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The problem of swimming a t  low Reynolds number is formulated in terms of a gauge 
field on the space of shapes. Effective methods for computing this field, by solving 
a linear boundary-value problem, are described. We employ conformal-mapping 
techniques to calculate swimming motions for cylinders with a variety of cross- 
sections. We also determine the net translational motion due to arbitrary 
infinitesimal deformations of a sphere. 

1. Introduction 
It has been appreciated for some time that self-propulsion a t  low Reynolds number 

is an interesting fluid-dynamical problem of considerable biological importance 
(Taylor 1951). Dynamics at low Reynolds number has a rather special and unique 
character. The effects of inertia are negligible in this limit ; in the absence of driving 
forces, bodies are a t  rest. For this reason, motion a t  low Reynolds number has been 
called a realization of Aristotelean mechanics (Purcell 1977). 

In  the absence of inertia, the motion of a swimmer through a fluid is completely 
determined by the geometry of the sequence of shapes that the swimmer assumes. It 
is independent of any variation in the rates a t  which different parts of the sequence 
are run through (as long as this rate is slow, of course). 

The purely geometrical nature of the problem of self-propulsion at low Reynolds 
number suggested to us that there should be a natural, attractive mathematical 
framework for this problem. We believe that we have found such a framework. It is 
the subject of this paper. 

We shall show, in $2, that the problem of self-propulsion a t  low Reynolds number 
naturally resolves itself into the computation of a gauge potential field on the space 
of shapes. The gauge potential A describes the net translation and rotation resulting 
from an arbitrary infinitesimal deformation of a shape. It takes its values in the Lie 
algebra of rigid motions in Euclidean space. To find the translation and rotation of 
a swimmer which changes its shape along a given path in shape space, one computes 
the (path-ordered) integral of the gauge potential A along this path. We shall 
describe how to calculate A ,  in principle, by solving a linear boundary-value 
problem. 

In two dimensions, there are powerful techniques which make explicit calculations 
of A quite practical for a wide range of shapes. The similarity between the equations 
of low-Reynolds-number hydrodynamics and of elasticity theory is well known 
(Rayleigh 1878). I n  two dimensions, complex-variable methods developed in the 
context of elasticity theory (Muskhelishvili 1953) can be carried over almost without 
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I k 

FIGURE 1. In order to measure distances between different shapes, an arbitrary choice of 
reference frames must be made. 

modification (for a review, see Hasimoto & Sano 1980). These techniques are well- 
adapted to solving our boundary-value problem. The general procedure is outlined, 
and some examples are presented, in $3. Strokes involving infinitesimal deformations 
of a circle are analysed completely, as are finite deformations within a restricted 
space of shapes. 

In  $4  we discuss the swimming of a nearly spherical organism in three dimensions. 
Again, the case of infinitesimal deformations can be analysed completely, by using 
vector spherical harmonics to exploit the symmetry of the problem. In the final 
section, we discuss possible extensions of the work. Several appendices contain 
details of our calculations and discussions of mathematical topics. 

The calculation of efficiencies, leading to the determination of optimally efficient 
strokes, is presented in a companion paper (Shapere & Wilczek 1989). 

2. Kinematics 
2.1. General framework; gauge structure 

The configuration space of a deformable body is the space of all possible shapes. We 
should a t  the outset distinguish between the space of shapes located somewhere in 
space and the more abstract space of unlocated shapes. The latter space may be 
obtained from the space of shapes cum locations by declaring two shapes with 
different centres of mass and orientations to  be equivalent. 

The problem we wish to solve may be stated as follows: what is the net rotation 
and translation which results when a deformable body goes through a given sequence 
of unoriented shapes, in the absence of external forces and torques 1 I n  other words, 
given a path in the space of unlocated shapes, what is the corresponding path in the 
space of located shapes ? The problem is intuitively well-defined - if a body changes 
its shape in some way, a net rotation and translation is induced. The net motion may 
be found by solving Stokes’ equations for the fluid flow, with boundary conditions on 
the surface of the shape corresponding to  the given deformation. 

These remarks may seem straightforward enough, but as soon as we try to 
formulate the problem more specifically, we encounter a crucial ambiguity. The root 
problem in the kinematics of deformable shapes is displayed in figure 1.  We wish to  
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compute the motion : how far has shape I moved, and how has i t  reoriented itself, in 
the process of becoming shape 111 In this form, the question is clearly ill-posed. 
Different points on or inside of the boundary may have moved differently. 

To quantify the motion, it is necessary to at,tach a centre and a set of axes to each 
unlocated shape, as in figure 1. This is equivalent to choosing a 'standard location ' 
for each shape; namely, to each unlocated shape there now corresponds a unique 
located shape, whose centre and axes are aligned with the origin and coordinate axes 
of physical space. Once a choice of standard locations for shapes has been made, then 
we shall say that the rigid motion required to move from I to I1 is the displacement 
and rotation necessary to align their centres and axes. 

Now let r parameterize the boundary of a shape S(a), and let S,(a) be the 
associated standard shape. (For example, if S is a simply connected shape in three 
dimensions, we will take r = (e,#) to be a coordinate on the unit two-sphere, and 
S ( r )  to be a map from S2 into R3. For two-dimensional (cylindrical) shapes, it 
will prove to be most convenient to use the complex coordinate on the unit circle, 
r = cis.) Then 

S ( r )  = WS,(r),  (2.1) 

where 9 is a rigid motion. We emphasize that S and So are parameterized shapes; 
different functions S ( r )  and S ' ( r )  correspond to different shapes, even if their images 
coincide geometrically. 

To make (2.1) more explicit, we introduce a matrix representation for the group 
of Euclidean motions, of which W is a member. A three-dimensional rigid motion 
consisting of a rotation R followed by a translation d may be represented as a 4 x 4 
matrix 

where R is an ordinary 3 x 3 rotation matrix, d is a 3-component column vector, and 
1 is just the I x 1 identity matrix. These matrices obey the correct group algebra 

[ R ,  d'] [R, d ]  = [R'R, Rd+d'], 

[R,d]-l = [R-', -R-ld]. 

Vectors u on which [R,d] acts are represented as 4-component column vectors 
(v, l)T; then v+Rv+d. In  the notation of (2.1), W = [R,d] acts on the vector 
(#,(a), l)T, for each r. 

Now in considering the problem of self-propulsion a t  low Reynolds number, we 
shall assume that our swimmer can squirm, but not pull itself by its bootstraps. That 
is, we shall assume it  has control over its form (i.e. its standard shape, as defined 
above), but cannot exert net forces and torques on itself. A swimming stroke is 
therefore specified by a time-dependent sequence of forms, or equivalently standard 
shapes S,(t) (the r-dependence is implicit). The actual shapes will then be 

S(t)  = W(t)S , ( t ) ,  (2.3) 

where 9 ( t )  is a time-dependent sequence of rigid displacements. Note that we allow 
shape changes which change both the volume and surface area in our general 
formulation. These may be constrained at a later stage, although we shall not 
consider such restrictions in this paper. 

