Section (5.2),

where we showed that a particle based model for the fluid leads to the Eckart forms (5.2.8), (5.2.9).

The gauge invariance of the Lagrangian (5.4.1) shows that the current Jµ ≡ Jµ
a T

a must be

covariantly conserved, i.e.,

(DµJ
µ)a = ∂µJ

µ
a + fabcA

b
µJ

µ
c = 0 (5.4.5)

Further the current jµ satisfies an ordinary conservation law,

∂µj
µ = 0 (5.4.6)

In Sidebar E, we show that both conservation laws are a consequence of invariance of the action

with respect to variations of the group element g: arbitrary left variations of g lead to covariant

conservation of Jµ
a (5.4.5) while the particular variation δg = gKλ, with λ an arbitrary function

of space-time, ensures that jµ is conserved as in (5.4.6). We shall see later that these can be

interpreted in terms of the Wong equations. Notice that these conservation laws lead to the fluid

Wong equation

jµ(DµQ)a = 0 (5.4.7)

as has already been noted in (5.2.14).

E. Sidebar on varying the group element g

We determine the variation of

I0 =

∫

dt dr

r
∑

s=1

jµ
(s) 2trK(s)g

−1Dµg , (E.1)

when g is varied either arbitrarily or in the specific manner

g−1δg = K(s′)λ , (E.2)

where λ is an arbitrary function on space-time. This will provide the needed results (5.4.5) and

(5.4.6) for the single channel situation, as well as for many channels in (5.4.22) and (5.4.23), below.

Recall the definitions Q(s) = gK(s)g
−1 and Dµg = ∂µg + Aµg, which implies Dµg

−1 = ∂µg
−1 −

g−1Aµ. First, the variation of g−1Dµg is established.

δ
(

g−1Dµg
)

= −g−1δgg−1Dµg + g−1Dµδg (E.3)
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To evaluate the last term, note that Dµδg = Dµ (gg−1δg) = (Dµg)g
−1δg + gDµ (g−1δg). Thus

δ
(

g−1Dµg
)

= ∂µ

(

g−1δg
)

+ [g−1Dµg, g
−1δg] . (E.4)

Inserting (E.4) into the variation of I0 in (E.1), integrating by parts, and rearanging the trace with

K(s) gives

δI0 = −
∫

dt dr
r
∑

s=1

(

∂µj
µ
(s) 2trK(s)g

−1δg + jµ
(s)2tr

[

g−1Dµg,K(s)

]

g−1δg
)

. (E.5)

Considering first arbitrary variations: the vanishing of δI0 requires

r
∑

s=1

(

∂µj
µ
(s)K(s) + jµ

(s)

[

g−1Dµg,K(s)

]

)

= 0 (E.6)

or, after sandwiching the above between g . . . g−1,

r
∑

s=1

(

∂µj
µ
(s)Q(s) + jµ

(s)

[

Dµgg
−1, Q(s)

]

)

= 0 . (E.7)

Finally we verify that
[

Dµgg
−1, Q(s)

]

= DµQ(s) , (E.8)

so that the desired results (5.4.5) and (5.4.22) follow.

r
∑

s=1

(

∂µj
µ
(s)Q(s) + jµ

(s)DµQ(s)

)

= Dµ

(

r
∑

s=1

jµ
(s)Q(s)

)

= DµJ
µ = 0 (E.9)

Next we consider the specific variation (E.2) and separate the sum (E.5) into the term s = s′

and s 6= s′. After a rearrangement of the last term in (E.5), we get

δI0 = −
∫

dt dr
(

∂µj
µ
(s′) 2trK(s′)K(s′)λ+ jµ

(s′) 2trg−1Dµg[K(s′), K(s′)]λ
)

+
∑

s 6=s′

(

∂µj
µ
(s) 2trK(s)K(s′)λ+ jµ

(s) 2trg−1Dµg[K(s), K(s′)]λ
)

. (E.10)

The first commutator vanishes; so does the second when K(s) and K(s′) commute, i.e. when they

belong to the Cartan subalgebra. Also 2trK(s)K(s′) = −Ka
(s)K

a
(s′); for s′ = s this is constant, while

for s′ 6= s it vanishes when it is arranged that distinct elements of the Cartan algebra are selected.

Thus for stationary variations jµ
(s) must be conserved, and (5.4.6) as well as (5.4.23) are validated.

It remains to derive the Euler equation. This is accomplished by varying jµ; stationary variation

requires

2tr
[

Q(Dµg)g
−1
]

= 2tr(Kg−1Dµg) =
uµ

c2
f ′(n) , (5.4.8)
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which we call the non-Abelian Bernoulli equation. The Euler equation then follows, as in the

Abelian case, by taking the curl .

∂µ

(

2trQ(Dνg)g
−1
)

− ∂ν

(

2trQ(Dµg)g
−1
)

= ∂µ

(uν

c2
f ′(n)

)

− ∂ν

(uµ

c2
f ′(n)

)

(5.4.9)

In Sidebar F, we show that manipulating the left side allows rewriting (5.4.9) as

2tr(DµQ)(Dνg)g
−1 + 2trQFµν = ∂µ

(uν

c2
f ′(n)

)

− ∂ν

(uµ

c2
f ′(n)

)

. (5.4.10)

Finally, contracting with jµ = nuµ and using (5.4.5) produces the relativistic, non-Abelian Euler

equation.
nuµ

c2
∂µ (uνf

′(n))− n∂νf
′(n) = 2trJµFµν (5.4.11)

The left side is of the form of the usual Abelian Euler equation; the right side describes the non-

Abelian Lorentz force acting on the charged fluid.

F. Sidebar on manipulating equation (5.4.9)

Observe that the first term in (5.4.9) equals

∂µ2trQ(Dνg)g
−1 = 2tr

(

(DµQ)(Dνg)g
−1 +Q(DµDνg)g

−1 −Q(Dνg)g
−1(Dµg)g

−1

)

. (F.1)

The first term on the right side is rewritten with the help of (E.8) and combined with the last term,

leaving

2tr
(

Q(DµDνg)g
−1 −Q(Dµg)g

−1(Dνg)g
−1
)

.

After antisymmetrization in (µ, ν), the left side of (F.1) reads

2trQ
(

([Dµ, Dν]g)g
−1 − [(Dµg)g

−1, (Dνg)g
−1]
)

= 2tr
(

QFµν − [Q, (Dµg)g
−1](Dνg)g

−1
)

. (F.2)

When (E.8) is used again, (F.2) becomes the left side of (5.4.10).

The curved space generalization of the action for the Lagrangian (5.3.10) is given by

I =

∫ √
−η d4x

(

jµ2trKg−1Dµg − f(n)

)

+ Igauge , (5.4.12)

where n =
√

jµjνηµν . (We use η for the metric even in curved space to avoid confusion with g, the

group element.) The variation of this action with respect to the metric, δI = −1
2

∫ √−η δηµν Θµν

identifying the total energy-momentum tensor Θµν as

Θµν = θµν + θµν
gauge ,

θµν = −ηµν [nf ′(n)− f(n)] +
uµuν

c2
nf ′(n) . (5.4.13)
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We have used equation (5.4.7) to eliminate trKg−1Dµg in the matter part of the energy-momentum

tensor θµν . This behaves as the corresponding Abelian expression (1.4.5), except that now there is

an interaction with a non-Abelian gauge field.

The divergence of θµν entails two independent parts: one proportional to uν and the other

orthogonal to it, compare (1.4.12).

∂µθ
µν = ∂µ(nuµ)

uνf ′(n)

c2
+ n

[

uµ

c2
∂µ(uνf ′(n))− ∂νf ′(n)

]

(5.4.14)

The first vanishes by the virtue of (5.4.6) and the rest is evaluated from the Euler equation (5.4.11),

leaving

∂µθ
µν = 2trJµF

µν , (5.4.15)

which is canceled by the divergence of the gauge-field energy-momentum tensor.

∂µθ
µν
gauge = −2trJµF

µν (5.4.16)

Thus we have conservation of the total energy-momentum tensor.

We record the nonrelativistic limit of the Euler equation (5.4.11). For small velocities, we may

write, as in Section 1.4.

n ≈ ρ− 1

2c2
ρv2

uµ ≈ (c,v) (5.4.17)

Further, we take f(n) to be of the form

f = nc2 + V (n) . (5.4.18)

With these simplifications, we find that the nonrelativistic limit for the spatial component of (5.4.11)

gives the Euler equation with a non-Abelian Lorentz force

v̇ + v · ∇v = force +QaE
a +

v

c
×QaB

a , (5.4.19)

where force is the pressure force coming from the potential V (and is therefore Abelian in nature),

while non-Abelian force terms involve the chromoelectric and chromomagnetic fields.

Ei
a = cF a

0i , Bi
a = −1

2
ǫijkF a

jk (5.4.20)

It is seen that the non-Abelian fluid moves effectively in a single direction specified by j = ρv.

Nevertheless, it experiences a non-Abelian Lorentz force.

Eventhough we wrote down the curved space action (5.4.12) primarily to obtain the energy-

momentum tensor, we note that it may be useful for relativistic astrophysics with the quark-gluon

plasma as in early universe or perhaps in the interior of neutron stars.
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(ii) Multi-component flow

We now return to the more general multi-component action (5.3.6). The current which couples to

the gauge potential is now

Jµ =

r
∑

s=1

Q(s)j
µ
(s) , with Q(s) = gK(s)g

−1 . (5.4.21)

Arbitrary variation of g ensures that (5.4.21) is covariantly conserved, DµJ
µ = 0, but we also need

the conservation of individual jµ
(s). This is achieved by considering special variations of g of the

form δ(s)g = gK(s)λ(s). These variations of g lead to

∂µj
µ
(s) = ρ̇(s) +∇ · (v(s)ρ(s)) = 0 (5.4.22)

The fluid Wong equation which follows from the conservation of the Abelian and non-Abelian

currents now reads
r
∑

s=1

jµ
(s)DµQ(s) = 0 . (5.4.23)

Varying the individual jµ
(s) in (5.3.7) produces the Bernoulli equations

2trQ(s)(Dµg)g
−1 =

uµ

c2
f (s), (5.4.24)

where

f (s) ≡ ∂

∂n(s)

f(n(1), n(2), . . . , n(r)). (5.4.25)

As in the single channel case, the curl of equation (5.4.24) can be cast in the form

1

c2

{

∂µ
(

uν
(s)f

(s)
)

− ∂ν
(

uµ
(s)f

(s)
)}

= 2tr

(

(DµQ(s))(D
νg)g−1 +Q(s)F

µν

)

. (5.4.26)

When contracted with jµ
(s) = n(s)u

µ
(s), this leaves

n(s)u
µ
(s)

c2
∂µ

(

uν
(s)f

(s)
)

− n(s)∂
νf (s) = jµ(s)2tr

(

(DµQ(s))(D
νg)g−1 +Q(s)F

µν

)

. (5.4.27)

However, unlike in the single channel case, the right side does not simplify since jµ(s)Q(s) cannot

be replaced by Jµ because the latter requires summing over s. Also the first right-hand term in

(5.4.27) does not vanish since (5.4.23) requires summation over s. Equations (5.4.27) are the Euler

equations for the multicomponent non-Abelian fluid.

The matter part of the energy-momentum tensor is now given as

θµν = −gµν

(

r
∑

s=1

n(s)f
(s) − f

)

+
r
∑

s=1

uµ
(s)u

ν
(s)

c2
n(s)f

(s) . (5.4.28)
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Its divergence is of the form (5.4.14).

∂µθ
µν =

r
∑

s=1

{

(

∂µ(n(s)u
µ
(s))
) uν

(s)f
(s)

c2
+ n(s)

[

uµ
(s)

c2
∂µ

(

uν
(s)f

(s)
)

− ∂νf (s)

]}

(5.4.29)

Using (5.4.22) and (5.4.27), the right side of this equation is evaluated as

r
∑

s=1

jµ(s)2tr

(

(DµQ(s))(D
νg)g−1 +Q(s)F

µν

)

.

Since now we are summing over all channels, it follows from (5.4.21) and (5.4.23) that, as before,

∂µθ
µν = 2trJµF

µν . (5.4.30)

Some simplifications which lead to a more transparent physical picture occur if the dynamical

potential separates

f(n(1), . . . , n(r)) =

r
∑

s=1

f(s)(n(s))

f (s) = f ′
(s) (5.4.31)

Then the left side of (5.4.27) refers only to variables labeled s, while the right side may be rewritten

with the help of the generalized Wong equation (5.4.23) to give

n(s)u
µ
(s)

c2
∂µ

(

uν
(s)f

′
(s)

)

− n(s)∂
νf ′

(s) = 2tr

(

JµF
µν −

r
∑

s′ 6=s

jµ(s′)

(

Q(s′)F
µν + (DµQ(s′))(D

νg)g−1
)

)

.

(5.4.32)

Thus in the addition to the Lorentz force, there are forces arising from the other channels s′ 6= s.

Note that for separated dynamics (5.4.31), the energy-momentum tensor also separates,

θµν =
r
∑

s=1

θµν
(s) =

r
∑

s=1

{

−gµν
(

n(s)f
′
(s) − f(s)(n(s))

)

+
uµ

(s)u
ν
(s)

c2
n(s)f

′
(s)

}

. (5.4.33)

but the divergence of each individual T µν
(s) does not vanish. This is just as expected since energy can

now be exchanged between the different channels and with the gauge field; this is also evident from

the equation of motion (5.4.32). It is clear that this fluid moves with r different velocities v(s).

The single-channel Euler equation (5.4.11) is expressed in terms of physically relevant quantities

(currents, chromomagnetic fields); the many-channel equation (5.4.27) involves, additionally, the

gauge group element g. One may simplify that equation by going to special gauge, for example

g = I, so that the right side of (5.4.27) reduces to

jµ
(s)2tr

(

(DµQ(s))(Dνg)g
−1 +Q(s)Fµν

)

= jµ
(s)2trK(s)(∂µAν − ∂νAµ) (5.4.34)
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while the Wong equation (5.4.23) becomes

r
∑

s=1

jµ
(s)[Aµ, K(s)] = 0. (5.4.35)

It is interesting that in this gauge the nonlinear terms in Fµν disappear.

