
The failure of the Tacoma Bridge: A physical model
Daniel Green and William G. Unruh 
 
Citation: Am. J. Phys. 74, 706 (2006); doi: 10.1119/1.2201854 
View online: http://dx.doi.org/10.1119/1.2201854 
View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v74/i8 
Published by the American Association of Physics Teachers 
 
Related Articles
The Enigma of the Aerofoil: Rival Theories in Aerodynamics, 1909–1930. 
Am. J. Phys. 80, 649 (2012) 
Simple, simpler, simplest: Spontaneous pattern formation in a commonplace system 
Am. J. Phys. 80, 578 (2012) 
Determination of contact angle from the maximum height of enlarged drops on solid surfaces 
Am. J. Phys. 80, 284 (2012) 
Aerodynamics in the classroom and at the ball park 
Am. J. Phys. 80, 289 (2012) 
The added mass of a spherical projectile 
Am. J. Phys. 79, 1202 (2011) 
 
Additional information on Am. J. Phys.
Journal Homepage: http://ajp.aapt.org/ 
Journal Information: http://ajp.aapt.org/about/about_the_journal 
Top downloads: http://ajp.aapt.org/most_downloaded 
Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html 

Downloaded 25 Oct 2012 to 128.100.78.149. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

http://ajp.aapt.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/965673950/x01/AIP/WebAssign_AJPCovAd_1640x440_10_02_2012/WebAssign_Download_Banner_Physics_09062012.jpg/7744715775302b784f4d774142526b39?x
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=Daniel Green&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=William G. Unruh&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.2201854?ver=pdfcov
http://ajp.aapt.org/resource/1/AJPIAS/v74/i8?ver=pdfcov
http://www.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.3700136?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4709384?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.3678306?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.3680609?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.3644334?ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://ajp.aapt.org/about/about_the_journal?ver=pdfcov
http://ajp.aapt.org/most_downloaded?ver=pdfcov
http://ajp.dickinson.edu/Contributors/contGenInfo.html?ver=pdfcov


The failure of the Tacoma Bridge: A physical model
Daniel Greena� and William G. Unruhb�
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The cause of the collapse of the Tacoma Narrows Bridge has been a topic of much debate and
confusion over the years. Many mischaracterizations of the observed phenomena have limited the
understanding of the collapse even though there has always been an abundance of evidence in favor
of a negative damping model. Negative damping, or positive feedback, is responsible for large
amplitude oscillations in many systems, from musical instruments to the Tacoma Narrows Bridge
failure. We discuss some of the more well known examples of positive feedback, and then show how
the interaction of the wind with the oscillating bridge, especially the development of large scale
vortices above and below the deck of the bridge, led to such a positive feedback instability. We
support our model by computational, experimental, and historical data. © 2006 American Association of
Physics Teachers.
�DOI: 10.1119/1.2201854�
I. INTRODUCTION

One of the most surprising of physical phenomena is the
conversion of a steady state condition into oscillations. Ex-
amples include the steady blowing of air through the reed of
a clarinet, the flow of air over the blow hole of a flute or over
the neck of a beer bottle, and the conversion of the steady
pull of a bow across a string in a violin into a steady
vibration.1 In some of these examples the mechanism is clear
and direct, and in others it depends on a time delayed feed-
back mechanism to produce the instability associated with
the sound production. The howl of a sound amplification
system if the microphone is too near the speakers is the most
common example of such a phenomenon. The reed instru-
ments and the violin bow operate under conditions in which
they act as sources of negative damping in which the insta-
bility converts arbitrarily small input signals into larger out-
puts.

If the external pressure on a clarinet reed is high enough to
partially close the reed �but not so high as to completely
close it�, an increase in the internal pressure will open the
reed and allow more air into the clarinet. A decrease in in-
ternal pressure will close the reed and allow in less air. That
is, more air enters the instrument when the pressure is high
and less enters when the pressure is low. Energy is fed into
the system as a result. The negative slope in the pressure
flow rate curve results in negative damping for oscillations
within the instrument, causing the amplitude to increase until
the reed enters a highly nonlinear regime.

Similarly, for the violin bow the presence of the rosin on
the bow creates a negative damping regime in which the
force on the string decreases as the relative velocity between
the string and the bow increases. This effect will amplify any
oscillations in the string. Because the effect is greatest on the
resonant modes of the string, the negative damping regime
tends �if the bow is properly played� to create large ampli-
tude oscillations at the resonant frequency of the string. The
oscillation increases in amplitude until the nonlinear stick-
slip amplitude is reached.

For the flute or the coke bottle the effect is more subtle
and involves a time delay. The player blows a steady stream
of air across the hole such that if the air in the bottle did not
oscillate, the stream would hit the far side of the hole and be

diverted, half into and half out of the flute or bottle. But, if
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the air inside the instrument is vibrating, there will be an
in-out airflow of the hole caused by the vibration. This vi-
bration deflects the stream directed across the bottle. While
the deflection is maximum at the point of maximum flow of
air into or out of the instrument, it takes a finite time for the
stream to cross the opening and either enter or exit the in-
strument. If this time delay is a quarter of a period, then the
stream will be deflected into the instrument when the pres-
sure within is highest, and will be deflected out when the
pressure inside is lowest. Just as for the clarinet, the stream
does work on the air inside the instrument, leading to an
instability and sound production. There is no direct source of
the amplification. Rather it is an interaction between the os-
cillations of the air in the instrument and the airflow across
the opening �see Fig. 1�. Only those modes with the correct
relation between the oscillation period and the time it takes
the air to flow across the hole are amplified, and thus have a
negative damping coefficient. In this case it is the timing of
the airflow across the opening that is crucial for establishing
the instability which creates the large oscillation.