The dynamical problem of self-propulsion a t  low Reynolds number thus resolves 
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itself into the computation of 9 ( t ) ,  given S,(t). For example, if the stroke is cyclic, i.e. 
s,(t,) = s,(t,), then the net motion each cycle induces is 9 ( t , )  9( t1 ) - l .  In computing 
this displacement, it is most convenient to begin with infinitesimal motions and to 
build up finite motions by integrating. So let us define the infinitesimal motion A ( t )  
by 

(2.4) 

As we shall show, A is mathematically a gauge potentialt, taking its values in the Lie 
algebra of the group of rigid motions. For any given infinitesimal change of shape, 
A describes the net overall translation and rotation which results. As in (2.2), a 
convenient 4 x 4 matrix representation for A is the following : 

where Arot is a 3 x 3  generator of rotations and Atr is a 3-component velocity 
vector. 

Given A(t), we can integrate (2.4) to  obtain 

where P denotes a ‘reverse’ path ordering: 

Ponp[  [:A(t)dt] = I + l  A(t)dt+J p ( t ) A ( t ’ ) d t d t ’ +  . . . .  (2.7) 
t l < t < t ,  t,<t <t‘<t, 

That is, in expanding the exponential in (2.7), products of matrices A(t) are always 
arranged so that earlier times occur on the left. 

(This reverse path ordering should not seem peculiar, since R(t,) ~ referring to the 
earliest time that occurs - appears on the left in (2.6). For those who prefer ordinary 
ordered integrals, we note that there is a parallel treatment with rotations defined to 
act on the right: 

W) = d,(t) 9 ( t ) ,  (2.3‘) 

(2.4’) 

(2.6’) 

For definiteness, we always employ the first alternative.) 
The assignment of centres and axes being arbitrary, we should expect that 

physical results are independent of this assignment. How does this show up in our 
formalism 1 A change in the choice of centres and axes can equally well be thought 
of as a change (rigid motion) of the standard shapes ; let us write 

t Gauge potentials have been shown to arise in a variety of contexts outside of particle physics 
and electromagnetism. For a review see (Shapere & Wilczek 1988). 
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The physical shapes being unchanged, (2.1) requires us to define 

&(t)  = 9 ( t )  Q-l(Eo(t)) .  (2.9) 

From this, the transformation law A and for the connecting path integral follow: 

a = QAQ- l+Q-  
dt (2.10) 

Readers familiar with gauge field theory will recognize these transformation laws. W 
implements a gauge transformation in the space of shapes ; A transforms as a gauge 
potential and W as a Wilson line integral. Our freedom in choosing the assignment 
of centres and axes shows up as a freedom of gauge choice on the space of standard 
shapes. The final relationship between physical shapes, i.e. E(t,) and s ( t , ) ,  is 
manifestly independent of such choices. 

The appearance of a gauge structure in the context of low-Reynolds-number fluid 
mechanics is in fact quite natural. Generally, gauge structures are associated with 
large redundancies in the description of a physical system. Here, the redundancy is 
associated with our freedom to choose a standard orientation and location for each 
possible shape. This gauge structure is a general feature of the mechanics of 
deformable bodies without inertia. 

The gauge potential A has a geometric origin. Namely, A may be viewed as a 
connection on a fibre bundle over the space of standard shapes. This point of view 
is discussed in Appendix A. 

2.2. T h e  dynamical problem : determining the gauge potential 
The dynamical problem of self-propulsion a t  low Reynolds number has been reduced 
to the calculation of the gauge potential A .  Here we outline an effective method for 
determining A .  Later parts of the paper contain many specific examples. 

First, let a sequence of forms 8,(t) be given. I n  general, this sequence of forms does 
not in itself specify a possible motion according to our hypotheses, for it will involve 
net forces and torques on the swimmer. The allowed motion, involving the same 
sequence of forms, will include additional time-dependent rigid displacements. I n  
other words, the actual motion will be the superposition of the given motion sequence 
S,(t) and counterflows, corresponding to additional rigid displacements which cancel 
the forces and torques. 

To calculate the counterflow, we solve for the response of the fluid to the trial 
motion Eo(t) .  This is given by the solution to the boundary-value problem (Happel 
& Brenner 1965; Childress 1978) 

v.v = 0, (2.11) 

(2.12) vyv x v) = 0, 

(2.13) 

Equations (2.11) and (2.12) are the standard equations for incompressible flow a t  low 
Reynolds numbers, and (2.13) is the no-slip boundary condition. I n  interpreting 
(2.13), it is important to remember that the E,(t) are really parametrized shapes 
E o ( c , t ) ,  and that the variation is meant to be taken with 

The force and torques associated with the trial motion can be inferred from the 
fixed. 
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asymptotic behaviour of v at spatial infinity. The force on the shape is related to the 
external force on the fluid a t  spatial infinity, a,nd thence to the asymptotic flow, by 
thc conservation of momentum. Indeed, if uij is the stress tensor then the force on 
the shape is (Ratchelor 1970) 

F, = 1 %ja8j> 
shape 

but the stress tensor is conserved, a,a, = 0, so this is 
n 

Now the stress tensor is given in terms of the velocity, and only the terms that fall 
off slowly and have the right symmetry survive. In  fact, we shall show in $4 that the 
force is linearly related to the leading term in the asymptotic flow. A similar 
argument, leading to a similar conclusion, can be made for the torque. 

To cancel these forces and torques, we must correct the motion by subtracting a 
Stokes’ flow corresponding to a rigid displacement of the shape with the same leading 
behaviour a t  infinity as our trial solution. The result is the actual fluid motion. By 
our definition, this rigid displacement is 

1 x A ( t )  st. (2.14) 

This completes our outline of the method for calculating A .  
Thus far, we have treated A as a time-dependent quantity. However, the 

geometric nature of our problem suggests that it should be possible to formulate an 
answer to i t  in a completely time-independent way, i.e. to express the integrand in 
(2.6) in a manner that makes no reference to a time coordinate. Accordingly, we can 
define an abstract vector field over shape space, which we shall also denote by A ,  
whose projection onto the direction SS,/Gt a t  the point s,(t) is just A ( t ) :  

= A.So[S,(t)l. (2.15) 

Then the integral of (2.6) is equal to the line integral of A over the path S,(t) in shape 
space. and is manifestly independent of how this path is parameterized : 

9 ( t 2 )  = 9 ( t l )  P exp [ l::l:: A[S’,] d&] . (2.16) 

A may have infinitely many components, one for each direction of shape space, and 
each of which is a generator of a rigid motion. In  terms of a fixed basis of vector fields 
{w,} over Yo, we may define components A,[S,] = A,,[S,]. 

2.3. Two corollaries 

We now pause to discuss two simple but notable general properties of self-propulsion 
a t  low Reynolds number, which are particularly easy to appreciate in our framework. 

Generalized scallop theorem Purcell (1977) has emphasized the ‘scallop theorem ’, 
according to which a simple hinged object such as the one shown in figure 2 cannot 
swim a t  low Reynolds number. Any repeatable stroke gives no net motion. In our 
framework, this is evident because the space of shapes available to this object is 
simply a bounded line, 0 < 0 < 2 ~ .  Thus the Wilson line integral encloses no area, 
and the displacements induced by moving along a segment are cancelled by those 
accumulated in the return motion. (The theorem assumes that the scallop cannot 
turn through 2x on its hinge!) 
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FIGURE 2.  A simple hinged animal with one degree of freedom cannot swim. 