Observe that the inclusion of the α, β-components of the current, or the use of the Lagrangian

(5.3.7), does not change the form of the equations of motion for fluids when expressed in terms of

the velocities and densities. The expressions for these quantities in terms of the group parameters

and α, β will, of course, be altered.

G. Sidebar on field-based fluid mechanics

In the body of our review, we presented Eulerian variables, their connection to Lagrangian

variables and their equations of motion in a picture derived from an underlying physical reality

composed of point particles, whose discrete distribution is approximated by a continuum. For the

Abelian case this was developed in Section 1.1. The hallmark of this approach is that the fluid

current factorizes in an Eckart form. For the Abelian current we have

jµ = nuµ , (G.1)

which is no restriction at all, but for the non-Abelian current the further factorization is nontrivial,

Jµ
a = Qaj

µ = Qa nu
µ . (G.2)

Here we present an alternative view of fluid mechanics, which is field-based as opposed to

particle-based. In the Abelian case, it results in fluid equations that coincide with those of the

particle-based derivation. This is in keeping with the fact that the Abelian Eckart form is not

restrictive. However for the non-Abelian situation, the field-based picture results in equations

which are different and much less elegant than the particle-based ones discussed in the body of the

text.

A field-based realization of the Euler equations for an Abelian fluid is provided by the Madelung

“hydrodynamical” rewriting of the Schrödinger equation [46].

i~ ψ̇ = − ~
2

2m
∇

2ψ (G.3)

(We consider only the free equation.) Upon presenting the wave function as

ψ(t, r) =
√

ρ(t, r) eimθ(t,r)/~ (G.4)

we find that the imaginary part of (G.3) results in the continuity equation for jµ = (cρ, j), where

the spatial current j is also the quantum current (~/m) Imψ∗∇ψ. When j is written as vρ, v is
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identified as ∇θ; the velocity is irrotational. The real part of (G.3) gives the Bernoulli equation,

with a quantum force derived from

V =
~

2

2m2
(∇
√
ρ)2 =

~
2

8m2

(∇ρ)2

ρ
(G.5)

The Euler equation follows by taking the gradient of the Bernoulli equation. In this way, we arrive

again at the conventional irrotational fluid.

The story changes if we start from a non-Abelian Schrödinger equation. Again we consider

the free case with nonrelativistic kinematics. Thus the equation involves a multi-component wave

function Ψ, with

i~Ψ̇ = − ~
2

2m
∇

2Ψ (G.6)

The color degrees of freedom lead to the conserved non-Abelian current.

Jµ
a = (cρa,Ja)

ρa = iΨ†T aΨ, Ja =
~

m
ReΨ†T a

∇Ψ (G.7)

The singlet current jµ = (cρ, j) is also conserved.

For definiteness and simplicity, we shall henceforth assume that the group is SU(2) and that the

representation is the fundamental one: T a = σa/2i, {T a, T b} = −δab/2. We shall also set the mass

m and Planck’s constant ~ to unity [47]. The non-Abelian analogue of the Madelung decomposition

(G.4) is

Ψ =
√
ρ gu , (G.8)

where ρ is the scalar Ψ†Ψ, g is a group element, and u is a constant vector that points in a fixed

direction [e.g., for SU(2) the two-component spinor u could be taken as u1 = 1, u2 = 0, then

iu†T au = δa
3/2]. The singlet density is ρ, while the singlet current j = ImΨ∗∇Ψ is

j = vρ , v ≡ −iu† g−1
∇g u . (G.9)

With the decomposition (G.8), the color density (G.7) becomes

ρa = Qaρ , Qa = iu† g−1T ag u = iRab u
†T bu = Rab t

b/2, (G.10)

where Rab is in the adjoint representation of the group and the unit vector ta is defined as ta/2 =

iu†T au. On the other hand, the color current reads

Ja =
1

2
ρ Rab u

† (T b g−1
∇g + g−1

∇g T b) u , (G.11)

which with the introduction of

g−1∇g ≡ −2vaT a , (G.12)

v = vata , (G.13)
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may be presented as

Ja =
ρ

2
Rab vb . (G.14)

Unlike the Abelian model, the vorticity is nonvanishing.

∇× va = ǫabcvb × vc (G.15)

A difference between the Madelung approach and the previous particle based one is that the

color current is not proportional to the singlet current. Equation (G.14) may be decomposed as

Ja = Qaρv +
ρ

2
Rabv

b
⊥ (G.16)

where the “orthogonal” velocity va
⊥ is defined as

va
⊥ =

(

δab − tatb
)

vb . (G.17)

Equation (G.15) shows that color current possesses components that are orthogonal to the singlet

current.

In a Postscript at the end of this Sidebar, we derive for the SU(2) case the decomposition of

the Schrödinger equation with the parametrization (G.8). Two equations emerge: one regains the

conservation of the Abelian current and the other is the “Bernoulli” equation.

(

g−1ġ
)a

=

[

vb · vb − ∇
2√ρ
√
ρ

]

ta +
1

ρ
∇ ·

(

ρǫabcv
btc
)

(G.18)

It is further verified that the covariant conservation of the color current is a consequence of the

Abelian continuity equation and (G.18). However, there is no Wong equation because the color

current is not proportional to the conserved singlet current. Finally, using the identity, which

follows from the definition (G.12),

v̇a = −1

2
∇
(

g−1ġ
)a

+ ǫabcv
b
(

g−1ġ
)c
, (G.19)

one can deduce an Euler equation for v̇a from (G.18).

We record the energy and momentum density

E =
1

2
∇Ψ† ·∇Ψ =

1

2
ρva · va +

∇ρ ·∇ρ

8ρ
(G.20)

P =
i

2

(

∇Ψ†Ψ−Ψ†
∇Ψ

)

= vρ (G.21)

Both parallel and orthogonal components of the velocitiy contribute to the energy density but only

the parallel component v contributes to the momentum density. It is clear that within the present

approach the fluid color flows in every direction in the group space, but the mass density is carried
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by the unique velocity v. This is in contrast to our previous approach where all motion is in a

single direction or at most in the directions of the Cartan elements of the Lie algebra (Section 5.4).

The difference between the two approaches is best seen from a comparison of Lagrangians. For

the color Schrödinger theory in the Madelung representation

LSchrodinger =
i

2

(

Ψ†Ψ̇− Ψ̇† Ψ
)

− 1

2
∇Ψ† ·∇Ψ (G.22)

= iρ u† g−1ġ u− 1

2
ρva · va − (∇ρ)2

8ρ
. (G.23)

With u⊗ u† ≡ I/2− 2iK, the free part of the above reads

L0
Schrodinger = ρ 2trKg−1ġ − 1

2
ρva · va . (G.24)

On the other hand, the free part of the Lagrange density (5.4.1) in the nonrelativistic limit, with

f(n) given by (5.4.18), is

L0 = ρ 2tr

(

Kg−1ġ +Kv · g−1
∇g

)

−
√

ρ2(c2 − v2) ,

≈ ρ 2tr

(

Kg−1ġ +Kv · g−1
∇g

)

− ρc2 +
1

2
ρv2 , (G.25)

= ρ 2trKg−1ġ − 1

2
ρv2 − ρc2 ,

where we have used v = −2trKg−1∇g, which follows upon the variation of v, in the next-to-last

equality above. Thus the canonical 1-form is the same for both models while the difference resides

in the velocity dependence of their respective Hamiltonians. Only the singlet v enters (G.25) while

the Madelung construction uses the group vector va.

Finally, note that while the Euler equation, which emerges when (G.18) and (G.19) are combined,

intricately couples all directions of the fluid velocity va, it does admit the simple solution va = vta,

with v obeying the Abelian equations that arise from (G.3)-(G.4).

Postscript:

When (G.8) is inserted into (G.6), and use is made of the definition (G.12), we find in the SU(2)

case
1

2
iρ̇ u+ iρ(g−1ġ)aT a u = −1

2

√
ρ∇2√ρu+ ∇(ρva)T a u+

1

2
ρva · va u . (G.26)

Next (G.26) is premultiplied by u†, where it implies

iρ̇+ ρ(g−1ġ)ata = −√ρ∇2√ρ− i∇ (ρvata) + ρva · va . (G.27)

The imaginary part reproduces the continuity equation for the singlet current, while the real part

gives

(g−1ġ)aT a = − 1√
ρ
∇

2√ρ+ va · va . (G.28)



Perfect Fluid Theory and its Extensions 93

To obtain further information, we premultiply (G.26) with u†T b. This gives

ρ̇tb−iρ(g−1ġ)b +ρ(g−1ġ)aǫbacT
c = i
√
ρ∇2√ρT b−∇ ·

(

ρvb
)

−i∇ ·(ρva) ǫbacT
c−iρva ·vaT b . (G.29)

The imaginary part gives (G.18) while the real part is identically satisfied by virtue of the Abelian

continuity equation and (G.18).
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6 NONCOMMUTATIVE FLUIDS

Most of the fluids examined so far arise out of underlying particle systems. [The sole exception is

the Madelung-like construction based on an underlying field – the Schrödinger field (both Abelian

and non-Abelian) – discussed in Sidebar G]. This becames manifest in the Lagrange description, in

which the coordinates of the underlying particle substratum are explicitly involved. The transition

to the Euler description, then, allows us to express the system in terms of purely fluid quantities,

namely density and velocity.

It is possible to consider fluids whose Euler description does not derive from an explicit under-

lying Lagrangian description. Although such fluids would look conventional in terms of density and

velocity, they would nevertheless be effective descriptions of exotic underlying theories.

A concrete and interesting realization of this is noncommutative fluids. In these, the fundamental

degrees of freedom represent “particles” on a noncommutative space, in which coordinates become

non commuting operators and the notion of points breaks down.

Noncommutative spaces were introduced by Heisenberg to ameliorate ultraviolet infinites in

quantum field theory. They have been considered in mathematics and they arise as particular

projections of quantum systems in an intense magnetic field (see Section 7.2) and also as special

limits of string theory. Gauge theory on these spaces becomes particularly attractive, since it fuses

spatial and internal degrees of freedom into one coherent formalism. As we shall demonstrate, such

theories can be viewed as noncommutative fluids and the transitition to the Euler description will

emerge as the transformation mapping them to equivalent commutative effective theories, known

to the string literature as the Seiberg-Witten map. The presentation follows Ref. [48].

6.1 Review of noncommutative spaces

Noncommutative spaces are described in terms of coordinates that are noncommuting operators.

In the simplest realization, ‘flat’ noncommuting coordinates are characterized by a constant, anti-

symmetric tensor θij .

[xi, xj ] = iθij (6.1.1)

We must specify whether θ possesses an inverse ω.

θijωjk = δi
k (6.1.2)

An inverse can exist in even dimensions, provided θ is nonsingular, but ω will not exist in odd

dimensions, where the antisymmetric θ always possesses a zero mode. We shall assume the generic

situation: nondegenerate θ with no zero modes in even dimensions, where we give a Euclidean
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treatment: all coordinates are spatial; while in odd dimensions there is one zero mode, chosen in

the time direction. Therefore, in all dimensions only spatial variables are noncommuting.

Fields f are defined as arbitrary functions of the operator coordinates xi (and t in odd dimen-

sions). They can be expressed in a Taylor expansion as sums of monomials involving (ordered)

products of the coordinates. They are, effectively, themselves operators on the same footing as the

xi (explicitly depending on the commuting ccordinate t in odd dimensions). The derivative of a

function ∂if is defined, as usual, by eliminating xi once from each place in monomials in which it

appears. Equivalently, this can be achieved through the adjoint action of the xj themselves:

∂if = −iωij [x
j , f] , (6.1.3)

which clearly has the desired effect on monomials. The volume integral over the full noncommutative

space, on the other hand, can be expressed as the trace of the corresponding operator over a

Heisenberg-like Hilbert space on which the xi act.

∫

f =
√

det(2πθ)Trf (6.1.4)

Products of fields in the above space are defined as the usual ordered products of the corresponding

operators. We may trade the above noncommutative description for one involving usual, commut-

ing functions by introducing a new, nonlocal, noncommutative product between functions, called

star-product. First, order all monomials in a fully symmetric way in the xi (“Weyl ordering”),

which can always be achieved by using (6.1.1). This creates a one-to-one correspondence between

noncommutative operators and commutative functions. The derivative and volume integral of the

noncommutative function as defined in (6.1.3) and (6.1.4) map, in fact, to the usual derivative and

integral of the commutative function f. The product of two operators f and g, on the other hand,

upon Weyl-reordering, corresponds to a new function, called the star-product of the corresponding

commutative functions f and g and denoted by f ⋆ g, is defined by

(f ∗ g)(x) = exp
i

2
θij ∂

∂xi

∂

∂yi
f(x) g(y) |x=y . (6.1.5)

We may further define the ∗-commutator of two functions as their antisymmetrized ∗-product:

[f, g]⋆ = f ⋆ g− g ⋆ f (6.1.6)

The noncommuting coordinates xi, in particular, map to the usual commuting coordinates and their

∗-commutator reproduces the noncommutative space relations (6.1.1).

[xi, xj ]∗ = i θij (6.1.7)

The two formulations, operator and star, are obviously equivalent and will be used interchangeably.
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For future use let us record here the formulas of noncommuting, electrodynamics in 4-dimensional

space. The vector potential Âµ is a function of the noncommuting coordinates xµ, and it undergoes

gauge transformations, which infinitesimally read

δÂµ = ∂µλ̂− i [Âµ, λ̂]∗ ≡ Dµ λ̂. (6.1.8)

Here λ̂ is the gauge function, also depending on the non commuting coordinates. A field strength

F̂µν is defined so that it transform covariantly: under gauge transformations

δF̂µν = −i[F̂µν , λ̂]∗ . (6.1.9)

The formula for F̂µν therefore reads

F̂µν = ∂µÂν − ∂ν Âµ − i[Âµ, Âν ]∗ , (6.1.10)

and the equations satisfied by the F̂µν are

1

2
εαβµν Dβ F̂µν = 0 , (6.1.11)

Dµ F̂
µν = Ĵν , (6.1.12)

where Ĵν is a noncommuting source current. Note that even though we are dealing with electrody-

namics, the noncommutativity requires a non-Abelian, Yang-Mills-like structure for the relevanat

expressions.

The noncommutative space structure (6.1.1) remains invariant under a group of transformations.