There are two important aspects in all of these examples.
Although the natural oscillation period of the vibration pro-
duced tends to be very close to the period of a natural reso-
nance of the instrument �the air within the tube of a clarinet,
flute or beer bottle, and the string of a violin� none of these
correspond to the traditional notion of resonance. There is no
external oscillating force that is tuned to the natural period of
the oscillation. Rather there is a complex nonlinear interac-
tion between the oscillations and the external steady action
which creates a condition of negative damping and instabil-
ity for the natural modes of oscillation of the instrument.

That it is the natural modes that are important can be seen
by looking at the equation of motion for the oscillator.

M
d2x

dt2 + Kx + 2M�
dx

dt
= 0. �1�

If � is negative, the solutions are oscillatory with a frequency
very near the natural frequency �K /M, but with an exponen-
tially growing amplitude. There is nothing about � that needs
to have anything to do with that natural period. That is, the
only role that the external conditions �pressure on the clarinet

reed, motion of the bow, air stream blowing across the beer
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hea
bottle� need play is to set up the conditions needed to make
� negative.

One of the most impressive examples of a conversion of a
more or less steady flow of air into a large amplitude vibra-
tion was that of the Tacoma Narrows Bridge. As Billah and
Scanlan complained 13 years ago,2 physics textbooks have
called this large scale oscillation an example of a resonance,
when it was clearly not. Already in the report by Ammann,
von Karmen, and Woodruff3 to the Federal Works Agency
that investigated the collapse �a report issued only four
months after the collapse�, it was recognized that the collapse
was due to an example of negative damping, just as in the
musical instruments we have mentioned. This conclusion
was based on wind tunnel experiments carried out at the
California Institute of Technology, which clearly showed the
exponential growth of the oscillations. Physicists have ig-
nored or been ignorant of this report, perhaps in part because
it left the physical origin of this negative damping unclear.

What is that physical origin? It must be some aspect of the
turbulence in the flow of the wind across the bridge, but
which aspect? This paper will discuss recent work that at-
tempts to clarify the origin of the feedback, which resulted in
such an impressive example of a natural “musical instru-
ment.”

The Tacoma Narrows Bridge opened on July 1, 1940 and
collapsed on November 7, 1940 under winds of approxi-
mately 40 mph. During this brief period of existence, the
bridge became an attraction as it oscillated at a relatively low
amplitude �a few feet at the very most� in a number of dif-
ferent modes, in all of which the bridge deck remained hori-
zontal. Low mechanical damping allowed the bridge to vi-
brate for long periods of time. However, on November 7 at
10:00 a .m., torsional oscillations began that were far more
violent than anything seen previously. �The oscillations were
measured at one time to have an amplitude of �13�, or be-
cause the width of the bridge was about 39�, greater than
0.7 rad.� At 11:10 am, the mid-span of the deck broke and

Fig. 1. The positive feedback that occurs between the internal oscillations of
oscillations. The result is an exponentially increasing oscillation that we can
fell due to the large stresses induced by the oscillation. The
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H-shape of the bridge cross section, together with its slender
design, were recognized as crucial components of the prob-
lem. The post-facto study of the instability of such bridge
sections in wind tunnel tests, which formed the core of the
Ammann et al. report,3 resulted in the realization by the en-
gineering community that dynamical studies, such as those
that had been carried out by the report’s authors, were crucial
before building future bridges. The calculation of static wind
forces, which the bridge had to be more than capable of
withstanding, was not sufficient. That the importance of such
dynamical studies has not yet been absorbed by the engineer-
ing community is evidenced by the public forced closure of
the Millennium footbridge in London in 2000, one day after
opening, due to a similar feedback instability, this time be-
tween the bridge and the reaction times of people walking
across it.4

At this point, we might ask, “This collapse happened so
long ago, bridges today are stable, why do we care?” Al-
though it is possible to find stable bridges by trial and error,
a physical understanding would be valuable. For these rea-
sons, we would like to understand the nature of the feedback
that caused the failure. In this paper we will examine a physi-
cal model for the collapse of Tacoma Narrows Bridge. First
we will revisit old explanations that gloss over the underly-
ing problem. Our model will then be presented, followed by
supporting evidence from historical, computational, and ex-
perimental data.