Helix theorem One cycle of a swimming stroke results in a definite displacement, 
i.e. translation and rotation. Repeating this cycle will lead to the square of the 
displacement, and so forth. The result is that the swimmer will trace out a generalized 
helix. To put i t  more precisely, a true helix is described by 

x( t )  = exp (ta) x(O), (2.17) 

where a is in the Lie algebra of rigid motions, the infinitesimal displacement which 
generates the helix. A generalized helix, in our sense, is described by 

z ( t )  = exp (ta) R(t) x(O), (2.18) 

where R(t) is some periodic function, with R(T) = R(0)  = 1. The proof is as follows. 
Let the period of the cyclic motion be one time unit, and let the rotation and 
displacement due to one stroke be 

expa  = P e x p [  S,’.dt]. 

[ Lt, A 
Then P exp[ [ A  dt = exp (ta) exp ([t l- t)  a P  exp 

= exp (ta) R(t), 

where [t] denotes the greatest integer < t .  
Many swimming micro-organisms have indeed been observed to follow helical 

trajectories. Some examples of helical paths for flagellar swimmers have been 
computed and compared with observations by Keller & Rubinow (1976). Helices are 
ubiquitous in biology ; we suspect the mathematical reason is this theorem. 

In two dimensions, the helix theorem takes on a peculiar form. It says that cyclic 
swimming strokes can only lead to net motions which are ‘generalized circles’. That 
is, orbits of the Euclidean group E2 are circles, and the path of a swimmer will in 
general be a sort of a squiggly polygon described by (2.18). Motidn of this type is 
depicted in figure 4. In  order for the swimmer to avoid going around in circles, the 
net displacement per cycle must be a pure translation. 

2.4. InJinitesimal deformations 
The case of infinitesimal deformations of a shape is sufficiently important and 
interesting that it deserves separate comment. 

Let the standard shapes be parametrized by 

&,(t) = X,+s(t), (2.19) 

where the s(t) are infinitesimal. We expand s(t) in terms of a fixed basis of vector fields 
on S o :  

s ( t )  = Ca,(t) wi. (2.20) 
i 
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Then we have for the velocity on #,(t): 
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Xow let us expand the gauge potentials to second order : 

(2.21) 

(2.22) 

In the path-ordered exponential integral (2.7) around a cycle, which is the basic 
object giving the net displacement, the first-order term gives no contribution, for i t  
is a total derivative. The second-order contributions are terms quadratic in A and 
lincar in its derivatives. Because (2.7) is gauge covariant for a cyclic path, its Taylor 
expansion in powers of s ( t )  must also be gauge covariant, order by order. In  fact, 
there is a unique (up to normalization) second-order gauge covariant term we can 
form, which is antisymmetric in the indices i and j: 

(2.23) 

The physical significance of Elwiwj is as follows. Suppose we make a sequence of 
successive deformations of So by cwi, rwj, -ewt, and -ywj. Finally, we close the 
sequence of shapes with the Lie brackct - q [ w i ,  uij]. Then the nct displacement will 
be erFwtwj .  This makes it clear why F must be antisymmetric in its indices, so that 
thc reverse sequence of shapes gives the reverse displacement. 

It is easily verified that expansion of (2.7) to second order gives 

P exp [ f A  dt] = 1 + f f C Fwiwj ai ci j  dt. 
i j  

(2.24) 

The field strength tensor, evaluated a t  a shape So, thus encodes all information on 
swimming motions due to arbitrary infinitesimal deformations of So. 

3. The two-dimensional problem 
3. I .  Two-dimensional techniques 

We shall now apply the techniques described in $2 to study the swimming motion of 
extended bodies a t  very low Reynolds number. In  this section, we restrict our 
attention to t)he admittedly unbiological example of an infinitely long cylindrical 
body of constant cross-section. The boundary-value problem (2.11)-(2.13) then 
becomes effectively two-dimensional, and may be solved by techniques of complex 
analysis. The solution is qualitatively similar to the three-dimensional case, yet 
easier to obtain and to interpret. 

After setting up the machinery for handling the general two-dimensional problem, 
we shall apply it to the computation of the swimming motions of cylinders with some 
simple cross-sectional shapes. We shall also compute the field strength tensor for a 
cylinder with circular cross-section, leading to a description of all swimming motions 
of nearly circular cylinders. 
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In $2, we found the set of equations that must be satisfied by the velocity field v 
a t  low Reynolds number: 

v . u  = 0, (3.1) 

(3.2) V2(V x u) = 0, 

ax 
ul, = t’ (3.3) 

Let us suppose that the shape S is a cylinder and that the velocity field v contains 
no z-component, so that the boundary-value problem is two-dimensional. Then the 
first equation implies that  the two-component vector u is the curl of a scalar potential 
U (possibly multivalued), and 

v x v = v x (V x U )  = -v2u. J 
Thus U ,  by (2.2), satisfies the biharmonic equation, 

v4u = 0. (3.5) 

This equation has been extensively studied in the theory of elasticity in two 
dimensions. In  elastic boundary-value problems, the second partial derivatives of U 
represent the stresses on an elastic medium (Rayleigh 1878; Hill & Power 1955). 
Muskhelishvili (1953) (see also England 1971) has applied methods of complex 
analysis to these problems, with elegant results. His methods have proved equally 
useful in the context of low-Reynolds-number fluid mechanics (Richardson 1968 ; 
Hasimoto & Sano 1980). 

One reason complex analysis is so useful in solving the biharmonic equation is that 
biharmonic functions have a simple representation in terms of analytic functions. 
Namely, any U satisfying (3.5) may be written in the form 

+U(Z, q = ~ $ ( z ) + z ~ + @ ( z ) + 1 C r ( z ) ,  (3.6) 

where $ and II. are analytic in z = x+iy. As a corollary, we obtain an important 
representation for the velocity field, written as u = u,+ivy, 

~~ 

= $lW -z$’,(z, + $&,. (3.7) 

To discuss the swimming of shapes, we wish to consider an external boundary- 
value problem for U ,  with u = V x U specified on the exterior boundary of a compact 
region in the plane. Let s represent the complex coordinate z restricted to the 
boundary. Then given u(s),  we wish to find functions $1, $2 analytic in the exterior 
of s such that 

4 s )  = % w - s m + m .  (3.8) 

The problem is easily solved if S is a circle - we simply equate Fourier coefficients 
on both sides of (3.8). Although the result has been derived elsewhere (Muskhelishvili 
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1953), we shall present a derivation in order to establish notation. Suppose we have 
Fourier expansions 

m 

v(s )  = c vlcsk+l, 
k=-m 

(3.9) 

where s = eie. (Summation over non-positive k ensures that $ ] ( z )  and #,(z), and 
consequently v(z), are finite at infinity. We may take bk, = 0 without loss of 
generality.) Then (3.8) is equivalent to 

m 

2 WkSk+1 = c akSk+l- c ( k +  1) ciks-k+l + c liks-k-1, 
k--w k<O k<O k<-1 

since s-l = S. The complete solution is 

a,  = vk 

b-, = co, 

(k:  < O ) ,  

bk = f l . - k - 2 + ( k + 3 ) V k + 2  ( k  < -2). 