Subjecting the spatial coordinates to an infinitesimal coordinate transformation

δx = −f(x) , (6.1.13)

for some operator functions f i, and requiring that (6.1.1) remain unchanged results in the condition

−[f i(x), xj ]− [xi, f j(x)] = 0 , (6.1.14)

which in turn implies by (6.1.1) that

−∂kf
i(x)θkj − ∂kf

j(x)θik = 0 . (6.1.15)

The left side is recognized as the Lie derivative of a contravariant tensor,

Lfθ
ij = fk∂kθ

ij − ∂kf
iθkj − ∂kf

jθik , (6.1.16)

with the first term on the right vanishing since θ is constant. So the noncommutative algebra (6.1.1)

is preserved by those coordinate transformations that leave θ invariant: Lfθ = 0.
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To solve for f in even dimensions, we define

f i = θijgj (i, j = 1, . . . , 2n) . (6.1.17)

This entails no loss of generality, because θ is nonsingular (by hypothesis). Then (6.1.15) becomes

θiℓ∂kgℓθ
kj + θjℓ∂kgℓθ

ik = 0 . (6.1.18a)

Because θ is nonsingular and antisymmetric, this implies

∂kgℓ − ∂ℓgk = 0 , (6.1.18b)

or

gℓ = ∂ℓφ . (6.1.19)

Thus we have

f i = θij∂jφ (6.1.20)

for the coordinate transformations (in even dimensions) that leave θ invariant. Since

∇ · f = 0 (6.1.21)

the transformations are volume preserving; the Jacobian of the finite diffeomorphism is unity. How-

ever, except in two dimensions, these are not the most general volume-preserving transformations.

Nevertheless, they form a group: the Lie bracket of two transformations like (6.1.15), f i
1 = θij∂jφ1

and f i
2 = θij∂jφ2, takes the same form, θij∂j(θ

kℓ∂kφ1∂ℓφ2). The group is the symplectic subgroup

of volume-preserving diffeomorphisms that also preserve θij . In two dimensions, where we can set

θij = θεij, the above transformations exhaust all the area-preserving transformations.

In odd dimensions, where (by assumption) θ possesses a single zero mode, for definiteness we

orient the coordinates so that the zero mode lies in the first direction (labeled 0 → time) and θ,

confined to the remaining (spatial) dimensions, is nonsingular.

θµν =

(

0 0

0 θij

)

(i, j = 1, . . . , 2n)

θijωjk = δi
k

(6.1.22)

The infinitesimal diffeomorphisms that preserve θ are

fµ =

{

f(t)

θij ∂

∂xj
φ(t,x) .

(6.1.23)
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These still form a group. Two transformations, (f1, φ1) and (f2, φ2), possess a Lie bracket of the

same form (6.1.23), with (f2∂tf1−f1∂tf2, f2∂tφ1−f1∂tφ2+θkℓ∂kφ1∂ℓφ2). But the space-time volume

is not preserved: ∂µf
µ 6= 0. (Of course, at fixed time, the spatial volume is preserved.)

Unit-Jacobian diffeomorphisms also leave invariant the equations for an ideal fluid, in the La-

grange formulation of fluid mechanics, and in particular a planar (two dimensional) fluid supports

area-preserving diffeomorphisms.; see Section 1.2 (ii). This coincidence of invariance suggests that

other aspects of noncommutativity possess analogs in the theory of fluids, whose familiar features

can therefore clarify some obscurities of noncommutativity. (A similar point of view concerning the

quantum Hall effect was taken in Ref. [49]) We shall explore this connection and shall demonstrate

that the Seiberg-Witten map [50] between noncommuting and commuting gauge fields corresponds

to the mapping between the Lagrange and Euler formulations of fluid mechanics. We shall obtain a

simple derivation of the explicit “solution” to the Seiberg-Witten map in even dimensions [51] and

will extend it to odd dimensions.

The two formulations of fluid dynamics (Lagrange and Euler) can be put in the proper context

for the noncommutative space setting. The natural Poisson (commutator) structure, present in the

Lagrange description of a fluid, and the possibility of introducing a vector potential to describe the

evolution of comoving coordinates, will be recognized as classical precursors of analogous noncom-

muting entities. Within this framework, we shall show how noncommuting gauge fields respond to

coordinate transformations, generalizing previously established results. [52]

As explained in Section 1.1, the Lagrange description uses the coordinates of the particles

comprising the fluid: X(t,x). These are labeled by the comoving ccordinates x, which are the coor-

dinates of some initial reference configuration, e.g., X(0,x) = x, see (1.1.11). We may parameterize

the evolution of X by defining

X i(t,x) = xi + θijÂj(t,x) (6.1.24)

which looses no generality provided θ is nonsingular. As will be seen below, Â behaves as a

noncommuting, Abelian vector potential.

6.2 Noncommutative Gauge theory

(i) Commuting theory with Poisson structure

We introduce into the Lagrange fluid description the (nonsingular) antisymmetric tensor θ. This

allows for a natural definition of a Poisson bracket, which may be viewed as a classical precursor of

the noncommutativity of coordinates. We define the bracket by

{O1,O2} = θij ∂O1

∂xi

∂O2

∂xj
(6.2.1)

so that
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{xi, xj} = θij . (6.2.2)

It follows from the definition (6.1.24) that

{X i, Xj} = θij + θikθjℓF̂kℓ (6.2.3)

with

F̂ij =
∂

∂xi
Âj −

∂

∂xj
Âi + {Âi, Âj} . (6.2.4)

It is seen that the structure of the gauge field F̂ is as in a noncommuting theory, with the Poisson

bracket replacing the ∗ commutator of two potentials Â, compare (6.1.10). Also, in the limit that

the deviation of X from the reference configuration x is small, that is, for small Â, we recover a

conventional Abelian gauge field.

The above formulas are understood to hold either in even dimensions for a purely spatial Eu-

clidean formulation (there is no time variable) or in odd-dimensional space-time for spatial compo-

nents. (X and x are spatial vectors, without time components.)

(ii) Coordinate transformations in the commuting theory (even dimensions)

In even dimensions, the θ-preserving transverse diffeomorphism, which also implements the repa-

rameterization symmetry of the Lagrange fluid, acts on X through the bracket according to (1.2.24)

and (6.1.20) as

δφ X = f ·∇X = θij ∂X

∂xi

∂φ

∂xj
. (6.2.5)

This may be presented with help of the bracket defined in (6.2.1).

δφX(x) = θij ∂X(x)

∂xi

∂φ(x)

∂xj
= {X(x), φ(x)} (6.2.6)

Because δX compares the transformed and untransformed X at the same argument, δÂi = ωijδX
j

and the volume-preserving diffeomorphism (6.2.5), (6.2.6) induces a gauge transformation on Â:

[Compare (6.1.9), (6.1.10)].

δφÂ(x) = ∇φ(x) + {Â(x), φ(x)} ≡ Dφ (6.2.7a)

δφF̂ij(x) = {F̂ij(x), φ(x)} (6.2.7b)

We see that the dynamically sterile relabeling diffeomorphism of the parameters in the Lagrange

fluid leads to an equally sterile gauge transformation, under which X and F̂ transform covariantly,

as in (6.2.6), (6.2.7b).
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Next we consider a diffeomorphism of the target space.

δfX = −f(X) (6.2.8)

In contrast to the previous relabelings, this transformation is dynamical, deforming the fluid con-

figuration. Quantities

Cn(X) =
1

2nn!
εi1j1···injn

{X i1 , Xj1} · · · {X in, Xjn} , (6.2.9)

which are defined in d = 2n dimensions, respond to the transformation (6.2.8) in a noteworthy

fashion. One verifies that

δfCn(X) = −∇ · f(X)Cn(X) , (6.2.10)

so that transverse (volume-preserving) target-space diffeomorphisms leave Cn invariant. Eq. (6.2.10)

is most easily established by recognizing that

Cn(X) = Pfaff{X i, Xj} = det1/2{X i, Xj} = det1/2 θ det
∂X i

∂xj
. (6.2.11)

The significance of these transformations is evident from (1.1.19), which shows that 1/ρ(r) =

Cn(X)
∣

∣

x=χ(r)
when det1/2 θ is identified with 1/ρ0. The transformation law for ρ under transverse

target space diffeomorphisms becomes

δfρ(r) = f ·∇ρ(r) . (6.2.12)

It follows that this transformation leaves invariant all terms in the Lagrangian that depend only

on ρ [like the potential in (1.2.30)].

When we restrict the transverse, target-space diffeomorphisms to those that also leave θ invari-

ant, i.e., (6.1.20) (of course in two dimensions this is not a restriction), further quantities are left

invariant. These are constructed as in (6.2.9), but with any number of brackets {X i, Xj} replaced

by θij .

It is interesting to combine the diffeomorphism of the parameter space with that of the target

space, for a simultaneous transformation on both spaces. To this end we chose the form of the target

space transformation to coincide with that of the reparameterization/relabeling transformation.

fi(X) = θij ∂φ(X)

∂Xj
. (6.2.13)

As we shall show below, this results in a gauge-covariant coordinate transformation on the vector

potential Â, once a further gauge transformation is carried out. Thus we consider ∆ ≡ δφ + δf,

∆X i = {X i, φ(x)} − θij ∂φ(X)

∂Xj
. (6.2.14)
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[Note that any deviation of fi(X) from θij ∂φ(X)/∂Xj may be attributed to φ, and can be removed

by a further gauge transformation.] However, covariance is not preserved in (6.2.14): X on the left

is covariant, but on the right in the Poisson bracket there occurs φ(x), which is not covariant. The

defect may be remedied by combining ∆X with a further gauge transformation,

δgaugeX = {X, φ(X)− φ(x)} , (6.2.15)

so that in ∆ + δgauge ≡ δ̂ we have a covariant transformation rule:

δ̂X i = {X i, φ(X)} − θij ∂φ(X)

∂Xj
, (6.2.16)

which in turn implies that Â transforms as

δ̂Âi = ωij{Xj, φ(X)} − ∂φ(X)

∂X i
. (6.2.17)

To recognize this transformation more clearly, we present it as

δ̂Âi = ωij{Xj, Xk}∂φ(X)

∂Xk
− ∂φ(X)

∂X i
, (6.2.18a)

and use (6.2.3) to find

δ̂Âi = θkℓF̂iℓ
∂φ(X)

∂Xk
= fk(X)F̂ki . (6.2.18b)

Note that in the final expression (6.2.18b) the response of Â is entirely covariant: it involves the

covariant curvature F̂ and the diffeomorphism function f evaluated on the covariant argument X.

This expression is precisely the gauge-covariant coordinate transformation. (This was derived, by

a somewhat different method [52].)

(iii) Coordinate transformations in the noncommuting theory with ∗-products

(even dimensions)

The above development may be taken over directly into a noncommutative field theory by replacing

Poisson brackets by −i times ∗- commutators, so that (6.2.2) goes over into (6.1.1). Eq. (6.1.24)

remains and (6.2.3), (6.2.4) become

[X i, Xj]⋆ = iθij + iθikθjℓF̂kℓ (6.2.19)

with F̂ given by (6.1.10). The covariant transformation rules (6.2.16) and (6.2.17) may be used in

the noncommutative context, provided a sensible ordering prescription is set for φ(X). This we do

as follows. Define

Φ =

∫

dxφ(X) (6.2.20a)
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where φ(X) is a series of (star) powers of X:

φ(X) = c+ ciX
i + 1

2
cijX

i ⋆ Xj + 1
3
cijkX

i ⋆ Xj ⋆ Xk + · · · · (6.2.20b)

[We are not concerned about convergence of the integral (6.2.20a), since we are interested in local

quantities like (6.2.20b) or (6.2.23) below.] The integration over x (the argument of X) ensures

that Φ is invariant (in an operator formalism the integral becomes the trace of the operators).

The c-coefficients in (6.2.20b) are required to be invariant agaisnt cyclic index shuffling (so that

Φ and φ possess the same number of free parameters). Also we require φ to be Hermitian. [This

ensures, e.g., that cij is real symmetric; that Re cijk is entirely symmetric and that Im cijk is entirely

antisymmetric (which is impossible in two dimensions).] Then (6.2.16) and (6.2.17) become

δ̂X i = −i[X i, φ(X)]⋆ − θij δΦ

δXj
(6.2.21)

δ̂Âi = −iωij [X
j , φ(X)]⋆ −

δΦ

δX i
(6.2.22)

where now the last entries employ a functional derivative:

δΦ

δX i
= ci + cijX

j + cijkX
j ⋆ Xk + · · · · (6.2.23)

In two dimensions, the ordering prescription (6.2.20) and its consequence (6.2.23) preserve the in-

variance of the [X i, Xj]⋆ commutator against the target space diffeomorphism [last term in (6.2.21)].

Thereby a property of the classical Poisson bracket [c.f. (6.2.10) at n = 1] is maintained in the non-

commuting theory.

With φ(X) at most quadratic in X (f at most linear), one readily verifies the result inRef. [52].

δÂi = 1
2

{

f j(X) ⋆ F̂ji + F̂ji ⋆ f
j(X)

}

(6.2.24)

But with more general φ (f containing quadratic and higher powers) there arise further reordering

terms.

(iv) Coordinate transformations in commuting and noncommuting theories

(odd dimensions)

In odd dimensions, with the θ-preserving transformation function given by (6.1.23), the relabeling

transformation on the base space is

δφX(t,x) = θij ∂

∂xj
φ(t,x)

∂

∂xi
X(t,x) + f(t)t Ẋ(t,x)

=
{

X(t,x), φ(t,x)
}

+ f(t)Ẋ(t,x) .

(6.2.25)

The fluid coordinate X has components only in the spatial directions. Here the Poisson bracket is

defined with the nonsingular θij .
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For the target space diffeomorphism we again take the formula (6.2.13), so that the combined,

noncovariant transformation ∆ ≡ δφ + δf reads

∆X i =
{

X i, φ(t,x)
}

+ f(t)Ẋ i(t,x)− θij ∂φ(t,X)

∂Xj
. (6.2.26)

This is modified by the gauge transformation

δgaugeX =
{

X, φ(t,X)− φ(t,x)
}

−
{

X, f(t)Â0(t,x)
}

(6.2.27)

resulting in the covariant transformation ∆ + δgauge ≡ δ̂.