II. HISTORICAL MISCONCEPTIONS

The underlying cause of the collapse of the Tacoma Nar-
rows Bridge has been frequently mischaracterized. Although
evidence in favor of negative damping has been available
since 1941,3 oversimplified and limited theories have domi-
nated popular literature and undergraduate physics text-
books. Billah and Scanlan2 have described and analyzed
many of the frequently quoted explanations. Most com-

ttle and external air blown over the surface at 1 /4 the period of the internal
r.
a bo
monly, the collapse is described as a simple case of reso-
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nance. There exists a video �the attribution on our copy has
been lost so we cannot reference the authors� in which the
instability is modeled by a fan blowing on a set of thick
horizontal rods fastened to a central perpendicular wire
around which the rods oscillate. The demonstrator inserts
and removes a large piece of cardboard in front of the fan at
the resonant frequency of the rods and states that this type of
fluctuation in the wind blowing on the bridge is how the
bridge was excited into its violent oscillation. However, this
comparison to a forced harmonic oscillator requires that the
wind generate a periodic force tuned to the natural frequency
of the bridge. The video remarks that “texts are vague about
what the exciting force was and just how¼ it acquired the
necessary periodicity.”

As discussed by Billah and Scanlan,2 in some explanations
the periodic vortex shedding of the bridge was the source of
this periodicity �the von Karman vortex street�.5 Such models
assume that the frequency of vortex shedding �the Strouhal
frequency� matches the natural frequency of the bridge.
However, the Strouhal frequency of the bridge under a
42 mph wind is known to be about 1 Hz, far from the ob-
served 0.2 Hz natural frequency of the bridge. The von Kar-
man vortex street could not produce resonant behavior on the
day of the collapse. This mismatch in frequencies between
the van Karman vortex shedding and the bridge frequency is
also clear in our computer modeling of the airflow over the
bridge that we will discuss. Furthermore, to create such a
huge response in the bridge, its Q value must have been
absurdly high, with the concomitant requirement that the fre-
quency of the wind gusts be accurately tuned to that resonant
frequency to an accuracy of 1/Q.

Although Billah and Scanlan2 clearly outline the pitfalls of
the resonance model, recent work6 has attempted to resurrect
this model with a nonlinear oscillator. For a nonlinear oscil-
lator, the frequency can change as the amplitude changes.
This dependence can lead to complex and even chaotic be-
havior of the oscillator. Let us look at the solution of the
nonlinear equation

d2y

dt2 + �
dy

dt
+ tanh y = F sin �t . �2�

Equation �2� represents a simple model in which the restor-
ing force �tanh y� goes from linear dependence at small am-
plitude y to a constant restoring force for large y. In Fig. 2
we plot the long-term amplitude of the oscillation of the
system as a function of the frequency � and the magnitude F
of the external sinusoidal force. In general, the long-term
behavior of y�t� is an approximately harmonic solution in t.
�For � very different from the resonance value of unity for
small oscillations and F near unity, we can also obtain highly
nonharmonic chaotic behavior even at late times, but we will
not discuss this behavior here.� There is a discontinuity in the
amplitude of the long-term solution of Eq. �2� as a function
of F for � less than the small amplitude resonance frequency
of unity. As �→1, the discontinuity disappears. In all cases
the initial values of y and dy /dt are zero. Other solutions not
displayed in Fig. 2 show that the location of the discontinuity
�value of F for a given � where the discontinuity in the
amplitude appears� can depend on these initial values.

This discontinuous behavior eliminates one of the prob-
lems with the standard physics textbook explanation of the
bridge motion by resonance, namely that the wind speed

would have to be absurdly accurately tuned so that the reso-
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nance condition would produce the incredibly high ampli-
tudes of oscillation. Once the driving amplitude was large
enough that the bridge entered the upper part of the reso-
nance curve, the bridge’s motion could remain at large am-
plitudes even as the frequency of the driving force is varied.
It is these features of the nonlinear model, namely the track-
ing of the frequency of the external force, and the potential
for sudden discontinuities in the amplitude of the motion that
McKenna et al.7 see as the key advantage of this model.

This model could also explain a puzzling anomaly in the
bridge’s motion on November 7. At about 6 a .m. on Novem-
ber 7 the bridge began to oscillate in a nontorsional mode,
with a relatively low amplitude ��1.5��, and about 8 or 9
nodes in the oscillation along the length of the bridge. Sud-
denly at around 10 a .m., while Kenneth Arkin, Chairman of
the Washington Toll Bridge Authority, was trying to measure
the amplitude of oscillations with a surveyor’s transit,

“¼ the mid span targets disappeared to the right of
my vision. Looking over the transit, mid span
seemed to have blown north approximately half the
roadway width coming back into position in a spi-
ral motion¼.”3

That is, the transition to the very large amplitude torsional
oscillation was very abrupt. The bridge went from no tor-
sional oscillation to a very large torsional oscillation almost

Fig. 2. A contour plot of the long-term amplitude of a driven oscillator with
a tanh�y� restoring force as a function of the frequency � and amplitude F
of the external sinusoidal force. Note the sharp discontinuity as a function of
F for ��1, the small amplitude free oscillation frequency.
instantaneously. This change seemed to occur with little
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change in the wind velocity �the often quoted 42 mph for the
wind was measured on the deck of the bridge before the
bridge went into its torsional oscillation�. The report’s con-
clusion was that this transition was occasioned by the sudden
slipping of a retaining collar on the main suspension cable.