Thus the solutions with v ( s )  = Aszf1 on the circle correspond to 

(3.10) 

$hl(s) = 0, $2(s) = xs-l-' (1 > - 11, (3.11) 

$1(4 = = 0 (I = - l), (3.12) 

$h1(s) = Aslfl ,  $,(s) = h(Z+ 1) 81-1 (1 < - 1). (3.13) 

These may be extended to the entire region of flow, i.e. the exterior of the circle, by 
substituting s+ z and using the representation (3.7). The results are 

= Az- l - l  (1 > - I ) ,  (3.14) 

v = A  ( I  = - l ) ,  (3.15) 

v = Az~+l-X(Z+ 1) zl-l(%z- 1) (3.16) 

This is the complete solution to the boundary-value problem (3.8) when X is a 
circle. 

For those who prefer two-component vector notation, we can successively take h 
real or imaginary in (3.14)-(3.16) to obtain a basis of equivalent solutions 

( I  < - 1). 

for 12 -1, (3.17) 1 v i ( r ,  0)  = r-'-l(cos (Z+ 1) 8,  sin ( Z +  1) B ) ,  
v:(r,O) = ~ ~ - ' ( - s i n ( i + 1 ) 8 ,  cos(Z+1)8) 

v; = r l+ l (cos ( I +  1) B -  (Z+ 1) (1 -r+) cos ( I -  1) 8, and 

for I < - 1. (3.18) I sin (1 + 1) B + (1 + 1) ( 1 - T + )  sin (1 - 1) B ) ,  
v 2  - - r I f 1  ( - s i n ( I + l ) 8 + ( Z + l ) ( l - r ~ z ) s i n ( I - l ) ~ ,  
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It will prove useful to form combinations with definite helicity (i.e. simple properties 
under rotation) 

( 1  2 - 1) 

1 
-(z+1)(1-r-z) eki(r-l)Op d2 (1 , f i ) I  ( 1  < - 1). (3.19) 

(It should be kept in mind that the i appearing in (3.19) is not the same as in 
z = z+iy.)  Rotation through a changes these flows by 

wt + ekizaw$. (3.20) 

We say that wlk has helicity f l .  
Note that the solutions (3.15) corresponding to translations of the circle involve 

rigid motion of the fluid as a whole. (Solutions corresponding to rigid rotations ( 1  = 0 
and Ih( = 1)  fall off slowly, like ~ l . )  This unphysical behaviour is known as Stokes’ 
paradox, and is a well-known peculiarity of two-dimensional low-Reynolds-number 
hydrodynamics. Because of our requirement that the external forces and torques 
vanish, we never encounter these rigid motions of the circle - in fact we determine 
the gauge potentials precisely by ‘subtracting them off’. The fact that, math- 
ematically, rigid motions of the circle give rise to such long-range motions of the 
fluid is actually a convenience, since it allows us to identify the necessary 
counterflows, i.e. the gauge potentials, very easily from the asymptotics of a trial 
flow at  infinity. (As we shall see, the story is different for non-circular shapes, and for 
three-dimensional spheres.) 

3.2. Nearly circular shapes 

Before continuing to build up the general formalism, we pause to work out the 
important example of nearly circular shapes in detail. This computation has been 
done previously by Blake (1971 b) ,  in the case of irrotational strokes symmetric about 
the axis of propulsion. 

To compute the field strength tensor, F ,  which governs the motion resulting from 
infinitesimal deformations, we must consider closed paths in two-dimensional sub- 
spaces of shape space. Let wl, w2 be two velocity fields on the circle and let W(swl, v w z )  
be the rotation and translation of the circle induced by the following sequence of 
motions, as depicted in figure 3:  

s +s + EW1 +s+ EVl + vvz -+s + ?pz +s. (3.21) 

We work to second order in E , Y .  Then, by (2.24), 

W(EZ.’1,7%) = [ l I o l + M v l v p  (3.22) 

Fv,vl lies in the Lie algebra of rigid motions. F is most easily computed by matching 
the boundary condition Tv,(B) on the surface of the circle deformed by ewl(O). If we 
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an 

I 
FIGURE 3. An infinitesimal closed path in shape space, coupling modes m and n. 

call the resulting velocity field vI2, then F,'.,,, is related to the asymptotics of w12 at 
infinity. In  fact it is not hard to see that following our prescriptions we find 

where the translational and rotational parts are defined by 

0 Frat FF 
F, , = -Frat 0 F:). 

1 2  ( 0  0 0 

(3.23) 

(3.24) 

and the integral is around a large circle. It remains to compute vIz. The boundary 
condition for w12 is 

V2(6') = w12(4 lsurf 

= v12(r, 6 )  + d W l  . V )  %z(r, 6 )  17=1. (3.25) 

To first order, w2(6 ' )  = v,2(1,6')+€(:(v;V)v,(r,B) Ll. (3.26) 

Thus we can find wI2,  w21, and F from wl and w2. Putting (3.23) and (3.26) all together, 
we arrive a t  the master formulae 

(3.27) 

Non-trivial hydrodynamics enters these formulas only in that we generally need to 
determine v1 and w2 away from the circle where they are given, in order to evaluate 
the derivatives. 
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(It is worth remarking that the formulas (3.27) for the gauge field strength can be 
generalized to describe tangential deformations of an arbitrary shape. The argument 
preceding (3.27) implies that 

where [ % W Z l  = ( V , ~ V ) ~ 2 - ( ~ z ' V ) V 1  

is the Lie bracket. Thus the complete field strength is 

Fv1v2 = A,v1,v2,+[4J1,AvJ. 

For the circle and sphere the second term vanishes - but it does not in general. When 
both v1 and w2 are tangential fields, the Lie bracket may be evaluated completely in 
terms of their values on the shape, with no hydrodynamics. Thus for purely 
tangential motions - reparametrizations of the boundary, which do not change the 
bulk shape - the form of A determines F directly.) 

After these preliminaries, it is now a matter of straightforward algebra to insert 
the vector fields (3.19) into the master formula and thus derive F.  The results for the 
translational part are as follows : 

1 
Ftr+ + = - [ - (m + 1) 8-, S,+,+, e- + (n + 1) en am+,+, e- 

4 2  m n  

+ (m+ 1)  8-, am+, e+- (n+ 1) 8-nS-m+n-le-], (3.30) 

(3.31) 

where e ,  = ( 1 / 4 2 )  (1 ,  k i ) ,  and 8, is zero for negative n and 1 for non-negative n. It 
is understood here that the + and - labels refer to  the solutions wf in (3.19). The 
matrix F is antisymmetric ; apart from this all components of F whioh do not appear 
explicitly in (3.28)-(3.31) vanish. It is of course no accident that the vast majority 
of the components of F vanish in the helicity basis. Under a rotation through a, 
wf is multiplied by the phase in (3.20), while e +  +e*ine+. Since F is linear in its 
arguments, and everything about our problem &I symmetric under rotations, this 
leads directly to constraints on which components of F may be non-zero. 