δ̂X i =
{

X i, φ(t,X)
}

− θij ∂φ(t,X)

∂Xj
+ f(t)DX i (6.2.28)

Here DX i = Ẋ i + {Â0, X
i}, where Â0 is a connection introduced to render the time derivative

covariant against time-dependent gauge transformations, generated by φ. This is achieved when

the gauge transformation law for Â0 is

δφÂ0 = φ̇+
{

Â0, φ
}

. (6.2.29)

The spatial components of the vector potential are introduced as before in (6.1.24), and DX i

becomes

DX i = θij
(

˙̂
Aj − ∂jÂ0 + {Â0, Âj}

)

= θijF̂0j . (6.2.30)

The covariant transformation law of Â follows from (6.2.19), (6.2.28), and (6.2.30):

δ̂Âi = ωij

{

Xj, φ(t,X)
}

− ∂φ(t,X)

∂X i
+ ωijf(t)DXj

= f j(t,X)F̂ji + f(t)F̂0i = fµ(t,X)F̂µi .

(6.2.31)

It remains to fix the transformation law of Â0. This requires specifying δfÂ0. Since

δfÂi = −∂φ(t,X)

∂X i
(6.2.32)

it is natural to take

δfÂ0 = −φ̇ (t,X) (6.2.33)

(The time derivative acts on the first argument only.) Thus we have from (6.2.29) and (6.2.33)

∆Â0 = φ̇(t,x) + {Â0, φ(t,x)} − φ̇(t,X) . (6.2.34)

After adding to this a gauge transformation generated by φ(t,X)− φ(t,x) we are left with
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δ̂Â0 =
∂φ(t,X)

∂X i
Ẋ i + {Â0, φ (t,X)}

=
∂φ

∂X i
DX i = f i(t,X)F̂i0 = fµ(t,X)F̂µ0 .

(6.2.35)

Eqs. (6.2.31) and (6.2.35) coincide with the formula obtained in a conventional commuting gauge

theory [53].

Similar results follow within the noncommuting formalism, once the now familiar ordering

prescription is given for φ(t,X) and Φ =
∫

dxφ(t,X). In the noncommutative theory (6.2.31)

and (6.2.35) are regained, up to reordering terms.

6.3 Seiberg-Witten map = Euler fluid-Lagrange fluid map

By considering various limits within string theory, Seiberg and Witten found that noncommuting

fields can be mapped onto non-local functions of commuting fields [50]. The principle behind the

mapping can be stated as a requirement of stability agaisnt gauge transformations in the following

sense. Consider the noncommuting gauge potential Âµ to be a functional of the commuting gauge

potential Aµ and of θ. It is then required that a commuting gauge transformation performed on

the commuting gauge potential with commuting gauge function λ : Aµ → Aλ
µ ≡ Aµ + ∂µ λ, can

be equivalently achieved by performing noncommuting gauge transformation on the noncommuting

gauge potential with noncommuting gauge function λ̂ : Âµ → Âλ
µ ≡ (eiλ̂) ∗ [Âµ + i ∂µ] ∗ (eiλ̂)−1.

Thus

Âλ̂
µ(Aµ) = Âµ(Aµ + ∂µλ) (6.3.1a)

This in turn implies a differential equation in θ for Âµ.

∂Âµ

∂θαβ
= −1

8
{Âα, ∂β Âµ + F̂βµ}+∗ − (α← β) (6.3.1b)

with “initial” condition Âµ |θ=0= Aµ. { , }+∗ denotes the ∗-anticommutator. One can solve (6.3.1b)

order-by-order in θ, with the lowest order solution being

Âµ = Aµ −
1

2
θαβ Aα(∂β Aµ + Fβµ) + · · · (6.3.2)

but in general, the equations for different α and β contained in (6.3.1b) are not integrable, except

in two dimensions where θαβ involves a single quantity θαβ = εαβθ.

Aside from its intrinsic mathematical interest as providing a connection between commuting and

noncommuting fields, the Seiberg-Witten map also serves a practical purpose. The noncommuting

field strength is not gauge invariant, rather, just as in Yang-Mills theory, it is gauge covariant:

F̂µν → (eiλ̂) ∗ F̂µν ∗ (eiλ̂)−1. But unlike in Yang-Mills theory, there are no local gauge invariant

quantities. To obtain a gauge invariant result one must integrate over xµ, or (equivalently) consider
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the trace over the Hilbert space on which the operators xµ act. However, if one wishes to compare

predictions of noncommuting electrodynamics with those of ordinary commuting electrodynamics

(to set limits on the amount of noncommutativity in Nature) non local quantities are not useful,

because the physical content of ordinary electromagnetism is expressed by local quantities (waves,

energy and momentum densities, etc.). Here the Seiberg-Witten map provides a resolution: map

the noncommuting theory onto a commuting one, from which local gauge invariant quantities may

be extracted [54].

We now show that the inverse Seiberg-Witten map is equivalent to the map between Lagrange

and Euler descriptions for fluids. The argument is first presented in two Euclidean dimensions and

(2+1)-dimensional space-time, where (6.3.1b) is integrable (because it involves a single derivative

variable). Then the argument is taken to higher dimensions.

(i) Seiberg-Witten map in (2) and (2+1) dimensions

To construct the Seiberg-Witten map in two Euclidean dimensions, we (temporarily) introduce a

time dependence in the fluid variables (but not into the diffeomorphism functions – only spatial

variables are transformed) and observe that (cρ,vρ) form a conserved 3-vector jα [also true in the

noncommuting theory when an ordered definition for δ(X(t,x)− r) is given – this will be provided

below]. Therefore, the dual of jα, εµναj
α, satisfies a Bianchi identity and can be presented as the

curl of a potential, apart from additive and multiplicative constants.

εµναj
α ∝ Fµν + constant (6.3.3)

Fµν = ∂µAν − ∂νAµ (6.3.4)

Note jα, Fµν , Aµ are ordinary functions, even in the noncommuting setting, since the noncommuting

variables X are integrands (in an operator formalism, their trace is involved). In particular, the

spatial tensor is determined by ρ.

∂

∂ri
Aj(r)−

∂

∂rj
Ai(r) = Fij(r) = −εij(ρ− ρ0) = −εijρ0

(

∫

dx δ
(

X(x)− r
)

− 1
)

(6.3.5)

(The time dependence is now suppressed.) X contains Â, as in (6.1.24). Since X is (noncommuting)

gauge covariant, the integral in (6.3.5) is (noncommuting) gauge invariant. Therefore, (6.3.5) serves

to define an (inverse) Seiberg-Witten map between the noncommuting (hatted) and commuting

(unhatted) variables. The additive (εijρ0) and multiplicative (−1) constants are fixed by requiring

agreement at small Â. It still remains to give a proper ordering to the δ-function containing X.

This we do by a Fourier transform prescription

∫

dr eik·rFij(r) = −εijρ0

∫

dx
(

eik·X(x)
⋆ − eik·x) , (6.3.6)
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and the ordering (Weyl ordering) is defined by the expansion of the exponential in (∗ product)

powers: eik·X
⋆ ≡ 1 + ik ·X− 1

2
k ·X ⋆ k ·X + · · · .

When the exponential eik·X
⋆ is written explicitly in terms of Â: exp⋆ i(kix

i + θkiε
ijÂj), factoring

the exponential into eik·x times another factor involves the Baker-Hausdorff lemma, (because the

individual terms in the exponent do not ∗ commute). This leads to an open Wilson line integral

[55]. In that form (6.3.6) is seen to coincide with the known solution to the Seiberg-Witten map

[51], which is now also recognized as nothing but an instance of the Lagrange→Euler map of fluid

mechanics.

To construct the Seiberg-Witten map in (2+1)-dimensional space-time we consider the conserved

current, defined in (1.1.13) and (1.1.14), except that now the time dependence is retained throughout

and the derivative is gauged with Â0:

j(t, r) =

∫

dx
(

Ẋ + {Â0,X}
)

δ(X− r) (6.3.7)

The operator ordering is prescribed in momentum space with the exponential (Weyl) ordering

and (6.3.7) in the noncommuting theory becomes

j(t,k) ≡
∫

dr eik·rj(t, r) =

∫

dx eik·X
⋆

(

Ẋ− i[Â0,X]⋆
)

. (6.3.8)

Note that the commutator does not contribute to current conservation because it is separately

transverse.

∫

dx eik·X
⋆

[

Â0,k ·X
]

⋆
=

∫

dx Â0

[

k ·X, eik·X
⋆

]

⋆
= 0 (6.3.9)

Therefore the 3-current is conserved as before. Its dual, εµναj
α satisfies the Bianchi identity, so the

Seiberg-Witten mapping reads

∫

dr eik·r(1− 1
2
θijFij

)

=

∫

dx eik·X
⋆ ,

∫

dr eik·rF0i = ωij

∫

dx eik·X
⋆

(

Ẋj − i[Â0, X
j]∗
)

=

∫

dx eik·X
⋆ F̂0i .

(6.3.10)

Formulas (6.3.6) and (6.3.10) may be verified by comparison with the explicit O(θ) Seiberg-Witten

map (6.3.2), which for field strengths implies

Fµν = F̂µν − θαβ(F̂αµF̂βν − Âα∂βF̂µν) . (6.3.11)

Upon setting θα0 = 0, θij = θεij and

e
iki(xi+θijÂj)
⋆ = eik·x

(

1 + iθkiε
ijÂj − 1

2
θ2kikmε

ijεmnÂjÂn

)

(6.3.12)
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it is recognized that (6.3.6) and (6.3.10) reproduce (6.3.11).

(ii) Seiberg-Witten map in higher even dimensions

In dimensions higher than three the correspondence between the Bianchi identity and the conserva-

tion of particle current is lost. The derivation of the Seiberg-Witten map calls for higher conserved

currents, whose duals are two-forms.

The introduction of such currents can be motivated by starting again from the commutative

particle density ρ as expressed in (1.1.13) and its inverse ρ−1 as expressed in (1.1.19). Their product

1 =

∫

dx δ
(

X− r
)

det
∂X i(x)

∂xj
(6.3.13)

is independent of the fluid profile X(x) and constitues a topological invariant. The Jacobian de-

terminant in the above can be expressed in terms of the square-root determinant (Pfaffian) of the

antisymmetric matrix {Xj, Xk}:

1 =
ρ0

2nn!

∫

dx δ
(

X− r
)

ǫi1,j1,...,in,jn
{X i1 , Xj1} · · · {X in, Xjn} = ρ0

∫

dx δ
(

X− r
)

Cn(X) (6.3.14)

where, in analogy with the 2-dimensional case, we identified Pfaff(θ) with 1/ρ0. Removing all

n Poisson brackets from the above recovers the full density ρ. The removal of a single Poisson

bracket {X i, Xj}, then, produces a sort of residual density ρij in the corresponding dimensions,

which becomes a candidate for the Seiberg-Witten commutative field strength:

ρij =
ρ0

2n−1(n− 1)!

∫

dx δ
(

X− r
)

ǫi,j,i2,j2,...,in,jn
{X i2, Xj2} · · · {X in, Xjn} (6.3.15)

The current dual to ρij , in momentum space,

J j1...j2n−2 =
ρ0

2n−1(n− 1)!

∫

dx eik·X{X [j1, Xj2} · · · {Xj2n−3 , Xj2n−2]} (6.3.16)

(the indices are fully antisymmetrized) is gauge invariant and conserved, ensuring that ρij satisfies

the Bianchi identity.

The corresponding current in the noncommutative case can be written by turning products into

∗-products and Poisson brackets into (−i times) ⋆-commutators. The ordering of the exponential

and other factors above has to be fixed in a way which ensures that the obtained current is conserved.

Various such orderings are possible. For definiteness, we pick the ordering corresponding to the

choice made in:

J j1...j2n−2 =
ρ0

(2i)n−1

∫

dx

∫ 1

0

ds1 · · ·
∫ 1

0

dsn−1δ

(

1−
n−1
∑

i=1

si

)

eis1k·X
∗

[

X [j1, Xj2
]

∗ ∗ · · · e
isn−1k·X
∗ ∗

[

Xj2n−3 , Xj2n−2]
]

∗ (6.3.17)
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This corresponds to Weyl-ordering the exponential and distributing it in all possible ways between

the different commutators. Note that the volume of the si-integration space reproduces the factor

1/(n− 1)! present in (6.3.16).

To express compactly the above and to facilitate the upcoming derivations, we introduce anti-

symmetric tensor notation. We define the basis 1-tensors vj representing the derivative vector field

∂j , and corresponding one-forms dxj . We consider the fundamental 1-tensor X and the 1-form k.

X = Xjvj , k = kjdx
j (6.3.18)

All tensor products will be understood as antisymmetric.

vjvk ≡
1

2
(vj ∧ vk − vk ∧ vj) , etc. (6.3.19)

This amounts to considering vj and dxk as anticommuting quantities. Scalar products are given by

the standard contraction .

vj · dxk = δj
k (6.3.20)

We also revert to operator notation, dispensing with ∗-products and writing Tr for ρ0

∫

dx. Finally,

we simply write
∫

(n−1)
for the (n− 1)-dimensional si-integration.

∫

(n−1)

≡ 1

(2i)n−1

∫ 1

0

ds1 · · ·
∫ 1

0

dsn−1δ

(

1−
n−1
∑

i=1

si

)

(6.3.21)

Overall, the current in (6.3.17) is written as the rank-(2n− 2) antisymmetric tensor J,

J = tr

∫

(n−1)

eis1k·XXX · · · eisn−1k·XXX , (6.3.22)

and its conservation is expressed by the contraction k · J = 0. The contraction of k acts on each X

in a graded fashion. Using cyclicity of trace and invariance under relabeling the si, this becomes

k · J = (n− 1)tr

∫

(n−1)

eis1k·X[k ·X,X
]

eis2k·XXX · · · eisn−1k·XXX (6.3.23)

Using the identity

[

eisk·X,X
]

=

∫ s

0

ds1e
is1k·X

[

ik · X,X
]

ei(s−s1)k·X (6.3.24)

we can absorb the s1-integration in (6.3.23) and bring it to the form

k · J = −1

2
tr

∫

(n−2)

[

eis2k·X,X
]

XX · · · eisn−1k·XXX (6.3.25)
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Finally, using once more the cyclicity of trace, we see that the above contraction vanishes. This

proves that the tensor J is conserved and, as a consequence, its dual ρjk satisfies the Bianchi identity.