McKenna and co-workers7 have used this description to
argue that what happened at that moment was that the bridge
suddenly made a transition from the lower amplitude solu-
tion to the upper, perhaps due to the effect of a gust of wind.
In their model for the bridge they introduce the nonlinearity
by describing the effect of the cables on the bridge as “one-
sided springs” rather than as Hooke’s law type springs. Thus,
when the side of the bridge rose above its normal equilib-
rium position, the cables on that side were assumed to go
slack, putting the bridge into free fall �with gravity the only
restoring force; the tanh dependence in the force function in
Eq. �2� mimics this behavior�. As is well known from watch-
ing a bouncing ball, when gravity is the only restoring for an
object, the frequency of oscillation decreases as the ampli-
tude increases, just as in Eq. �2�. If the cables on the bridge
went slack during the oscillation of the bridge, its behavior is
comparable to the bouncing ball. However, there is no indi-
cation in any of the reports of the engineers watching the
oscillation that the supports slackened. In fact, Farquarson,
one of the chief consultants, went onto the bridge during its
violent torsional oscillation to observe the behavior of the
bridge and in a failed attempt to rescue a car and dog aban-
doned on the bridge. He reported that the riser cables were
not slack during the oscillation.3

In addition to his original suggestion, McKenna7 sug-
gested that perhaps the use of the appropriate trigonometric
functions instead of the linear approximation could provide
sufficient nonlinearity. From their numerical calculations of
the response of such a nonlinear oscillator, given by

d2�

dt2 + sin��� = F sin��t� , �3�

with a force with constant frequency � and amplitude F,
they argued that the nonlinearities of the trigonometric func-
tions alone can give the same kind of bimodal response with
large amplitude oscillations. However, this jump in ampli-
tude for the sin��� potential would be similar to Eq. �2� near
�=1 where the jump in the amplitude of the oscillation is
not very large.

Although Refs. 6 and 7 provide a more complete descrip-
tion of the observed motion, they ignore the cause of the
driving forces. In particular, these models assume that there
exists an external sinusoidal force on the bridge with con-
stant period and amplitude �chosen for their ability to drive
the resonance� without regard for their physical origin. How-
ever, even if such a bimodal nonlinear response is similar to
the actual response of the bridge to external forces, little
insight into the cause of the collapse is gained without un-
derstanding the origin of these forces.

These nonlinear oscillator models do not address the
wealth of data collected in wind tunnels and on the day of
collapse. In particular, the logarithmic decrement of the os-
cillation �effective negative damping coefficient� had already
been measured over an extensive range of wind speed in
wind tunnel tests immediately after the collapse.3 These re-
sults reveal that the wind induced damping coefficient
changes from positive to negative at a critical wind speed.

Above this critical wind speed, the behavior of the negative

709 Am. J. Phys., Vol. 74, No. 8, August 2006
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damping coefficient appears to be linear in the wind velocity.
It should be possible to explain these and other results with a
realistic model. Most important, we should be able to de-
scribe what specific features of the Tacoma Narrows Bridge
caused it to collapse. Because nonlinearities are present in all
suspension bridges, why do other bridges remain stable even
in high winds? Although nonlinear models may provide
some insight into the motion of large span bridges, they do
not address these questions.

III. VORTICES AGAIN?

An important clue to the bridge collapse is given in a few
frames of the films taken by Elliot.8 At one point the concrete
in the bridge deck begins to break up and throws dust into
the air. This dust acts as a tracer for the airflow over the
bridge. In Fig. 3 we can just see a large vortex moving across
the bridge beyond and to the right of the car abandoned on
the bridge �the development in the movie is much clearer�.
The vortex is first observed at just about the point where the
oscillation of the bridge is at a point where the roadway is
level and the windward edge of the bridge is rising; by the
time the bridge reaches its maximum counterclockwise ex-
cursion, the vortex has fallen apart and moved off the right
edge of the bridge.

Vortices form in the wake of an oscillating body from two
sources. The von Karman vortex street forms at a frequency
determined by the geometry of the bridge and the wind ve-
locity. These vortices form independently of the motion and
are not responsible for the catastrophic oscillations of the
Tacoma Narrows Bridge. Vortices are also produced as a
result of the body’s motion. In most cases, the frequency of
the vortex formation matches the frequency of the oscilla-

Fig. 3. Frame from the film taken by Elliot et al. �Ref. 8� of the bridge
collapse. In the frame the wind moves from left to right. To the right of the
car is a large vortex outlined by the cement dust from a section of the
roadway that was apparently disintegrating. On the left sits Professor Far-
quarson. This frame is a blowup of a small section of the 8 mm film. Due to
the eye’s motion tracking ability, the behavior of the vortex is much clearer
in the film. The roadway is almost level in its counterclockwise rotation and
the low pressure vortex is thus feeding energy into the bridge motion. Copy-
right by The Camera Shop. Used with permission.
tion. The behavior of these vortices depends on the geometry
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and the motion of the body. The nature of these motion-
induced vortices played a central role in the collapse of the
bridge.

Kubo et al.9 were the first to observe the detailed structure
of the wake that forms around the bridge’s H-shaped cross
section and for a rectangular cross section �which is also
prone to violent torsional oscillations�. In both cases a regu-
lar pattern of vortices appeared on both the upper and lower
sides of the bridge deck. They speculated that the spacing
between consecutive vortices was the likely cause of differ-
ent vertical and torsional modes of oscillation observed dur-
ing the brief lifetime of the Tacoma Narrows Bridge.