F t r -  + = -Ftr+ n m j  - m n  

For the rotational part of F we find 

F ' O t  m+n+ = - [ ( m  + 1 )  8, - (n+ 1) O n ]  Sm+,,  (3.32) 

F',Otn- = [(m+1)8,-(n+l)8,]Sm+,, (3.33) 

Fro$ m n - = - I m +1lSm-n ,  (3.34) 

Fro! m n  + = -F;jm-. (3.35) 
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An alternative method for computing the components of the field strength, using 
complex variables throughout, is presented in Appendix B. In Appendix C, we 
discuss an interpretation of F,, in terms of the Virasoro algebra of conformal 
deformations. 

3.3. Large deformations 
In the preceding section, we computed the net translation and rotation of a nearly 
circular cylinder due to an infinitesimal closed sequence of deformations. Here, we 
shall perform a complementary calculation for deformations of finite size. This will 
provide a concrete application of the gauge potential formalism we introduced in $2. 
Because the complexity of the calculation increases with the complexity of the 
deformations, we shall restrict attention to  shapes described by conformal maps of 
the unit circle with degree D Q 2. (The extension to shapes of arbitrary degree will 
be discussed later.) A sequence of such deformations may be parameterized as 

S(cr,t) = ao(t) a+a-,(t) a-l+a_,(t)a-2 (3.36) 

where CT = cis. Here we have taken = 0 to  'fix the gauge' with respect to 
translations. We may also choose orientations for the standard shapes by requiring 
a,, to be real and positive. Note that a, must vanish if the analytic extension of S to 
the region of flow is to be conformal a t  infinity. 

To compute the translation and rotation due to the sequence of deformations 
(3.36), we need to solve the boundary-value problem (3.8) on the exterior of each of 
the shapes X(u, t )  for 0 Q t < T. This is most easily accomplished by conformally 
mapping the exterior of S(u, t )  in the z-plane onto the exterior of the unit circle, using 
z = S(5).  Pulled back to the unit circle 5 = u in the 5-plane, (3.8) becomes 

(3.37) 

where o * ( a )  = v(S(a)) and $:, ,(a) = $1, 2(S(a)). (The asterisk here denotes a pull-back 
of q5, not complex conjugation.) 

We may now solve for $:(c,t) and $ ? ( C , t ) .  Then, if we want to know the 
actual fluid velocity field, we map back to the physical z-plane to obtain $1,2(z) = 
$T,,(X-'(z)) and use (3.7) to find v(z). More precisely, suppose that we have Laurent 
expansions in the 5- and z-planes 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

z a-2 

010 z 
5 = X-'(z) = ----+. . . . (3.43) 
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Then we solve for a,* and b,* by equating Fourier components in (3.37) and use 
S-l(z) to express a, and b, linearly in terms of a: and b,*. For example, the lead- 
ing coefficients a_, and b-, are 

a_, = a-1, * (3.44) 

b-, = a, b-,. * (3.45) 

These are in fact the only coefficients we need in order to compute the gauge 
potential 

As[S(a, t)l (3.46) 

and consequently the net velocity of the shape a t  time t .  
To proceed, (3.37) gives the following four equations for the leading a: and b,* 

coefficients 

(3.47) 

(3.48) 

1 
a_, u-, = a*, u-,, 

a_, u-l = a', u-l, 

0 = a*, + Cc;la_, fz',, 
- 

a, u = (b', + @;la-, a', + 2Cc;k3 a!,) u. 

These may be solved to yield 
- 

b-, = CI, b', = 0 1 ~  a, - Z-, - 2&, 4 a_, = a!, = - 2a;la-, &,, 

since a, is real. 
The constant component of the fluid flow at infinity must be zero in order for the 

net force on the shape to vanish. So we subtract from our solution v(z )  a counterflow 
up,, leading to a net translation velocity for the cylinder of 

At' = B,. (3.49) 

Similarly, after some algebra involving the equations of motion, the net torque is 
found to be 

= lim r,p Re [ / .~gdZ] 
r0+m 

= 8np Im (b-,). (3.50) 

We can cancel this torque with a rotational counterflow of angular velocity w 

(3.51) 

such that, from (3.48), 

Im (b-,) = Im (iw[la,12 + la-,I2 + 21a-,I2]}. (3.52) 

Solving for w and using (3.48) we find then net rotational velocity of the shape 

(3.53) 

19 FLM I90 
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FIGURE 4. A 
I 

typical trajectory for a cyclic swimmer in two dimensions. Six complete 
occur between successive frames. 

The complete gauge potential in the notation of $ 2  is 

0 o Re(Atr) 

0 0  0 
--w 0 Im(Atr) 

cycles 

(3.54) 

and the net translation and rotation due to the full sequence of deformations is 

[ R , d ]  = P e x p [  S f A ( t ) d t ] .  (3.55) 

We have evaluated (3.54) explicitly for a particular sequence of shapes, and plotted 
the result in figure 4, as a stroboscopic picture. The sequence is a near-circle in the 
real (a-3, a-,)-plane, with a small (5 %) out-of-phase imaginary component (to 
produce a net rotation) : 

a, = 1, 

a-2 = 0.3 cos ( 2 x t )  + i0.015 sin (2x t ) ,  (3.56) 

a-3 = -0.3 sin (2x t )  +i0.015 cos (2nt). J 
6.1 cycles occur between each depicted shape, and the net motion through space is 
a counterclockwise ‘generalized circle ’. 

For shapes of degree D > 2, the procedure for calculating A is the same. One solves 
D+2  linear equations as in (3.47), for aiD-l ,  . . . , a!, and b i z ,  and determines the net 
translational and rotational velocities analogously. 

The solution to our problem, (3.53)-(3.55), demonstrates the usefulness of our 
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kinematic framework, and shows why it is necessary to introduce A in order to 
compute the net rigid motion. In  fact, any solution to  the problem we have posed in 
this section must be given by a path-ordered exponential integral over shape space, 
of a quantity which transforms under changes of reference axes for shapes as a gauge 
potential. 

4. Squirming spheres 
We now wish to study the possible swimming motions of a nearly spherical 

deformable body. This is a problem of some relevance in the biophysics of animal 
locomotion (Lighthill 1952 and Blake 1971 a) .  In  particular, consider a spherical 
animal which swims by waving a layer of short, densely packed cilia. (For reviews on 
the subject of self-propulsion of ciliated micro-organisms, see Blake & Sleigh 1975 ; 
Brennen & Winet 1977; Childress 1978; Lighthill 1975; Jahn & Votta 1972; Pedley 
1975). An exact determination of all the swimming motions of such an animal would 
be impractical. However, we can usefully approximate the shape of this animal by 
a quasi-sphere, whose boundary just encloses the cilia. This approximation is known 
as the envelope model, and it is valid in the dual limit of short cilia relative to the 
radius of the sphere and dense packing relative to the lengths of the cilia. Paramecia, 
for example, are shaped like elongated spheres of length 200-300 pm (Blake & Sleigh 
1975). The cilia are roughly 10 pm long and spaced 2 pm apart over the surface of the 
organism. Waves produced by the synchronous beating of the cilia are observed to 
have a frequency of about 30 Hz and a wavelength of 10 pm. The resulting helical 
trajectory is traversed with a velocity which has been observed to be between 600 
and 2500 pm/s. While Paramecia are far from perfect spheres, one might hope to 
obtain at least, a qualitative understanding of their swimming patterns. We also 
expect that  our methods can be extended to encompass simple non-spherical shapes 
such as ellipsoids. 