As in the 2-dimensional case, we put

Fjk(k) = ρjk(k)− ωjkδ(k) , (6.3.26)

and recover the commuting Abelian field strength, which can, in turn, be expressed in terms of a

(commutative) Abelian potential Aj .

In the above manipulations we freely used cyclicity of trace. In general this is dangerous, since

the commuted operators may not be trace class. Assuming, however, that X becomes asymptotically

x for large distances, the presence of the exponentials in the integrand ensures that this operation

is permissible.

As mentioned previously, the fully symmetric ordering is not the only one that leads to an

admissible ρjk. As an example, in the lowest-dimensional nontrivial case d = 4 we can alter the

ordering by splitting the commutator as

J jk =
1

2i
treik·X[Xj, Xk

]

→ J jk
f = −itr

∫ 1

0

dsf(s)eisk·XXjei(1−s)k·XXk . (6.3.27)

If f(s) = −f(1 − s) the above will be antisymmetric in (j, k) and conserved, as can explicitly be

verified. Further, if f(s) satisfies

∫ 1

0

ds(2s− 1)f(s) = 1 , (6.3.28)

then (6.3.27) will also have the correct commutative limit. We obtain an infinity of solutions

depending on a function of one variable f(s). This arbitrariness reflects the fact that the Seiberg-

Witten equations are not integrable and therefore the solution for θ = 0 depends on the path in

the θ-space taken for integrating the equations. For d = 4 the parameter space is a plane and the

path from a given θ to θ = 0 on the plane can be parametrized by a function of a single variable,

just like J jk
f . The various solutions are related through field redefinitions.

(iii) Seiberg-Witten map in higher odd dimensions

The situation in odd dimensions differs in that we need to specify separately the components of the

conserved current in the commutative and noncommutative directions. For d = 2n+ 1 the current

is of rank 2n− 1 and it can be constructed by a procedure analogous to the even-dimensional case:

We start from the expression for the total particle current jµ (1.1.13) and (1.1.14) and introduce

2n−2 commutators, one less than the number which would fully saturate it to (c,v). The temporal

components J0j1...j2n−2 can be expressed as a rank-(2n − 2) antisymmetric spatial tensor J0, while

the spatial components J j0j1...j2n−2 can be expressed as a rank-(2n − 1) antisymmetric tensor J.

Their fully ordered expressions are
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J0 =
1

n− 1
tr

∫

(n−1)

eis1k·XXX · · · eisn−1k·XXX, (6.3.29)

J = tr

∫

(n)

eis0k·XDXeis1k·XXX · · · eisn−1k·XXX . (6.3.30)

The above expressions can be unified by introducing a temporal component for the field Xµ, namely

X0 ≡ t (which is obviously commutative), and extending the one-tensor X also to include X0v0.

Further, we can Fourier transform in time and define k = kµdx
µ to include also the frequency k0.

Then the corresponding (space-time) (2n− 1)-tensor J acquires the form

J =

∫

dt tr

∫

(n)

eis1k·XDX eis2k·XXX . . . eisnk·XXX . (6.3.31)

X0 is absent in XX and, since DX0 = 1, only s0 + s1 appears in the temporal component of J;

integrating over s1 reproduces the factor 1/(n− 1) appearing in (6.3.29).

The above current is obviously gauge invariant. We shall prove that it is also conserved, that

is, it satisfies k · J = 0. The contraction is

k · J =

∫

dt tr

∫

(n)

{

eis1k·X k ·DX eis2k·XXX · · · eisnk·XXX

−
n
∑

m=2

eis1k·XDX XX · · · eismk·X[k · X,X
]

eism+1k·X · · ·XX
}

(6.3.32)

(with sn+1 = 0). By formula (6.3.24) and a similar one for the covariant time derivative, the above

can be rewritten as

k · J =

∫

dt tr

∫

(n−1)

{

Deis1k·X eis2k·XXX · · · eisn−1k·XXX

−
n−1
∑

m=2

eis1k·XDX XX · · ·
[

eismk·X,X
]

XX · · ·XX
}

. (6.3.33)

Due to the cyclicity of trace, the sum above telescopes and only the first term of the m = 2

commutator and the second term of the m = n− 1 commutator survive. Altogether we obtain
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k · J =

∫

dt tr

∫

(n−1)

(

Deis1k·X +DXX + XDX
)

eis2k·XXX · · · eisn−1k·XXX

=

∫

dt tr

∫

(n−1)

D
(

eis1k·XXX
)

· · · eisn−1k·XXX

=

∫

dt tr

∫

(n−1)

1

n− 1
D
(

eis1k·XXX · · · eisn−1k·XXX
)

(6.3.34)

=

∫

dt
d

dt
tr

∫

(n−1)

1

n− 1
eis1k·XXX · · · eisn−1k·XXX

= 0,

which proves the conservation of J. Its dual ρµν satisfies the (2n+ 1)-dimensional Bianchi identity

and can be used to define the commutative Abelian field stength.

Fij(k) = ρij(k)− ωijδ(k) (6.3.35)

F0i(k) = ρ0i(k) (6.3.36)

In the above we gave separate derivations of the Seiberg-Witten map for even and odd dimen-

sions. The two can be unified by demonstrating that each case can be obtained as a dimensional

reduction of the other in one more dimension. This is treated next section.

(iv) Dimensional reduction

It is quite straightforward to see that the even dimensional Seiberg-Witten map is obtained from

the d = 2n + 1 map by dimensional reduction. We assume a time-independent configuration in

which Xj (j = 1, . . . , 2n) do not depend on t and A0 vanishes. In this case DX vanishes and so does

J in (6.3.30); only the component J0 in (6.3.29) survives, reproducing the 2n-dimensional solution.

The reduction from a fully noncommutative d = 2n+2 case to the d = 2n+1 case is only slightly

subtler. For concreteness, we shall take t ≡ x0 to be canonically conjugate to the last dimension,

call it z ≡ x2n+1, which will be reduced; that is,

[t, z] = iθ0 (θ0 = θ0,2n+1) , [t, xi] = [z, xi] = 0 (i = 1, . . . , 2n). (6.3.37)

This can always be achieved with an orthogonal rotation of the xµ. The reduced configuration

consists of taking all fluid coordinates other than X2n+1 to be independent of x2n+1 and, further,

the gauge potential corresponding to z = x2n+1 to vanish. Specifically,

X i = X i(x, t), (6.3.38)

X0 = t, (6.3.39)

X2n+1 = z + θ0A0(x, t). (6.3.40)
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With this choice the corresponding field strengths become

[X i, Xj] = iθij + iθikθjℓF̂kℓ, (6.3.41)

[X i, X0] = 0, (6.3.42)

[X i, X2n+1] = iθ0(D0X
i − i[X i, A0]) = iθijθ2n+1,0F̂j0, (6.3.43)

with F̂µν (µ, ν = 0, . . . , 2n) the field strength of a noncommutative d = 2n+ 1 theory.

The corresponding d = 2n + 2 Seiberg-Witten map reduces to the d = 2n + 1 map. Indeed,

the current J in (6.3.22), now, is a rank-2n antisymetric tensor. When all its indices are spatial

(1, . . . , 2n) it becomes a fully saturated topological invariant, that is, a constant; this reproduces

a constant ρ0,2n+1. When one of its indices is 0 and the rest are spatial it vanishes, leading to

ρi,2n+1 = 0. When one of its indices is 2n + 1 and the rest are spatial it reproduces expression

(6.3.30). Finally, when two of its indices are 0, 2n+1 and the rest are spatial it reproduces (6.3.29),

recovering the full commuting (2n+ 1)-dimensional Abelian field strength.

We stress that the above reductions are not the most general ones. Indeed, mere invariance of the

fluid configuration with respect to translations in the extra dimension does not require the vanishing

of the gauge field in the corresponding direction. This means that we could choose X0 = t+H(x, t)

(instead of X0 = t) in both d = 2n+ 1 and d = 2n+2. The corresponding reduced theory contains

an extra Higgs scalar in the adjoint representation of the (noncomutative) U(1) gauge group. Our

Seiberg-Witten map in this situation reproduces, with no extra effort, the space-time derivatives of

a corresponding commuting ‘Higgs’ scalar.

The above complete reduction scheme (2n + 2 → 2n + 1 → 2n → . . . ) is reminiscent of the

topological descent equations relevant to gauge anomalies. It is possible to consider the fluid analogs

of noncommutative topological actions and the mapping of topologically nontrivial configurations

[56], but we shall not consider these issues here.

A final comment: We demonstrated that gauge theory on noncommutative spaces has an effective

description as a classical fluid. Other nonclassical situations may also be describable in a fluid

dynamical language, thus revealing their dynamics as pertaining to a spacial kind of fluid. In

particular, quantum mechanical many-body states could be effectively described in this fashion.

This will be explored in the final Section.
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7 MISCELLANEOUS TOPICS

7.1 Quantized fluid mechanics

Eulerian fluid mechanics, even though it can be formulated as an independent dynamical system

in its own right, can also be understood as a good description for the physics of a distribution of

particles at large length scales. At these scales, large compared to the typical particle separations,

a continuum approximation can be made and the underlying particulate nature is seldom apparent

or needed. If this fluid mechanics is quantized, the result is a quantum field theory where the

hydrodynamical variables of density and velocity become quantum operators. For such an analysis,

it is mathematically irrelevant whether the fluid theory emerged as an approximation to the particle

theory.

For quantization, the Poisson brackets (1.2.36), (1.2.39) and (1.2.40) are replaced by i/~ times

a quantum commutator of the ρ and v operators. There is no ordering ambiguity in the quantal

version of (1.2.40) because ρ commutes with ωij , according to (1.2.39) and (1.2.41). Ordering does

have to be prescribed when the Hamiltonian (1.2.33) is promoted to an Hermitian operator. The

kinetic term may be taken as 1
2
vi ρ vi or as 1

4
(ρv2 +v2ρ); the two coincide because the [ρ,v] commu-

tator is a c-number. The Heisenberg equations of motion then imply that the current contributing

to the continuity equation (1.1.16) is the ordered Hermitian quantity

j =
1

2
(ρv + vρ), (7.1.1)

which also satisfies the quantum commutator analogs of (1.2.37) and (1.2.38). In the Euler force

equation (1.1.17) the term non-linear in v emerges upon commutation with the quantum Hamilto-

nian as 1
2
(vk ∂k v

i + ∂k v
i vk).

It is noteworthy that the nature of the particles which constitute the fluid, in particular their

statistics, does not seem to be important. For this reason, attempts to relate superfluidity to

quantized hydrodynamics have been criticized [57]. However, one can see that this is clearly not

the whole story by the following argument.

Consider the classical action for a (non-linear) Schrödinger field on a d-dimensional space Rd;

d = 2, 3 are the cases of particular interest to us.

I =

∫

dtdr[iℏψ∗ ψ̇ − ℏ
2

2
∇ψ∗ ·∇ψ − V(ψ∗ψ)] (7.1.2)

With the Madelung Ansatz (G.4) (m = 1), the action (7.1.2) is brought to a form appropriate for

an irrotational fluid.

I =

∫

dtdr[θρ̇− 1

2
ρ(∇θ)2 − V (ρ)], (7.1.3)

where the classical potential V acquires an addition.

V (ρ) = V(ρ)
~

2

2
(∇
√
ρ)2 (7.1.4)
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We see that the Schrödinger field theory (7.1.2) and fluid mechanics are equivalent with a reinterpre-

tation of certain quantities, the particular nature of the fluid (such as its equation of state) will be

characterized by the function V (ρ). The Schrödinger theory (7.1.2) can be quantized as a fermion

field or a boson field. Therefore it must be possible to quantize the fluid theory (which is after all

the same thing, being a particular parametrization or choice of coordinates on the classical phase

space of the theory) as either a fermion theory or a boson theory. Since the symplectic structure,

given by the θρ̇-term, is what is relevant to this consideration, the specific nature of V (ρ) should

not matter; it should be possible to quantize any fluid, irrespective of its dynamics, with either

statistics.

This observation is certainly not new. The fluid theory is described in terms of the density

ρ and the current j = ρ∇θ. The algebra of these observables, the current algebra, is given by

(1.2.36)-(1.2.38). This algebra is the same whether ψ, ψ∗ obey bosonic or fermionic commutation

rules. Various observables of interest, such as the Hamiltonian, momentum density, etc., can be

constructed in terms of ρ, j. Therefore, one can take the algebra of ρ, j as the starting point

and construct the quantum theory in terms of a unitary irreducible representation of this algebra of

operators. It is known that this algebra has many inequivalent realizations, allowing for the freedom

of choosing different statistics, bosons and fermions corresponding to different representations [58].

The fluid theory can indeed carry information about the statistics of the particles which compose

it.

More generally, even for a one-component fluid, there are additional variables needed. Consid-

ering the case of three spatial dimensions as an example, the free action is

I0 = −
∫

dt dr [ρ (θ̇ + αβ̇) +
1

2
ρ (∇θ + α∇β)2]. (7.1.5)

The fluid velocity is given in the Clebsch form v = ∇θ + α∇β. The Clebsch parameterization of

the velocities can be expressed as [see Section 7.3 (i), below]

v = i tr(σ3g
−1

∇g), (7.1.6)

where the group element g is an element of SU(2).

g = e
σ3

2i
β e

σ2

2i
γ e

σ3

2i
θ (7.1.7)

Using (7.1.7) with (7.1.6) gives the Clebsch parametrization for v with α = cos γ. Even though we

have the additional variables α, β , the current algebra is the same as before. Evidently the same

current algebra is realized by fluids that move with or without vortices.

Generally speaking, in two dimensions, the existence of inequivalent representations is related to

the nontrivial connectivity of the space of fields. If the phase space is simply connected, it cannot

support double-valued (or many-valued) wave functions and one does not have the possibility of
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different statistics. The topology of the phase space is therefore relevant to the question we are

considering and one can try to characterize the inequivalent representations for the fluid current

algebra along these lines. To see how this arises, it is instructive to consider the configuration space

for identical particles. For N particles in two dimensions, a point in the configuration space is

given by (x1,x2, ...,xN), where xi ∈ R2. The identity of particles tells us that we must make the

identification

(x1,x2, ...,xi, ...,xj, ...,xN) ∼ (x1,x2, ...,xj, ...,xi, ...,xN) (7.1.8)

Further, we must impose the condition that the locations of the particles do not coincide, i.e.,

xi 6= xj if i 6= j. The resulting configuration space CN has nontrivial connectivity; in fact, the first

homotopy group is given by Π1(CN ) = BN , where BN is the braid group. The fact that Π1(CN ) 6= 0

shows that the configuration space can support many-valued wave functions. Under exchange of

particles, the wave functions get a phase; the various phase factors for different exchanges form a

unitary irreducible representation of Π1(CN ). The phase for a single exchange can be arbitrary and

so we get the possibility of arbitrary statistics. (An analogous construction can be done in three

dimensions; the first homotopy group is then the permutation group SN and we get the possibility

of fermions or bosons.)