Larsen10 produced the first physical model of the bridge
collapse based on the observations in Ref. 9 and his com-
puter simulations. Let us briefly describe his model. We as-
sume that the bridge is oscillating at its resonant frequency
with some amplitude. A vortex is formed at the leading edge
of the deck on the side in the direction of motion as the angle
crosses zero �see Fig. 3 in Ref. 10�. The vortex formed sud-
denly at the front edge of the bridge just as the bridge passed
the horizontal position on the shadowed side of the deck.
Because a vortex is a low-pressure region �needed to cause
the air to circulate around the vortex�, a force in the direction
of the vortex is produced on the bridge. Each time the bridge
is level, another vortex is generated. Once the vortex forms,
it will drift down the deck of the bridge producing a time-
dependent torque. Larsen made two assumptions based on
his observations at dimensionless wind speeds near UP /D
=4, where U is the wind velocity, P is the period of oscilla-
tion of the bridge, and D is the width of the bridge �our
notation is meant to match Larsen’s as much as possible�.
For the Tacoma Narrows bridge, P=5 s and D=39�. He as-
sumed that the vortex drifts at a constant speed of roughly
0.25 U and the force on the bridge produced by the vortex is
independent of time.

Larsen analyzed this model by considering the work gen-
erated by vortices as they drift over the bridge. Figure 3 in
Ref. 10 shows the three cases he considered. At wind speeds
less than the critical wind speed, the vortices do not cross the
entire bridge in one period and produce net torques that
dampen the oscillation. At the critical wind speed, the vortex
crosses the bridge in exactly one period and the total result-
ing work is zero. At higher wind speeds, the vortex crosses
the entire bridge in less than a period, doing work on the
bridge. The reason for the net work is that the vortex spends
more time on the leading edge while it is rising �hence a
force in the direction of motion�. During the descent, the
vortex crosses halfway and the force is once again in the
direction of motion. As a result, the bridge gains energy and
the amplitude of oscillation grows. If the drift speed of the
vortices is between U /4 and U /3.6, then the critical wind
speed at which the work becomes positive is UcP /D
=3.6–4.0, consistent with measurements. Thus the critical
wind speed has been predicted by using only a simple model
of vortex motion. Kubo et al.9 showed that this same pattern
could be observed at lower wind speeds and may explain the
other observed modes of oscillation. Further simulations by
Larsen10 show that the critical wind speed is increased if the
vortex formation at the leading edge is suppressed by replac-
ing the solid trusses with perforated ones.

Despite this success, Larsen’s analysis is somewhat in-
complete given the available data. In particular, it does not

address the dependence of the damping on the wind speed. In
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dimensionless units the drift time of the vortex across the
deck is td=3.6–4.0. The motion of the bridge is described by

� = A sin
2�t

P
, �4�

�̇ =
A2�

P
cos

2�t

P
, �5�

where � is the angle of the bridge and A is the amplitude of
the oscillation. We can also write the torque as

	 =
FD

2
�1 −

2t

td
� =

FD

2
�1 − t/2� , �6�

where F is the force generated by the vortex; Eq. �6� follows
from considering the position of the vortex as a function of
time. If we take the scalar product of �̇ and the torque,
	t=0

t 	��̇dt, we obtain the work �Fig. 4�



0

td

�	�̇�dt = − =
FD

2
A�sin�2�

u
� +

u

�
�cos�2�

u
� − 1�� ,

�7�

where u=U /Uc. Based on Bernoulli’s equation, we assume
that F is proportional to U2. The resulting dependence of the
energy fed into the motion of the bridge by a vortex is shown
in Fig. 5 as a function of u. This behavior clearly does not fit
the behavior of the bridge at high wind speeds.

The work of Larsen10 and Kubo et al.9 suggests that a
point vortex model may be reasonably accurate at low wind
speeds. However, a number of questions remain. How do the
vortices form and how to they drift? If they move at 1 /4U,
why? Is the force constant as a function of time? Can we
adjust this model to reproduce the wind speed dependence of

Fig. 4. Larsen’s model and analysis of the feedback mechanism. The work
can be calculated from the time integral of the force times the velocity of the
deck at the point of the force. When the vortex drifts across the deck in
exactly one period, the force it produces does no work on the bridge. This
condition gives the critical wind speed. Above this wind speed the work is
positive. At slightly slower wind speeds, the work is negative. For a drift
speed of U /4, UcP /D=4.
the damping?
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IV. POTENTIAL FLOW MODELS

We will examine several potential flows in order to ad-
dress these questions. First, we will look at how vortices drift
near boundaries. Then we will consider how a vortex drifts
near the trailing edge of the bridge. Finally, we will examine
the production of vortices at the leading edge.

Potential flows are solutions to the vector Laplace equa-
tion. As such, the uniqueness of the solutions allows us to
use the method of images. For example, a vortex at a solid
boundary �no flow through conditions� can be solved using a
vortex of the opposite orientation reflected across the bound-

Fig. 5. Additional analysis of Larsen’s model compared to wind tunnel data
taken from Ref. 3. The work done over one period is the same as the
negative damping coefficient. Although the model agrees with the data
around the critical wind speed, problems occur at higher wind speeds.