The problem of determining all swimming motions of such an animal lends itself 
perfectly to solution within the framework we have developed. Namely, if we know 
the 'field strength tensor' F a t  the sphere (which we may take to be of unit radius), 
then we know everything. The computation of F(S2)  parallels that for the cylinder. 
We first find the general solution of the Navier-Stokes equations as an expansion in 
terms of vector spherical harmonics. We then solve the boundary-value problem for 
a slightly deformed sphere and obtain F,, from the asymptotic behaviour of this 
solution. We shall ignore any constraints on the volume or surface area of the quasi- 
sphere, other than the limits imposed by the lengths of the cilia. 

Since our boundary conditions for the flow v are going to be on the surface of a unit 
sphere, it is appropriate to expand v in vector spherical harmonics: 

The Y J L M  are defined in terms of ordinary scalar spherical harmonics by 
1 

G L M  = c c YLM<Lmlq ILIJM)  e"q1 14.21 

where &+, = T ( & z k i & u ) / 4 2 ,  e", = kt ,  and (LmlqILlJM) is a spin-1 Clebsch-Gordan 
coefficient. 

We now insert the expansion of (4.1) u into the Navier-Stokes equations (2.11) and 
(2.12) to find k as a function of JLM. Using standard formulas for the Laplacian, curl, 

m q=-1 

10-2 
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and divergence of f ( r )  YJLM (see Appendix D) it is straightforward to show that 
(Lamb 1895) 

This expansion should be compared with its two-dimensional analogue, given by 
(3.14)-(3.16). It is easily checked that the boundary-value problem of matching u 
with an arbitrary velocity field on a surface is well-determined. 

The net velocities due to a given change in shapc are found, as in the two- 
dimensional case, from the condition that the net force and torque on the shape 
vanish. In  fact, the net force and torque are proportional to leading asymptotics of 
u,  of order r-l and rP2.  To see this, recall that the net force is the surface integral of 
the fluid stress tensor over the boundary of the shape (Batchelor 1970): 

By the divergence theorem and the fact that  t..utj = 0 (Stokes’ equations), this is 
equal to the integral of uij over a large sphere of radius r 

= Is, utj ?ij r2 dQ, (4.5) 

where ?ij is a unit outward normal to the sphere. As r + m, the only piece of uij which 
survives in the integral is the term proportional to rP2,  which comes from the 
term 

C1M r-l KOM (4.6) 

in (4.3). Thus, if our solution u contains such a piece, we must subtract it as a 
‘ counterflow ’ in order to satisfy F = 0. The resulting net translational velocity of the 
shape is accordingly 

Vtrans = - C l q  e g .  (4.7a) 

(Here and henceforth, we sum implicitly over q = - l , O ,  1 . )  Similarly, the rotation 
velocity comes from the term in the expansion of u proportional to Y O l M :  

%t = aoqeq. (4 .7b )  

To compute the translational components of the field strength, we follow the same 
procedure as in our earlier two-dimensional calculation, leading to the master 
formula of (3.27).  The computation is presented in detail, and compared to earlier 
results of Blake, in Appendix E. We obtain 

(4.8) - {JLM * J’L’M’}, 
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It is worth remarking on the similarity of this result to the field strength FZn of 
a circular cylinder, found in $3.2, First, the only non-zero components of F in either 
case correspond to  pairs of modes which are connected by a two- or three- 
dimensional angular momentum operator. I n  the three-dimensional case, this is a 
consequence of the spherical symmetry of the sphere. Thus, if the sphere is rotated 
by some J - h ,  then the translation d due to F must rotate similarly. Rephrasing the 
argument given in $3.2 for the cylinder now shows that J and J' must differ by a t  
most 1 in order for the sphere to translate. 

A second similarity is that F,LM, J r L , M ,  grows linearly with J ,  for large J .  This shows 
that the swimming motions of spheres and cylinders arc quantitatively as well as 
qualitatively similar, a conclusion which presumably extends to other shapes as 
well. 

The computation of FYiM,  J,L'M, is similar, although somewhat more involved. 
Frot is certainly essential in determining the helical motion which results from an 
arbitrary periodic swimming stroke. However, we expect that any maximally 
eficient stroke will involve no rotation (see Shapere & Wilczek 1989). 

5. Summary and concluding remarks 
This paper provides a general kinematic framework for discussing self-propulsion 

a t  low Reynolds number. We have formulated this problem in terms of a gauge 
potential A ,  which gives the net rigid motion resulting from an arbitrary change of 
shape. Finite motions due to a sequence of changes of shape are given by a path- 
ordered exponential integral of A along a path in shape space, and cyclic infinitesimal 
swimming motions are described by the covariant curl F of A .  We have discussed an 
algorithm for determining A a t  shapes related to the circle by a conformal map of 
finite degree, and evaluated A explicitly for all deformations of conformal degree 
two. Our computations of the field strength of the circular cylinder and of the sphere 
effectively determine all possible infinitesimal swimming motions of these shapes. 

Knowing, as we now do, the motion that results from any infinitesimal cyclic 
swimming stroke around a circle or a sphere, we may try to find the most efficient 
strokes. We analyse this problem in an accompanying paper (Shapere & Wilczek 
1989). Qualitatively, we find that optimal infinitesimal strokes are wave-like motions 
symmetric about the axis of propulsion. The waves propagate from front to rear 
(relative to the direction of motion), achieving a maximum amplitude near the 
middle. 

There are several other directions in which our work should be extended: 
It should be possible, following the methods of Muskhelishvili, to calculate F for 

a variety of two-dimensional shapes, e.g. ellipses. It is quite possible that there is a 
fairly direct algorithm of calculating F for any conformal image of the circle ; we have 
not examined this closely. In three dimensions, it would be biologically interesting 
to extend our calculation of F for the sphere to prolate spheroids, by expanding the 
flow in prolate spheroidal harmonics. 

The similarity of the field strengths of the cylinder and the sphere in the high- 
frequency limit suggests a possible approximation which could apply to arbitrary 
shapes. Since the flows generated by high-frequency disturbances on the boundary 
tend to die rapidly with distance, it should be possible to treat them approximately 
for any shape, by replacing the shape locally with its tangent plane. Such an 
approximation has been mentioned in the literature (Childress 1978 and references 
therein), although, to our knowledge, a firm mathematical justification is lacking. A 
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useful application would be to the computation of high-frequency components of 
F,, for arbitrary shapes. 