Returning to the case of two dimensions, X = (x, y), notice that the existence of different

representations is also related to the existence of a flat potential, which distinguishes between the

representations. For the N -particle Heisenberg algebra, we can write a representation in terms of

complex variables w = x− iy, w̄ = x+ iy.

X̂i = (wi, w̄i)

P̂wi
= p̂wi

+
i

2k

∑

j 6=i

1

wi − wj

P̂w̄i
= p̂w̄i

− i

2k

∑

j 6=i

1

w̄i − w̄j
(7.1.9)

p̂wi
= −i ∂

∂wi
, p̂w̄i

= −i ∂
∂w̄i

k is a parameter specifying the representation, p̂ gives the standard Schrödinger representation, and

the summed expressions comprise the potentials, which make the representation (7.1.9) different

from the standard one. It is easily verified that the quantities in (7.1.9) obey the Heisenberg algebra.

[The commutator of the momenta leads to δ(xi − xj), but since we do not allow coincidence of

particle locations (or the wave functions vanish at coincidences), this is zero.] We can write the

representation (7.1.9) as

X̂ = U−1xU, P̂ = U−1p̂U (7.1.10)

where U is given by

U = exp

(

− i

2k

∑

[ln(wi − wj)− ln(w̄i − w̄j)]

)

(7.1.11)
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The representation (7.1.9) is however not equivalent to the Schrödinger representation because U

is not single-valued and so does not give a unitary transformation. Notice that the addition to the

expression for the momentum operators is a “flat potential”, in the sense that its field strength,

which is given by the commutators [P̂wi
, P̂w̄j

], is zero (with the condition of removing coincidences

of particle locations). This flat potential can be written as U−1[p̂, U ], but it should be kept in mind

that U is not a genuine unitary transformation.

Similar results hold in general. Let {φa} be a set of observables, which may include the identity,

obeying a commutation algebra of the form

[φa, φb] = Cc
abφc. (7.1.12)

Let φ
(1)
a and φ

(2)
b be two representations. We write φ

(2)
a = φ

(1)
a + Aa. The fact that φ

(1)
a and φ

(2)
a

obey the same algebra shows that Aa is a flat potential, i.e.,

[φ(1)
a ,Ab]− [φ

(1)
b ,Aa] + [Aa,Ab]− Cc

abAc = 0. (7.1.13)

If Aa = U †[φ
(1)
a , U ] for some unitary transformation U, the two representations are unitarily

equivalent. However, if Aa obeys the zero-curvature condition (7.1.13) but cannot be written as

Aa = U †[φ
(1)
a , U ] for some unitary U , the two representations are inequivalent.

Clearly, the existence of inequivalent representations and the existence of a flat potential which

cannot be written as Aa = U †[φ
(1)
a , U ] are related to the topology of the space of fields, or the

phase space, if we are thinking in terms of canonical quantization. The U ’s which we use form a

representation of some nontrivial Π1(C); flat potentials require in general that the first cohomology

group of the phase space should be nontrivial. We have seen this explicitly at the level of particles.

When we generalize to a field theory one can ask whether statistics can be obtained in such terms. In

fact, a description of the boson and fermion representations and an expression for the corresponding

flat potential have been obtained [58]. It is thus possible to identify an operator, namely the flat

potential Aa, which can distinguish the statistics of the underlying particles. Nevertheless, the

situation is not entirely satisfactory. The flat potential has been obtained only for a subspace with

fixed value of the particle number N and it is in terms of the phase of the fermionic ground state

wave function for N particles. In our opinion, this answer partially begs the question. Also, the

connection to the topology of the phase space in unclear. A more direct method, in terms of the

fields, would certainly be better.

Turning to the field variables ρ, j, we first note that, already, the use of a group element

to parameterize the velocities as in (7.1.7) entails making certain additional assumptions about

the topology of the phase space. One has to determine on a physical grounds whether such a

parameterization is justified and if so, which group should be used. For the parameterization

(7.1.7), the phase space is given by

P = {set of all maps ρ : R3 → R+, g : R3 → G = SU(2)} (7.1.14)
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The topology of the phase space is specific to SU(2): there is a compact U(1) direction corresponding

to θ. Since ρ and θ are canonically conjugate, the operator U = exp (i2π
∫

dr ρ) shifts θ by 2π.

The compactness of θ requires that all observables be invariant under the action of U ; equivalently,

the spectrum of
∫

dr ρ must be an integer spaced. Thus the compactness of U(1) leads to an

underlying particle description, with the integer portion of
∫

drρ being the number of particles

N . Therefore, for hydrodynamics with an underlying particle structure, the use of a compact θ-

variable is appropriate. Notice also that
∫

dr ρ is a Casimir operator for the algebra so that one

can also restrict to representations with a fixed value of N . If we have only (ρ, θ), this argument

just recaptures the Schrödinger field description.

One can now try to see how the flat potentials mentioned above can arise. in the field description.

So far, there is no direct construction of the potential Aa in terms of ρ and j. In our formulation

of the Clebsch parametrization, the phase space given by (7.1.8) does not have nontrivial first

homotopy group. One might argue that this is because we have to impose some further condition,

analogous to the condition of excluding coincidence of locations at the particle level. It may be

that a similar condition must be imposed, expressed in fluid variable terms, on the space of (7.1.14)

to obtain the necessary structure for a quantum hydrodynamics, which takes account of particle

statistics. It is not yet clear what such a condition would be. Also, representations of the algebra

of observables are characterized, in purely algebraic terms, by the values of the Casimir operators.

Thus, alternatively, one can ask the question: What are the Casimirs in terms of the fluid observables

which discriminate between the different statistics? How are these Casimirs related to the topology

of the phase space? As yet there is no completely satisfactory answer to these questions.

7.2 Fluids in intense magnetic fields

Another interesting dynamical system is a charged fluid in an intense magnetic field. This exhibits

a noncommutativity, which is the fluid mechanical version of noncommuting coordinates for a point

particle in a magnetic field, so intense that it effects reduction to the lowest Landau level.

(i) Particle noncommutativity in the lowest Landau level

Before describing the motion of a charged fluid in an intense magnetic field, we review the story

for point particles on a plane, with an external and constant magnetic field B perpendicular to the

plane [59]. The equation of motion for the 2-vector r = (x, y) is

mv̇i =
e

c
ǫijvjB + f i(r), (7.2.1)

where v is the velocity ṙ, and f represents other forces, which we take to be derived from a potential

V : f = −∇V . The limit of large B is equivalent to small m. Setting the mass to zero in (7.2.1)
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leaves a first order equation.

ṙi =
c

eB
ǫijf j(r) (7.2.2)

This may be obtained by taking Poisson brackets of r with the Hamiltonian

H0 = V, (7.2.3)

provided the fundamental brackets describe noncommuting coordinates,

{ri, rj} =
c

eB
ǫij , (7.2.4)

so that

ṙi = {H0, r
i} = {rj, ri}∂jV =

c

eB
ǫijf j(r). (7.2.5)

The noncommutative algebra (7.2.4) and the associated dynamics can be derived in the following

manner. The Lagrangian for the equation of motion (7.2.1) is

L =
1

2
mv2 +

e

c
v ·A− V. (7.2.6)

When we choose the gauge A = (0, Bx) and set m to zero, (7.2.6) leaves

L0 =
eB

c
xẏ − V (x, y), (7.2.7)

which is of the form pq̇ − h(p, q), and one sees that ( eB
c
x, y) form a canonical pair. This implies

(7.2.4), and identifies V as the Hamiltonian.

Additionally, we give a canonical derivation of noncommutativity in the m → 0 limit, starting

with the Hamiltonian

H =
π2

2m
+ V. (7.2.8)

H gives (7.2.1) upon bracketing with r and v, provided the following brackets hold.

{ri, rj} = 0 (7.2.9)

{πi, ri} = δij (7.2.10)

{πi, πj} = −eB
c
ǫij (7.2.11)

Here π is the kinematical (non-canonical) momentum, mṙ, related to the canonical momentum p

by π = p− e
c
A.

We wish to set m to zero in (7.2.8). This can only be done provided π vanishes, and we impose

π = 0 as a constraint. But according to (7.2.11), the bracket of the constraints {πi, πj} ≡ Cij =

−eB
c
ǫij is non-zero. Hence we must introduce Dirac brackets:

{O1, O2}D = {O1, O2} − {O1, π
k}(C−1)kl{πl, O2}. (7.2.12)
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With (7.2.12), any Dirac bracket involving π vanishes, so π may indeed be set to zero. But the

Dirac bracket of two coordinates is now non-vanishing.

{ri, rj}D = −{ri, πk} c
eB

ǫkl{πl, rj} =
c

eB
ǫij (7.2.13)

In this approach, noncommuting coordinates arise as Dirac brackets in a system constrained to lie

in the lowest Landau level.

A quantum mechanical perspective on this result is the following [60]. Let us label the degenerate

quantum Landau states by (N, n), where N labels the Landau level and n the degeneracy of that

level. Consider the computation of the matrix element in the lowest (N = 0) Landau level of the

commutator of x as y.

< 0, n|[x, y]|0, ñ >=< 0, n|xy|0, ñ > − < 0, n |yx|0, ñ >
=
∑

Nn′

(< 0, n|x|Nn′ >< Nn′|y|0, ñ > − < 0, n|y|Nn′ >< Nn′|x|0, ñ >) (7.2.14)

When the intermediate state sum is carried over all Landau levels, the two terms in the sum cancel

each other, and we find a vanishing result; coordinates commute. Suppose however, we truncate the

sum at the lowest level. A simple calculation gives a non-vanishing result, consistent with (7.2.4).

This shows that noncommuting coordinates arise from a truncation of the Hilbert space.

[An amusing generalization determines the coordinate commutator when the first N Landau

levels are retained, both in the external states and the intermediate state sum. The result is that

the only non-vanishing matrix element of the [x, y] commutator is in the highest Landau level.

< N, n|[x, y]|N, n′ >= −iℏc
eB

(N + 1)δ (n, n′) (7.2.15)

Here δ(n, n′) is either the discrete or continuous delta function, depending whether the Landau

degeneracy is exhibited in a discrete or continuous manner. The result reduces to the previous,

when only the lowest Landau level is kept, and also shows that as more and more states are

included, the non commutativity is pushed into ever higher states.]

(ii) Field noncommutativity in the lowest Landau level

We now turn to the equations of a charged fluid with density ρ and mass parameterm (introduced for

dimensional reasons) moving on a plane with velocity v in an external magnetic field perpendicular

to the plane. ρ and v are functions of t and r and give an Eulerian description of the fluid. The

equations that are satisfied are the continuity equation (1.2.42), and the Euler equation (1.2.43),

which acquires an additional term, beyond the force team, due to the magnetic interaction [compare

(5.4.19) reduced to the Abelian case].

mv̇i +mv ·∇vi =
e

c
ǫijvjB + f i (7.2.16)
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Here f describes additional forces, e.g. −1
ρ
∇P where P is pressure. We shall take the force to be

derived from a potential in the form

f(r) = −∇
δ

δρ(r)

∫

d2rV. (7.2.17)

[For isentropic systems, the pressure is only a function of ρ. Here we allow more general dependence

of V on ρ (e.g. nonlocality or dependence on derivatives of ρ).]

The relevant equations follow by bracketing ρ and v with the Hamiltonian

H =

∫

d2r

(

ρ
π2

2m
+ V

)

. (7.2.18)

provided that fundamental brackets are taken as

{ρ(r), ρ(r′)} = 0 (7.2.19)

{π(r), ρ(r′)} = ∇δ(r− r′) (7.2.20)

{πi(r), πj(r′)} = −ǫij 1

ρ

(

mω(r) +
eB

c

)

δ(r− r′) (7.2.21)

where ǫijω(r) is the vorticity ∂iv
j − ∂jv

i, and π = mv. These are just the rescaled (by m) versions

of (1.2.36), (1.2.39) and (1.2.40), except that the last is modified to include the constant magnetic

field.

We now consider a strong magnetic field and take the limit m→ 0, which is equivalent to large

B. Equations (7.2.16) and (7.2.17) reduce to

vi = − c

eB
ǫij

∂

∂rj

δ

δρ(r)

∫

d2rV. (7.2.22)

Combining this with the continuity equation gives the equation for the density “in the lowest Landau

level.”

ρ̇(r) =
c

eB

∂

∂ri
ρ(r)ǫij

∂

∂rj

δ

δρ(r)

∫

d2rV (7.2.23)

(For the right hand side not to vanish, V must not be solely a function of ρ.)

The equation of motion (7.2.23) can be obtained by bracketing with the Hamiltonian

H0 =

∫

d2rV, (7.2.24)

provided the charge density bracket is non-vanishing, showing non-commutativity of the ρ’s [61].

{ρ(r), ρ(r′)} = − c

eB
ǫij∂iρ(r)∂jδ(r− r′) (7.2.25)

H0 and this bracket may be obtained from (7.2.18) and (7.2.19) – (7.2.21) with the same Dirac

procedure presented for the particle case: We wish to set m to zero in (7.2.18); this is possible only



Perfect Fluid Theory and its Extensions 121

if π is constrained to vanish. But the bracket of the π’s is non-vanishing, even at m = 0, because

B 6= 0. Thus at m = 0 we posit the Dirac brackets

{O1(r1), O2(r2)}D =

{O1(r1), O2(r2)} −
∫

d2r′1d
2r′2{O1(r1), π

i(r′1)}(C−1)ij(r′1, r
′
2){πj(r′2), O2(r2)},

(7.2.26)

where Cij is the bracket in (7.2.21), (at m = 0) so that

(C−1)ij(r1, r2) =
c

eB
ǫijρ(r1)δ(r1 − r2). (7.2.27)

Hence Dirac brackets with π vanish, and the Dirac bracket of densities is non-vanishing as in

(7.2.25).