Fig. 6. Vortices are formed in the low-pressure wake of the front edge of the
down the deck. The low pressure region that forms behind this point causes th

to fill in this low pressure region. This wind will also cause the vortex to drift o
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ary. This same model will apply when the vortex is placed in
a uniform flow with a boundary. A two-dimensional vortex is
described by v=� / �2�r�, where � is the vortex strength. The
vorticity transport equation in two-dimensional incompress-
ible flow has the form11

��

�t
+ �u · ��� = 
�2� , �8�

where �=��u is the vorticity and 
 is the viscosity. Be-
cause 
 is small, the vortex will drift at the speed of the fluid
at its center �ignoring its own contribution to the flow�. In
this case the vortex will drift at

vd = U −
�

4�a
, �9�

where a is the distance from the boundary to the center of the
vortex. We expect a vortex on the bridge deck to drift at a
reduced speed under an external flow.

When the vortex reaches the back edge of the bridge, the
local fluid flow may not be along the bridge deck as we have
assumed. A laminar-like flow over the back edge must sepa-
rate from the bridge in order to get over the back truss. This
flow will cause the vortex to move off the bridge deck. This
separation will reduce the force generated by the vortex at
the surface. As a result, the force at the back edge of the deck
should be lower than elsewhere on the bridge. Also, as the
vortex and the separation line leave the back edge, the re-
duced pressure within the vortex will pull in fluid from the
lower side of the deck, often producing a counter flow vortex
beneath the detaching original vortex.

The formation of the vortices is intuitive and provides
insight into the large wind speed problems seen in the Larsen
model �Fig. 5�. First let us consider what happens in the case
where the bridge does not move at the onset of an external
flow. The fluid will first flow around the solid truss at the
leading edge, separating from the boundary �see Fig. 6�. Due
to the reduced density, a low-pressure region will form be-
hind the truss that will force the gas downward �the
divergence-less velocity condition will have the same effect

e deck. As the bridge deck rises, the point where the flow reattaches moves
tex to grow and move. When the deck begins to move downward, air begins
bridg
e vor
ff the deck at a speed related to the angle of the bridge.
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in the incompressible case�. Eventually, gas will be pulled
backward into this low pressure region producing a vortex.
When the bridge is not moving, the vortices remain fixed
behind the truss. Furthermore, equal strength vortices form
on either side of the deck. Therefore, the drifting of the vor-
tices is a result of the motion of the deck. As the front edge
of the deck moves upward, the size of the low-pressure re-
gion increases on the top of the deck. During the upward part
of the motion, the point on the deck where the flow reat-
taches to the deck will move down the deck, producing a
large low-pressure region from the truss to this point. Once
the deck begins moving back down, the vortex will find itself
exposed to the steady flow of the wind. This wind will push
the vorticity off the back edge. The speed at which the vortex
moves will depend on the angle. For large wind speeds, all
vortices will be pushed off the back edge by 3/4 of a period
as the entire deck is exposed to the steady wind.

The under side of the bridge is affected in the opposite
way while the front edge is moving upward. As the deck
moves, the point of reattachment moves toward the front
truss, thus filling in the region where the vortex would oth-
erwise form. At best a very small vortex will form. As a
result of the motion, a large vortex forms on one side and a
small vortex forms on the opposite side. This behavior will
repeat every half period of the bridge’s motion.

After considering these different aspects of the vortex for-
mation and motion, we have developed a model, which also
depends crucially on vortex formation and drifting. Our
model differs from Larsen’s. First, the vortex motion across
the bridge deck will not be uniform. In the first quarter of the
period �as the leading edge rises from level�, the vortex
grows due to the movement of the point of reattachment
back along the deck. Because the vortex begins at the front
truss, the torque will have the same sign as the angular ve-
locity for the first quarter period until the maximum height it
reached. The exact behavior of the torque will depend on the
wind speed. When the bridge reverses its direction of motion
�leading edge falls�, the vortex begins to drift down the
bridge. The local wind velocity will govern the drift speed.
This speed will depend on the angle of the bridge and the
strength and position of the vortex. We will use the U /4
constant wind speed in our models for simplicity. This choice
should be thought of as a leading order approximation based
on observations from simulations, rather than a derivable re-
sult �see Ref. 10 and our results in our simulations discussed
in the following�. Finally, the torque generated by the vortex
will decrease as it moves off the back edge of the bridge. The
net result is that the torque is large at the beginning of the
oscillation when the angular velocity is high and the magni-
tude of the torque is smaller later in the motion when it is out
of phase with the angular velocity of the bridge.