Finally, a very interesting mathematical generalization is to consider unpara- 
metrized shapes. This might be appropriate to  describing the motion of moving 
holes, i.e. oscillating bubbles. Both the kinematics and the boundary conditions have 
to be rethought to cover such cases; presumably one divides the shape space further 
by the group of diffeomorphisms, and imposes vtangential = 0. The gauge group then 
becomes infinite dimensional. 

W'e would like to express our appreciation to Edward Purcell for introducing us to 
the world of life a t  low Reynolds number and for his encouragement. We also wish 
to thank Sidney Coleman, Freeman Dyson, T. J .  Pedley, and John C. Taylor for 
useful discussions, and Larry Romans for his comments on the manuscript. This 
research was supported in part by the National Science Foundation under Grant 
No. PHY82-17853, supplcmcnted by funds from the National Aeronautics and 
Space Administration, at the University of California at Santa Barbara. 

Appendix A. Shape space as a fibre bundle 
Fibre bundles provide a natural geometric setting for understanding gauge 

potentials (Choquet-Bruhat, Dewitt-Morrette & Dillard-Bleick 1977 ; Eguchi, Gilkey 
& Hansen 1980). In  this Appendix, we show how the problem of swimming at  low 
Reynolds number can be formulated in terms of a fibre bundle. This should help to 
clarify the mathematical origin of our gauge potential, while also providing a nice 
concrete example of the fibre-bundle concept. 

We have been considering the space Y of shapes in R3 and its quotient modulo tJhe 
Euclidean group, Y I E , .  Given a path of (unlocated) shapes in Y / E , ,  our problem 
has been to lift to a path of shapes with locations in Y .  Stokes' equations 
(2.11)-(2.13) determine a local rule for lifting the path, in terms of the gauge 
potential A .  ,4 tells us the net velocity of the shape through the fluid corresponding 
to an infinitesimal change of shape. 

In  the language of fibre bundles, Y is the bundle, E ,  the fibre, and Y / E 3  the 
base space. A is a connection, a linear map from the tangent space of the base 
space, T ( Y / E , ) ,  to the Lie algebra of E,. A is defined only locally, relative to a local 
section - but of course the transport of shapes is defined globally. It is the defining 
property of G-bundles that under a change of section, a(x) --f g(x) a(x), a connection 
transforms as 

A +g  Ag-l +g  dg-l. 

If i t  were only a matter of dividing out by translations, the bundle would be 
topologically trivial : there is a globally smooth way of choosing the centre of a shape ; 
namely to take its centre of mass (or what would be, if i t  was made from material of 
constant density). However, choosing orientations does not appear to  be so trivial. 
One might think of aligning the principal axes with the coordinate axes ~ but in what 
order? A natural choice is to order them xyx in order of the magnitudes of the 
moments of inertia; but an ambiguity arises when two moments become equal, and 
it is not clear that a smooth choice is possible globally. 

It would be interesting to study the global topology of the bundle 9. The base 
space Y / E ,  seems to have a non-trivial topology, which the bundle inherits. How 
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'twisted' is the connection A ?  An answer to this mathematical question might 
provide us with some qualitative insight into the motion of shapes which undergo 
large deformations. 

Appendix B. The nearly circular cylinder in complex coordinates 
In $3.2, we computed the swimming motions of a cylinder with nearly circular 

cross-section. Our results were given in vector notation in order to  make the 
generalization to three dimensions straightforward. However, the details of the 
calculation take a somewhat simpler form when presented in the complex variables 
framework employed elsewhere in 8 3. In addition, the corresponding calculation for 
a cylinder of non-circular cross-section is most directly approached using conformal- 
mapping techniques, which requires the use of complex coordinates. With this 
motivation, we now calculate, using complex coordinates, the field strength of a 
circular cylinder. 

Our strategy for evaluating F a t  the unit circle 5 = a = eie will be as in $3.2. We 
consider the sequence of motions in (3.21), and directly compute the resulting net 
translation and rotation, to find Fv,v2. But now we work in the complex basis for 
vector fields on the circle given in (3.11)-(3.16). Thus, if 

v l ( a )  = a m + 1 ,  v2 (a )  = a n + 1  (B 1) 

then we can define t'he components of F by 

Note that for each m and n, F has four components, because e and q each have two 
real components. It turns out that the particular holomorphic decomposition given 
above is computationally the most convenient. 

As before, we define vI2(x) to be velocity field of the fluid, which results when the 
boundary condition qu2(a) is applied at the surface of the cylinder x = s = a+cvl (a) .  
The complex analogue of (3.27) is 

= I: a k x k f l - ~  2 ( k + l ) g +  I: b,z"', (B 4) 
k t 0  k<O X i - 1  

we see that the leading asymptotic behaviour of v12, and hence the field strength 
tensor of the cylinder, is obtained by solving for a_, and bP2,  the leading coefficients 
of $1 and # z :  
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The first step in solving the boundary-value problem (3.8) for vI2, is to pull back 
to the circle, expressing everything in terms of the circle coordinate v. To lowest 
order in E ,  we get 

yP+l = 'u12(b+ e f F + l )  

I n  the terms on the right-hand side of this equation which are of order E ,  we may 
replace ak (k + - 1 )  and bk ( k  + -2) by their values aio) and bp)  when E = 0. Any 
corrections to ak and bk for small e can be ignored in terms which are already small. 
From (3.10), we have 

with 8, = 0 for negative n and 8, = 1 for non-negative n. We now solve for a_, and 
Ft' by isolating the constant term in the expression (B 6). After some algebra, the 

Similarly, the term proportional to  v yields an expression for b-, from which we 
obtain the rotational components of F : 

Note that the net translation and rotation due to a sequence of infinitesimal 
deformations, determined by F according to  (B 2 ) ,  agree with the corresponding 
results found in 53.3 for certain large deformations. Consider, for example, the 
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translation d(-2)( -3)  associated with the closed path in (ap2,ap3) space shown in 
figure 3:  

On the other hand, since m = n + 1, only F g ,  is non-zero for m = - 2 and n = - 3 ,  so 
the net translation according to (B 8) is 

(-3) = FkV-3) 6_2 7-3 

- yp3 6_2. (B 11) - - 

In  Appendix C, we discuss a fluid-mechanical modification of the algebra of 
infinitesimal conformal transformations of the circle and its relation to F,, for 
cylinders. 

Appendix C. The Virasoro algebra 
In  this Appendix we would like to  point out a connection between F,, and the two- 

dimensional Virasoro algebra. This is the Lie algebra of infinitesimal deformations of 
the unit circle, with infinitely many generators L,. L ,  generates the infinitesimal 
deformation 

exp E ,  L, : c+ c+ E ,  cn+l. (C 1) 

Note that L-, generates rigid translations and that Lo generates rigid scale 
transformations (for IZ,, real) and rotations (e0 imaginary). We shall denote the 
generator of rotations by Im Lo. 