{ρ(r), ρ(r′)}D =

− c

eB

∫

d2r′′{ρ(r), πi(r′′}ρ(r′′)ǫij{πj(r′′), ρ(r′)} =

− c

eB
ǫij∂iρ(r)∂jδ(r− r′) (7.2.28)

The ρ–bracket enjoys a more appealing expression in momentum space. Upon defining

ρ̃(p) =

∫

d2reip·rρ(r) (7.2.29)

we find

{ρ̃(p), ρ̃(q)}D = − c

eB
ǫijpiqj ρ̃(p + q). (7.2.30)

The brackets (7.2.25), (7.2.30) give the algebra of area preserving diffeomorphisms. Indeed (7.2.30)

follows from the full diffeomorphism algebra (1.2.38) with the identification that ρ in (7.2.30) is

related to ji in (1.2.38) by ρ = εij∂i j
j .

The form of the charge density bracket (7.2.25), (7.2.28), (7.2.30) can be understood by reference

to the particle substructure for the fluid. Take as in (1.1.9)

ρ(r) =
∑

n

δ(r− rn), (7.2.31)

where n labels the individual particles. The coordinates of each particle satisfy the non-vanishing

bracket (7.2.4). Then the {ρ(r), ρ(r′)} bracket takes the form describe above.

(iii) Quantization

Quantization before the reduction to the lowest Landau level is straightforward. For the particle

case (7.2.9) – (7.2.11) and for the fluid case (7.2.19) – (7.2.21) we replace brackets with i/~ times
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commutators. After reduction to the lowest Landau level we do the same for the particle case

thereby arriving at the “Peierls substitution,” which states that the effect of an impurity [V in

(7.2.6)] on the lowest Landau energy level can be evaluated to lowest order by viewing the (x, y)

arguments of V as non-commuting variables.

However, for the fluid case quantization presents a choice. On the one hand, we can simply

promote the brackets (7.2.25), (7.2.28), (7.2.30) to a commutator by multiplying by i/~.

[ρ(r), ρ(r′)] = i~
c

eB
ǫij∂iρ(r

′)∂jδ(r− r′) (7.2.32)

[ρ̃(p), ρ̃(q)] = i~
c

eB
ǫijpiqj ρ̃(p + q) (7.2.33)

Alternatively we can adopt the expression (7.2.31), for the operator ρ(r), where the rn now

satisfy the non-commutative algebra,
[

ri
n, r

j
n′

]

= −i~ c

eB
ǫijδnn′ (7.2.34)

and calculate the ρ commutator as a derived quantity.

However, once rn is a non-commuting operator, functions of rn, even δ−functions, have to be

ordered. We choose the Weyl ordering, which is equivalent to defining the Fourier transform as

ρ̃(p) =
∑

n

eip·rn . (7.2.35)

With the help of (7.2.34) and the Baker-Hausdorff lemma, we arrive at the “trigonometric algebra”.

[62]

[ρ̃(p), ρ̃(q)] = 2i sin

(

~c

2eb
ǫijpiqj

)

ρ̃(p + q) (7.2.36)

This reduces to (7.2.33) for small ~.

This form for the commutator, (7.2.36), is connected to a Moyal ∗ product in the following

fashion. For an arbitrary c-number function f(r) define

< f >=

∫

d2rρ(r)f(r) =
1

(2π)2

∫

d2pρ̃(p)f̃(−p). (7.2.37)

Multiplying (7.2.36) by f̃(−p)g̃(−q) and integrating gives

[< f >,< g >] =< h >, (7.2.38)

with

h(r) = (f ∗ g)(r)− (g ∗ f)(r) (7.2.39)

where the ∗ product is defined in (6.1.5). Note however that only the commutator is mapped into

the ∗ commutator. The product < f >< g > is not equal to < f ∗ g >.

The lack of consilience between (7.2.33) and (7.2.36) is an instance of the Groenwald-VanHove

theorem which establishes the impossibility of taking over into quantum mechanics all classical

brackets. Equations (7.2.36) – (7.2.39) explicitly exhibit the physical occurrence of the ∗ product

for fields in a strong magnetic background.
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7.3 Fluids and ferromagnets

A quantum system that has some similarity in its description to fluid mechanics is the ferromagnet

[63]. The requirements that we put on the ferromagnetic theory is that it give rise to a local spin

algebra, [compare (5.3.3)]

[Sa(r), Sb(r′)] = iℏ εabc S
c(r)δ3(r− r′) (7.3.1)

and that some Hamiltonian H encode the specific nature of the ferromagnet. Thus we expect the

action to be

I = Io −
∫

dtH. (7.3.2)

Here I0 involves the canonical 1-form that leads to (7.3.1), where the Sa are definite functions of

the canonical variables.

(i) Spin algebra

In our treatment of non Abelian fluids we obtained the Poisson bracket version of (7.3.1), i.e (5.3.3),

by starting from (D.1) specialized to SU(2): gǫSU(2), K = σ3/2i,

SaT
a = g K g−1. (7.3.3)

However, for the ferromagnet, there is no place for a density variable ρ; rather we should set ρ in

(D.1) to a constant and posit for the canonical portion of the Lagrange density

L0 = −itr σ3 g−1 ġ. (7.3.4)

The canonical variables are three in number, corresponding to the three parameters specifying the

SU(2) group element. Consequently the 2-form involves a singular matrix (3×3 and anti-symmetric)

with no inverse. Nevertheless, one can overcome this obstacle and conclude that (7.3.1) continues

to hold with Sα defined by (7.3.2).

This is achieved with the following steps. With the notation of Sidebar D, we determine that

the L0 reads [compare (D.2 and (D.3)]

L0 = ϕ̇ Ca
b Sb. (7.3.5)

The canonical 1− form has components aa = Ca
b Sb [compare (D.10)] and the 2-form reads

δ

δϕa
ab −

δ

δϕb
aa ≡ fab,

fab (r, r′) = −δ(r − r′)Cc
aC

d
bS

e εcde. (7.3.6)

Consider now the left translation of g: δg = ǫa σag/2i, or equivalently δϕa = −ǫbcba, which leads

to δSa = εabc ǫ
b Sc. The generator of this transformation satisfies, according to (A.2),

δG

δϕa

= −ǫf cfbCc
bC

d
a S

e εcde = −ǫc Cd
aS

e εcde. (7.3.7)
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This equation is solved by

G = −
∫

dr Saǫa. (7.3.8)

From the general theory, (A.18), we knew that Poisson bracketing with G generates the above

transformation on any function of the phase space variables, in particular on Sb.

εabc ǫ
b(r′)Sc(r′) = {G, Sb(r′)} = {

∫

dr ǫa(r)Sa(r), Sb(r′)} (7.3.9)

Stripping away the arbitrary parameter ǫa(r) leads to a Poisson bracket, which gives (7.3.1) upon

quantization.

It is instructive to obtain this result by applying the procedures in Sidebar A(b), relevant to

singular 2-forms. Note that Sa satisfies

δ

δϕb
Sa = cam fmb. (7.3.10)

Consequently it follows from (A.10) that the admissibility criterion (A.13) is obeyed. The bracket

of local spins reads

{Sa(r), Sb (r′)} =

∫

dr′′dr′′′
δ

δϕc(r′)
Sa(r) f cd(r′, r′′)

δ

δϕd(r′′)
Sb(r′). (7.3.11)

It follows from (7.3.5), (A.10), (A.11) and (7.3.9) that (7.3.10) reduces to the Poisson bracket version

of (7.3.1).

(ii) Momentum density algebra

The above shows that the ferromagnet in the continuum approximation, may be considered, as far

as the canonical structure is concerned, as fluid mechanics with a constant density ρ. It has been

known for some time that there is difficulty in defining a momentum density for the ferromagnet [64].

The momentum density must generate the coordinate transformation δr = −δ(r), δϕa = δ ·∇ϕa,

vϕa = −δ ·∇ϕa (7.3.12)

and the generator G should solve [see (A.17), (D.12), (D.13b)]

δG

δϕa

=

∫

dr δ ·∇ϕbC
c
bC

d
a S

e εcde

=
δ

8ϕa

∫

dr δ · tr∇ g g−1 S + i

∫

dr∇ · δtr δg
δϕa

g−1 S (7.3.13)

The second equality follows from the first with (D.2) and (7.3.3). The last term prevents equation

(7.3.12) from being integrable. Therefore, a generator of local translations, i.e. a momentum density,
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cannot be defined, except in the case that ∇ · δ = 0. Translations with transverse δ correspond to

volume-preserving transformations; and are canonically implemented with the generator

G(δ) =

∫

drδ · tr∇ g g−1 S. (7.3.14)

They include total momentum and orbital angular momentum.

It is instructive to see why the procedures in Section A(b) fail to a produce proper generator,

which by Noether’s theorem for the Lagrange density (7.3.4) is

P = aa (ϕ) ∇ϕa = 2tr∇ g g−1 S. (7.3.15)

The bracket of the quantities

{P i(r),Pj(r̃} =

∫

dr′ dr′′
(

δ

δϕa(r′)
P i(r)

)

fab(r′, r′′)

(

δ

δϕb(r′′)
Pj(r̃)

)

(7.3.16a)

is evaluated with the help of the projected inverse to fab, which satisfies (A.11). The result is

{P i(r),Pj(r′)} = P i(r′)∂i δ(r− r′) + Pj(r)∂j δ(r− r′) (7.3.16b)

− △
j (r′) ∂i δ(r− r′)−△

i(r)∂jδ(r− r′),

where

△ ≡ am P
m

a ∇ϕa, (7.3.17)

Pm
a being the projector on the zero-modes of fab. The usual momentum density algebra should not

contain the △ modification(7.3.16), (7.3.17), [compare (1.2.38)]. This modification also prevents

the quantities
∫

drδ(r)P(r) from realizing the full diffeomorphism algebra (1.2.62)-(1.2.64), except

in the restricted case of volume preserving diffeomorphisms ∇ · δ = 0. Finally we remark that with

non vanishing △ the acceptability condition (A.13) is not met, and the bracket (7.3.17) does not

satisfy the Jacobi identity.

A solution to all these problems with implementing arbitrary diffeomorphisms is found through

the connection to fluid mechanics, where the ferromagnetic phase space is enlarged to include ρ as

in (D1) [63]. Then the 2-form is non-singular, the symplectic structure and conventional Poisson

brackets exist [see (D.5)]. Either the equation (A.17) or Noether’s theorem give the generator

arbitrary diffeomorphism, viz. as the momentum density, as

P = 2ρ tr∇ g g−1 S, (7.3.18)

which satisfies the proper algebra (1.2.38), or (7.3.16c) without the △ spoiler. The ρ-extended

phase space can be reduced, in the Dirac sense, by imposing the first class constraint ρ=constant.

This will achieve the ferromagnet’s phase space.
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7.4 Non-Abelian Clebsch parameterization
(or, non-Abelian Chern-Simons term as a surface integral—a holographic presenta-

tion)

In Sidebar B we described the Clebsch parameterization (B.1) for a 3-dimensional vector potential,

which casts the Abelian Chern-Simons density (B.11) into a total derivative form (B.11), so that

its 3-dimensional volume integral obtains its value from the 2-dimensional surface that bounds the

integration volume. One may pose an analogous question about a non-Abelian gauge potential:

how should it be parameterized so that the non-Abelian Chern-Simons term

CS(A) = εijk(Aa
i ∂j A

a
j +

1

3
fabc A

a
i A

b
j A

c
k) = −εijktr(

1

2
Ai ∂j Ak +

1

3
AiAj Ak) (7.4.1)

becomes a total derivative, and its integral becomes a surface term? (In the second equality we

use a matrix representation of the Lie algebra: A = Aa T a, tr T a T b = −δub/2.) This question has

been answered in different ways by physicists and by mathematicians. We shall here present both

constructions, but first we explain the reason for the difference.

Consider CS(A) as a 3-form on an arbitrary manifold

CS(A) = Aa dAa +
1

3
fabc A

a AbAc

Aa ≡ Aa dxi (7.4.2)

(In our form notation, we suppress the wedge product.) It follows that dCS(A) is a 4-form.

dCS(A) = F a F a F a =
1

2
F a

ij dx
i dxj (7.4.3)

If the Chern-Simons term is a total derivative, CS(A) = dΘ, the dCS(A) = 0. So the possibility

of expressing the Chern-Simons as a total derivative requires that F a F a vanish. The “physics”

approach to the problem achieves vanishing of the 4-form dCS(A) = F a F a by working on a 3-

dimensional manifold, which does not support 4-forms. [The Abelian Clebsch parameterization

(B.1) is given in 3-space!] The “mathematics” approach remains with the 4-dimensional space,

viewed as a Kähler manifold, but requires that certain components of F vanish, see below.

(i) Total-derivative form for the Chern-Simons term in 3-space

In Sidebar B, eqs. (B.5) - (B.10), we gave an analytic/geometric construction of the Abelian Clebsch

parameterization for a vector potential. However, there is another approach to this Abelian problem,

which contains clues for the non-Abelian generalization. So we re-analyze the Abelian case.

The alternate method for constructing the Clebsch parameterization for an Abelian potential

relies on projecting the potential from a non-Abelian one, specifically, one for SU(2). We consider

an SU(2) group element g and a pure gauge SU(2) gauge field, whose matrix-valued 1-form is

g−1 dg = V aσ
a

2i
. (7.4.4)
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where σa are Pauli matrices. It is known that

tr(g−1 dg)3 = −1
4
εabcV

aV bV c = −3
2
V 1V 2V 3 (7.4.5)

is a total derivative; indeed its spatial integral measures the winding number of the gauge function g

[66]. Since V a is a pure gauge, we have

dV a = −1
2
εabcV

bV c, (7.4.6)

so that if we define an Abelian gauge potential A by selecting one SU(2) component of (7.4.4) (say

the third) A = V 3, the Abelian Chern-Simons density for A is a total derivative, as is seen from

the chain of equations that relies on (7.4.5) and (7.4.6),

A dA = V 3 dV 3 = −V 1V 2V 3 = 2
3
tr(g−1 dg)3, (7.4.7)

and concludes with an expression known to be a total derivative. Of course A = V 3 is not an

Abelian pure gauge.