At very high wind velocities, the size of the vortex grows
to the size of the bridge deck and its behavior can again be
simply described. As the bridge moves, it creates a low pres-
sure region that grows to cover the entire deck. The pressure
in the vortex can be approximated by a step function that
moves across the bridge until a uniform low pressure is es-
tablished across the upper deck. When the wake moves be-
yond the back edge, flow entering from the opposite side of
the bridge fills in the low pressure region on the upper deck,
reducing the pressure almost uniformly. As a result, the pres-
sure will decay without large asymmetries along the length
of the bridge and the torque will remain approximately zero.
To generate a single model on all scales capable of de-
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scribing the data, we combined the above-mentioned vortex
formation process into the formation of leading point vortex
�identical to that of Larsen�10 and a trailing step function �as
we have described in terms of the high wind speed behavior�.
This step function is intended to approximate the pressure of
the extended vortex into a force at a single point plus some
extended low pressure. Linear and quadratic wind speed de-
pendence were used for the force generated by the vortex and
step function, respectively. Such a model is based on the
separation of the low pressure that generates the vortex and
the reduced pressure generated by the vortex itself. These
choices will allow us to recover Larsen’s model at low wind
speeds and the single large vortex at high wind speeds. The
constant pressure distribution caused by the separation
moves along the deck at the speed of the front edge of the
vortex �U /2� while the vortex is centered on the region and
thus moves at U /4. The torque due to the extended low-
pressure region behind the truss gives a damping coefficient
using



0

td

�	�̇�dt = A�u2

0

2D/u

��D2 − �tu/2 − D�2��̇�dt

+ 10u

0

4D/u

��D − tu/4��̇��dt

= −
5

8�2�u3�24� cos�48�

5u
� − 5u sin�48�

5u
�

+ 24���� −
5u

4�
�48� sin�96�

5u
�

+ 5 cos�96�

5u
� − 5u�� , �10�

where D is the width of the deck. This model is also moti-
vated by our observations of the pressure in the numerical
calculations described in Sec. V. The first term represents the
combined torque from the step function and the second term
represents the torque from the point vortex. The relative
value of ten between the two terms was chosen by observa-
tion of the relative influence of the vortex and step function
at different wind speeds.

The results generated by this model are shown in Fig. 7.
The asymmetry in the torque generated by the growing phase
allows us to recover the asymptotic linear behavior that is
seen in wind tunnel data. Furthermore, the critical wind
speed is found to be consistent with experimental values. By
adjusting the overall amplitude, the model is found to be
consistent with the data in Ref. 3.

The small vortex model used by Larsen is a low wind
speed approximation to our model. If the wind speed is suf-
ficiently low, the vortex remains on the bridge for at least one
period. As a result, the time when the vortex is growing is
less significant given the long time of interaction. Further-
more, the differences in drift speed become less significant
because the variation occurs on a time scale much shorter
than the time that the vortex is on the bridge. Finally, the
points of reattachment and separation are much closer to the
trusses at low speeds, reducing the effects seen at both ends.
The result is that our model and Larsen’s give essentially the
same results under these conditions. However at speeds in
excess of UP /D=5–6, the low wind speed approximation

does not hold.
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V. HISTORICAL AND COMPUTATIONAL
EVIDENCE

We have discussed a model based mainly on simplified
laminar flows. More rigorous evidence is required to support
this model rather than just the fit to the wind speed data. It
must be shown that such a flow appears when we calculate
the full flow numerically. In particular, we want to show that
the high wind velocity flow is different from that observed in
Refs. 9 and 10.

The most exciting and useful physical evidence comes
from the film coverage of the November 7, 1940 incident. At
one point during the oscillation, the roadway appears to
break up throwing cement dust into the air. In several frames
from the original movie �see Fig. 3�, this dust reveals the
vortex motion. The cement and dust become caught in a
vortex that drifts along the bridge deck at a rate similar to
that seen in our simulations. �It is not possible to determine
the exact rate relative to the wind velocity because the in-
stantaneous wind velocity is unknown.� This video supports
two important points in this argument: the existence of drift-
ing vortices on the deck, and the fact that the vortex crosses
the midway point in less than one period, a requirement for
negative damping.

The engineers present at the bridge did not risk life and
limb to obtain a more complete set of wind and pressure
measurements. As a result, this single observation captured
on film seems to be the only historical evidence from the
bridge itself. We are forced to rely on numerical simulations
to fill in the gaps. Our simulations were conducted using VXF
FLOW software produced by Guido Morgenthal.11 This code

Fig. 7. The results of our model are compared to data taken from wind
tunnel tests �points� and simulations using VXF FLOW—Ref. 11 �crosses and
dotted line�. Our model does not suffer from the large wind speed deviations
seen in Larsen’s model �Ref. 10�. It also successfully describes the low wind
speed behavior. The simulation, which guided the model, is further from the
experimental data. The error of the simulated data is likely to be substantial,
because we were unable to simulate more than ten periods. The simulated
damping coefficients shown are the average over all periods after the first.
uses discrete vortex methods to determine the flow.
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The discrete vortex method is a way of solving the incom-
pressible Navier-Stokes equation in two dimensions. Be-
cause all variations along �rather than across� the bridge are
slow, we assume that the fluid flow across the bridge is ap-
proximated by a two-dimensional flow; that is, if z is the
dimension along the bridge, all in the fluid are assumed to be
constant in the z direction. We regard the fluid as incom-
pressible because the velocity of sound �a measure of the
velocity scale at which the compressibility of the flow be-
comes important� is of the order of 1000 km/h, while the
flow across the bridge is only of order 60 km/h.