A simple computation shows that 

[Lm, LnI = (m-n)  Lm+n. (C 2) 

This algebra is important in string theory and conformal field theory (Shenker 1986). 
I n  these contexts, quantization modifies (C 2) by the addition of an ‘anomaly’ term 
proportional to (n3-n)6,+n,0. Our field strength tensor F,, also produces a 
modification of (C 2). Consider the path in shape space generated by applying L,, 
L,, - L,  and - L,, successively. The failure of this path to close is given by [L,, 
L,]. But there is a further failure to close in the actual configuration space of shapes 
with locations, given by F,, : 

[L,, L,] = (m-n)  Lm+m+FE, L-,+FS,O‘ Im Lo. (C 3) 

There are obvious parallels between (C 3) and the anomalous Virasoro algebra, but 
there is also an important difference. The anomaly which arises in conformal field 
theories depends cubically on the mode number n,  and cannot be ‘gauged away’ by 
redefining the L,. However, our fluid-mechanical modification of the Virasoro 
algebra, which is linear in n,  can be absorbed into the L, by including compensating 
rotations and translations which keep the shape centred a t  the origin. 
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Appendix D. Vector spherical harmonics 

used to derive (4.3) (see Edmonds 1957 for details). 
This Appendix contains formulas involving vector spherical harmonics which were 

Appendix E. Calculation of F ( 9 )  
In  this Appendix, we sketch a derivation of (4.8) and compare it to a result of Blake 

( 1 9 7 1 ~ ) .  
First, we compute the constant component v,, of the velocity field on the surface 

of a sphere when the sphere is successively deformed by the (unphysical) fluid 
velocity fields v,  = crk Y J L M  and v, = Trk'  Y J r L f M ,  : 

Next, we consider physical fluid velocity fields (of the form given in (4.3)), whose 
values on the boundary of the two-sphere are vI = c YJLM and v, = 7 Y J T F M , ,  i.e. 

cr-J-2 Y J j + l M  

cr-J-l YJ J M  

c Y J L M ( @ >  $) = c y p J  Y J J - i M  I +c(&)?!I!(r-J-2- 2 -J ) y J J + l M  (E 2 )  

for r = 1.  Using (E l), it is then straightforward to compute the net translation due 
to the closed cycle of shapes of figure 3,  namely 

d J L M ,  J'L'M' = C.m, J*L'M'ET.  
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We evaluate v,, using 

Expanding the YJLM and taking the gradient of YLrM, gives 

+(&)h+L'+ 1 )  q , 'L- lm'  1 (L'm'lqIL'lJ'M')e",,. 

We now expand KrLflmf and YL,L'-lmr and integrate over the sphere, using 
orthonormality of spherical harmonics : 

1 
vl, = - C I; (Lmlql 

471. mq m'q' 
L1 J M )  (L'm'lq' 1 L'WM') gq, 

x - -  [ ( 2;- l)t (k' - L + 1 ) 8,,,,(Lmlq I L 1L - lm))  

1 + (sr (k' + L + 2 1 8LLr-l ( Lm 1 q I L 1 L + 1m' > . 

Now by completeness and reality of the Clebsch-Gordan coefficients, 

C (Lmlq I LlJM) (Lmlq I LlL+ lm' )  = 8JL+18Mm'. 
mq 

So finally, 

We now consider a physical fluid flow v,. For v, = yr-J'-2Y J,J'+IM we find a net 
velocity 
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We get precisely the same answer for v 2  = r,w-J'-lY J ,  JfMr.  However, the case 
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v 2 ( B ,  $) = 7 yJ 'J - lM' (8 ,  $) 

is slightly more complicated. We find 

01, V J L M ,  j ' J ' - l M '  = [ ( J +  1)(2J+ l)]'fiJJL'fiJL-I 

Putting everything together now yields the field strength tensor 

- 4mt, J ' ~ M '  - v J L M ,  J ' L ' M ' - ~ J ' L ' M * ,  J L M  

as in (4.8). 

motions of a sphere. We wish to show that our result reduces to his. 
In  a classic paper, Blake (1971 a )  studied axisymmetric irrotational swimming 

Blake considered deformations of a sphere of radius a = 1 of the form 

N N 

R = l + e  an(t)Pn(cos8,), f3 = O , + E  C P,(t) V , ( O O S ~ , ) ,  

where 0, is the azimuthal coordinate for the undeformed sphere, and (R,B) are 
coordinates for the axisymmetrically deformed sphere. Pn is the nth Legendre 
polynomial and 

n=2 n=l 

2 a  
J ( J +  1) ae Vn(c0sf3,) = ~ - P,(cos 0). 

To lowest order in e, the fluid velocity components in the radial and azimuthal 
directions a t  (B ,  0) are, respectively, 

v R =  R = € C k n P n ,  v ~ = R B = E C P , V ~ ' , .  

For such a velocity field, it is clear that the net velocity of the sphere through the 
fluid will always be in the z-direction. Blake computes it to second order in E :  

N - 1  (n+ 1)2an k,,, - (n2-4n-2) L i n  

( 2 n + l ) ( 2 n + 3 )  
-z 

n-2 

(We have neglected terms with n = 1, since these depend on Blake's choice of an 
origin for each shape, i.e. on his choice of gauge.) 
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We may extract the field strength Ftr2 from (E 6) by considering closed paths 
ea,(t) and $,(t) (0 < t f 1) of the type depicted in figure 3 and integrating unet 
from t = 0 to t = 1 .  This yields the non-zero field components 

dt 
(n+ I)'an in+, - (n2 -4n-2)  ci, 

(2n+1)(2n+3) 
F(P, i ,  P,+l i )  = - 

-2n2+2n+ 1 
(2n+ 1)(2n+3)' 

- - 

4n 
(2n + 1) (2n + 3 )  ' 

8 
( 2 n + l ) ( 2 n + 3 ) '  

B( v, 6, P,+l i )  = 

F(V, e, v,,, 8) = 

Note that F(P,i,F'n+li) is just  half the coefficient of the antisymmetric sum 
a,a,+l-ci,a,+l. This is because the symmetric sum ~~,ci,+,+a,+~ci, is a total 
time derivative, so that its time integral is zero. 

To m9ke contact with our computation of F (  Y J L M ,  Y J r C M , ) ,  we must express P, 4 
and V, 8 in terms of YJLM : 

These follow from the following explicit representations of U,,, in terms of Y,, (see 
Arf ken 1985) : 
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The last ingredients needed are four components of FJLM, J , L , M r  [see (4.8)] : 

A .  Shapere and F .  Wilczek 

1 
%+lo, J+1J+SO = “J + 1) (J  + 2)14 

1 
4n &+lo, J+lJO = - (J  + 

1 w-1 
47c W + 3 ’  c - 1 0 ,  J+IJ+PO = - [J(J + 2)li- 

1 2 J - 1  
FA-10, J + 1 J O  = - - [J(J  + 2 ) l i W .  47c 

Here, we have made use of the Clebsch-Gordan coefficients 

<J-101O(J-llJO) = 

( J +  1010 IJ+ 11JO) = 

We shall now compute F(P,r^,P,+,E) explicitly. Combining ( E  8) and (E 9), and 
using the linearity of F, we obtain 

- - W + W + l  - 
(W + 1) (W+3)  ’ 

in agreement with (E 7). The remaining components of F may be evaluated 
similarly. 
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