Note that g depends on three arbitrary functions, the three SU(2) local gauge functions. Hence

V 3 enjoys sufficient generality to represent the 3-dimensional vector A. Moreover, since A’s Abelian

Chern-Simons density is given by tr(g−1 dg)3, which is a total derivative, a Clebsch parameterization

for A is easily constructed. We also observe that when the SU(2) group element g has nonvanishing

winding number, the resultant Abelian vector possesses a nonvanishing Chern-Simons integral, that

is, nonzero magnetic helicity. Specifically, the example of the Clebsch-parameterized gauge potential

in (B.15), (B.18) is gotten by projecting onto the third direction of a pure gauge SU(2) potential

constructed from the group element g = exp(σa/2i)r̂aa(r)2A = i tr σ3 g−1 dg. An even more direct

example is given by the SU(2) group element g = e
σ3

2i
β e

σ2

2i
γ e

σ3

2i
θ. Then A = dθ + cos γ dβ.

Now we turn to the non Abelian problem, which we formulate in the following way : For a given

group H, how can one construct a potential Aa such that the non-Abelian Chern-Simons integrand

CS(A) is a total derivative?

In the solution that we present [67], the “total derivative” form for the Chern-Simons density

of Aa is achieved in two steps. The parameterization, which we find, directly leads to an Abelian

form of the Chern-Simons density,

Aa dAa +1
3
fabcA

aAbAc = γ dγ, (7.4.8)

for some γ. Then Darboux’s theorem (or usual fluid dynamical theory) ensures that γ can be

presented in Clebsch form, so that γ dγ is explicitly a total derivative.

We begin with a pure gauge g−1 dg in some non-Abelian group G (called the Ur-group) whose

Chern-Simons integral coincides with the winding number of g.

W (g) =
1

16π2

∫

d3rCS(g−1 dg) =
1

24π2

∫

tr(g−1 dg)3 (7.4.9)
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We consider a normal subgroup H ⊂ G, with generators T a, and construct a non-Abelian gauge

potential for H by projection.

Aa ∝ tr(T ag−1 dg) (7.4.10)

Within H , this is not a pure gauge. We determine the group structure that ensures the Chern-

Simons 3-form of Aa to be proportional to tr(g−1 dg)3. Consequently, the constructed non-Abelian

gauge fields, belonging to the group H , carry quantized Chern-Simons number. Moreover, we

describe the properties of the Ur-group G that guarantee that the projected potential Aa enjoys

sufficient generality to represent an arbitrary potential in H .

Since tr(g−1 dg)3 is a total derivative for an arbitrary group [66] (although this fact cannot

in general be expressed in finite terms) our construction ensures that the form of Aa, which is

achieved through the projection (7.4.10), produces a “total derivative” expression (in the limited

sense indicated above) for its Chern-Simons density.

Conditions on the Ur-group G, which we take to be compact and semi-simple, are the following.

First of all G has to be so chosen that it has sufficient number of parameters to make tr(T ag−1 dg)

a generic potential for H . Since we are in three dimensions, an H-potential Aa
i has 3 × dimH

independent functions; so a minimal requirement will be

dim G ≥ 3 dim H . (7.4.11)

Secondly we require that the H-Chern-Simons form for Aa should coincide with that of g−1 dg. As

we shall show in a moment, this is achieved if G/H is a symmetric space. In this case, if we split

the Lie algebra of G into the H-subalgebra spanned by T a, a = 1, . . . , dim H , and the orthogonal

complement spanned by SA, A = 1, . . . , (dim G− dim H), the commutation rules are of the form

[T a, T b] = fabcT
c, (7.4.12a)

[T a, SA] = haABSB, (7.4.12b)

[SA, SB] = N haABT a . (7.4.12c)

(ha)AB form a (possibly reducible) representation of the H-generators T a. The constant N de-

pends on normalizations. More explicitly, if the structure constants for the Ur-group G are named

f̄abc, {a, b, c} = 1, . . . , dimG, then the conditions (7.4.12a–c) require that f̄abc vanishes whenever an

odd number of indices belongs to the orthogonal complement labeled by A,B, ... Moreover, fabc are

taken to be the conventional structure constants for H and this may render them proportional to

(rather than equal to) f̄abc.

We define the traces of the generators by

tr(T aT b) = −N1δ
ab , tr(SASB) = −N2δ

AB

tr(IaSA) = 0 . (7.4.13)
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We can evaluate the quantity tr[SA, SB]T a = trSA[SB, T a] using the commutation rules. This

immediately gives the relation N1N = N2.

Expanding g−1 dg in terms of generators, we write

g−1 dg = (T aAa + SAαA), (7.4.14)

which defines the H-potential Aa. Equivalently

Aa = − 1

N1
tr(T ag−1 dg). (7.4.15)

From d(g−1 dg) = −g−1 dg g−1 dg, we get the Maurer-Cartan relations

F a ≡ dAa +1
2
fabcA

bAc = −N
2
haABαAαB,

dαA +haBAAaαB = 0 . (7.4.16)

Using these results, the following chain of equations shows that the Chern-Simons 3-form for the

H-gauge group is proportional to tr(g−1 dg)3.

1

16π2
(Aa dAa +1

3
fabcAaAbAc) =

1

48π2
(Aa dAa +2 AaF a)

=
1

48π2
(Aa dAa−NhaABAaαAαB)

=
1

48π2
(Aa dAa +N dαA αA)

= − 1

48π2

(

1

N1

trA dA+
N

N2

tr dαα

)

= − 1

48π2N1
tr(A dA+α dα)

= − 1

48π2N1
trg−1 dg d(g−1 dg)

=
1

48π2N1
tr(g−1 dg)3 (7.4.17)

In the above sequence of manipulations, we have used the Maurer-Cartan relations (7.4.16), which

rely on the symmetric space structure of (7.4.12a–c), and the trace relations (7.4.13), along with

N1N = N2

We thus see that
∫

CS(A) is indeed the winding number of the configuration g ∈ G. Since

tr(g−1 dg)3 is a total derivative locally on G, the potential (7.4.15), with the symmetric space

structure of (7.4.12a–c), does indeed fulfill the requirement of making CS(A) a total derivative. It

is therefore appropriate to call our construction (7.4.15) a “non-Abelian Clebsch parameterization”.

In explicit realizations, given a gauge group of interest H , we need to choose a group G such

that the conditions (7.4.11), (7.4.12a–c) hold. In general this is not possible. However, one can



130 R.Jackiw

proceed recursively. Let us suppose that the desired result has been established for a group, which

we call H2. Then we form H ⊂ G obeying (7.4.12a–c) as H = H1 × H2, where H1 is the gauge

group of interest, satisfying dimG ≥ 3 dimH1. For this choice of H , the result (7.4.17) becomes

CS(H1) + CS(H2) =
1

48π2N1

tr(g−1 dg)3. (7.4.18)

But since CS(H2) is already known to be a total derivative, (7.4.18) shows the desired result: CS(H1)

is a total derivative.

With SU(2) as the Ur-group and H = U(1) or SO(2), we achieve Clebsch parameterization for

an Abelian potential, as explained in (7.4.4) - (7.4.7). [T a = σ3

2i
;SA = {σ2

2i
, σ3

2i
}]

For an explicit working out of a non Abelian case, we consider a potential for SU(2) ≈ O(3),

which possesses nine independent functions. We take G = O(5), H = O(3)×O(2). We consider the

4-dimensional spinorial representation of O(5). With the generators normalized by tr(T aT b) = −δab,

the Lie algebra generators of O(5) are given by matrices of Pauli matrices.

T a =
1

2i

(

σa 0

0 σa

)

T 0 =
1

2i

(

−I 0

0 I

)

(7.4.19)

SA =
1

i
√

2

(

0 0

σA 0

)

S̃A =
1

i
√

2

(

0 σA

0 0

)

T a generate O(3), with the conventional structure constants ǫabc, and T 0 is the generator of O(2).

S, S̃ are the coset generators.

A general group element in O(5) can be written in the form g = Mhk where h ∈ O(3), k ∈ O(2),

and

M =
1

√

1 + w̄ ·w − 1
4
(w× w̄)2





I − i
2
(w× w̄) · σ −w · σ

w̄ · σ I + i
2
(w× w̄) · σ.



 (7.4.20)

wa is a complex 3-dimensional vector, with the bar denoting complex conjugation. w · w̄ = waw̄a

and (w× w̄)a = ǫabcw
bw̄c. The general O(5) group element contains ten independent real functions.

These are collected as six from M (in the three complex functions wa), three in h, and one in k.

The O(3) gauge potential given by −tr(Iag−1 dg) reads

Aa = Rab(h) ab + (h−1 dh)a

aa =
1

1 + w · w̄ − 1
4
(w × w̄)2

{

wa dw̄ ·(w× w̄) + w̄a dw ·(w̄×w)

2
(7.4.21)

+ ǫabc(dw
b w̄c − wb dw̄c)

}

.
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where Rab(h) is defined by hIah−1 = Rabhb and k does not contribute. Aa is the h-gauge transform

of aa, which depends on six real parameters (wa). The three gauge parameters of h ∈ O(3), along

with the six, give the nine functions needed to parameterize a general O(3)- [or SU(2)-] potential

in three dimensions. The Chern-Simons form is

CS(A) =
1

16π2
(Aa dAa +1

3
ǫabcA

aAbAc)

=
1

16π2
(aa daa +1

3
ǫabca

aabac)− d

[

1

16π2
(dhh−1)aaa)

]

+
1

24π2
tr(h−1 dh)3. (7.4.22)

The second equality reflects the usual response of the Chern-Simons density to gauge transforma-

tions. Using the explicit form of aa as given in (7.4.21), we can further reduce this. Indeed we

find

aa daa +1
3
ǫabca

aabac = (−2)
(w̄ × dw̄) · ρ+ (w × dw) · ρ̄
[1 + w · w̄ − 1

4
(w × w̄)2]2

, (7.4.23)

ρk ≡ 1
2
ǫijk dw̄i dw̄j .

Defining an Abelian potential

a =
w · dw̄−w̄ · dw

1 + w · w̄− 1
4
(w × w̄)2

, (7.4.24)

we can easily check that a da reproduces (7.4.23).

CS(A) =
1

16π2
a da+ d

[

(dhh−1)aaa)

16π2

]

+
1

48π2
tr(h−1 dh)3 (7.4.25)

If desired, the Abelian potential a can now be written in the Clebsch form making a da into a total

derivative, while the remaining two terms already are total derivatives, though in a “hidden” form

for the last expression. This completes our construction.

(ii) Total-derivative form for the Chern-Simons term on a Kähler manifold

In 4-dimensional space (xi, x2, x3, x4) we can introduce complex coordinates (holomorphic and anti-

holomorphic) appropriate to Kahler (even-dimensional) manifold.

(z, z̄) = (x1 ± ix2), (w, w̄) = (x3 ± ix4) (7.4.26)

It is then required that the holomorphic and anti-holomorphic components of the curvature Fµν

vanish. [68]

Fzw = Fz̄w̄ = 0 (7.4.27)

It follows that

Az = U−1 ∂zU, Aw = U−1 ∂wV,

Az̄ = −(∂z̄U
†)(U−1)†, Aw̄ = −(∂w̄V

†)(V −1)†. (7.4.28)



132 R.Jackiw

and after a further complex gauge transformation we may replace (7.4.24) by

Az = g−1 ∂z g Aw = g−1∂w g

Az̄ = 0 = Aw̄ (7.4.29)

with Hermitian g = U †U . When we define ∂± as the holomorphic and anti holomorphic derivatives

d+ = dz ∂
∂z

+dw ∂
∂w
, d = dz̄ ∂

∂z̄
+dw̄ ∂

∂w̄
, then A = Azdz+Awdw+Az̄dz̄+Aw̄dw̄ = g−1d+g ≡ a [with

requirement (7.4.27) and in the selected gauge (7.4.29). This has the property of Abelianizing the

gauge expressions.

F = d a, trF 2 = tr(d ada) = d tr(ad a) (7.4.30)

The last formula is also consistent with the Chern-Simons formula, since the cubic contribution in

(7.3.1) vanishes, leaving the Abelianized quantity

CS = tr(ad a). (7.4.31)

Additionally one can show that

CS = tr(ad a) = d+Ω + d Φ. (7.4.32)

[In fact the above is established by varying tr(ad a).] In this way one arrives at the final result [68]

trF 2 = d d+Ω (7.4.33)

It is to be emphazized the that (7.4.32) holds only with the holomorphic restriction (7.4.27),

and gauge choice (7.4.29). No explicit formula for Ω is available; it is determined by “intergrating”

a variation:

δΩ = 2trad−v v ≡ g−1δg (7.4.34)

For Φ, which however does not contribute to trF 2, but is needed for a reconstruction of the Chern-

Simons term (7.4.32), we find

δΦ = tr(ad+v) (7.4.35)

Evidently this construction does not give a parameterization for an arbitrary vector potential, only

one which can be gauged to (7.3.28).

It is instructive to see some explicit expressions. In the Abelian case, with A = a = d+θ, we

have, F = d d+θ, F
2 = (d d+θ)(d d+θ) = d (d+θd d+θ), CS = AF = d+θd d+θ = d+(θd d+θ),

Ω = θd d+θ,Φ = 0. Note that the Abelian connection is parameterized in terms of one function

θ, or two functions if the gauge freedom is included. But a general connection in 4-space, requires

four functions.

In the non-Abelian SU(2) case, we take g = e
σa

2
θa

, then

A ≡ a = g−1d+g =
(

d+(θ̂a sinh θ) + (cosh θ − 1)(iεabcd+θ̂
bθ̂c − θ̂ad+θ)

)σa

2
(7.4.36)
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with θ ≡
√
θaθa, θ̂a ≡ θa/θ. The Chern-Simons term is reconstructed from

Ω =
1

2
d+θd−θ + (cosh θ − 1)d+θ̂

ad θ̂a + i(sinh θ − θ)εabcθ̂
ad+θ̂

bd−θ̂
c (7.4.37a)

Φ = − i
2
(sinh θ − θ)εabcθ̂

ad+θ̂
bd−θ̂

c (7.4.37b)

Note that three functions are involved (θa) in the parameterization of the connection; six if the

gauge freedom is included. However a SU(2) connection on a 4-space requires twelve functions.
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