The incompressible Navier-Stokes equations are

��v̇� + v� · �v�� = �p − 
�2v� , �11�

� · v� = 0. �12�

The vorticity, �� =��v� , satisfies

�̇� + v� · �� = − 
̃�2�� . �13�

That is, the vorticity is convectively dragged with the fluid,
with the specific viscosity acting like a diffusion term. In the
discrete vortex technique, instead of modeling the fluid as a
continuous velocity field, the flow is divided into a smooth
�usually constant� flow plus “particles” or elements of vor-
ticity. These discrete particles of vorticity are convected with
the fluid, while it is the vorticity elements themselves that
determine the fluid flow. That is, the fluid flow is assumed to
be composed of the smooth �usually everywhere constant�
background flow, plus contributions from each element of
the vorticity. The viscosity is modeled in two ways. One is
by assuming that the viscosity acts to expand the size of the
vorticity element, making the vortex core larger by a diffu-
sive process, and the other is by perturbing the motion of the
vorticity element by a random walk, with the coefficients of
the random walk selected so as to give the above-presented
equation in the mean for a large number of particles. This
random walk component, which is the main way in which
the viscosity is modeled, seems to be crucial to obtaining the
correct limit for the fluid motion for large numbers of vor-
ticity elements. See Ref. 11 for a detailed discussion of this
aspect.

The vorticity is created at the bridge-air interface. The
boundary conditions that the velocity be zero at the interface
can only be modeled in terms of these vortex elements if this
interface constantly creates new vorticity. Thus, small dis-
crete vorticity elements are created at the surface, and then
leave the surface due to the random walk component in their
motion which models the viscosity. There are numerous
subtleties in the development of a discrete vortex code, and
we refer the reader to Ref. 11 for a further explanation.

The more common finite element techniques represent the
flow by defining the velocity field within a set number of
finite volumes that tessellate the space. Because of the finite
grid size separating the volume elements, the equations of
motion of the fluid are not satisfied on scales approaching the
size of the elements. The resultant discretization errors act as
random diffusive force on the fluid and introduce what can
be regarded as an effective viscosity. The numerical viscosity
inherent in finite element techniques is typically many orders
of magnitude larger than the actual viscosity of the air, unless
the size of the elements is taken to be so small that the

numerical solution becomes prohibitively slow.
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The advantage of a vortex model compared to finite ele-
ment methods is that it solves for the vortex transport explic-
itly. Because the Reynolds number of the flow across the
bridge was so high �of order 106�, a high numerical viscosity
could seriously change the physics of the modeled flow. Vor-
tex methods offer the advantage of removing such grid vis-
cosity, but suffer from relatively poor convergence for
smooth flows converging at a rate that goes as N−1/2, where N
is the number of vortices. However, the ability of present-day
computers to handle large numbers �our simulations typically
have more than 105 vortices in play at any one time�, and its
ability to model the high Reynolds numbers typical of the
bridge without the introduction of artificial viscosity makes
using discrete vortex methods the preferred procedure.

In our simulations the deck was constrained to oscillate at
a given frequency and amplitude and the resulting fluid flow
and pressures along the surface were calculated. These simu-
lations covered a large range of incident wind speeds and
amplitudes of oscillation. At each time step, the location and
velocity of every vortex was determined along with the pres-
sure along the surface of the bridge. The lift, drag, and the
torque were calculated from the pressure along the deck.
Because the discrete vortex elements drift at the local wind
speed, the vortices are tracers of the velocity field and can
also be used to visualize the fluid flow.

At wind speeds below 10 m/s, the simulated pressure and
fluid flow are very similar to those described by Larsen.10 In
particular, a vortex is generated at the front and drifts along
the deck. This vortex makes the largest contribution to the
pressure. When the vortex is created, a more extended low
pressure region is created behind the truss as the bridge rises.
As the vortex begins to drift, the extended constant pressure
slowly disappears leaving only the vortex.

At wind speeds of around 19 m/s, a speed that was ob-
served on the fateful day, turbulence begins to play a more
significant role in determining the pressure. As the deck
rises, the extended pressure covers over half of the bridge
deck. A large vortex forms near the front of the high pressure
region. The vortex makes an equal contribution to the ex-
tended constant low pressure region behind the truss. As the
vortex drifts off the deck, a low pressure covers the deck.
This motion varies with the angle of the bridge and is not
constant. The flow is turbulent as smaller vortices are shed
behind the first. The pressure remains low until the deck is
exposed entirely to the wind at 3 /4 of a period when the
angle is maximum in the opposite direction. The similarity
between the simulation and the original film can be seen in
Fig. 8 where a frame from the simulation is shown at the
same point in the oscillation cycle as the video frame in Fig.
3.

At wind speeds above 30 m/s, turbulence dominates the
flow. As the deck rises, the low pressure moves across the
deck, covering it entirely before the deck reverses direction.
A single vortex is formed at the front of this region, similar
to the slower wind speeds, except it contributes a small force
relative to the extended low pressure region. Unlike the
slower wind speeds, the vortex behind the front truss is not
the only large vortex that forms. Vortices are formed off the
front edge at a high frequency and drift at varying speeds. At
times these vortices can catch up with the front vortex. Large
counter vortices are formed at the back edge as air is pulled
from the far side of the bridge to fill in the low pressure.
These large vortices influence each other due to the lower or

higher pressure regions that form between them. These inter-
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actions will produce unpredictable fluid behavior. Such a
highly turbulent flow introduces rapid noticeable changes in
the pressure making torque and work calculations highly
variable from one cycle to the next. Because the vortices are
shed at a high frequency relative to that of the bridge, the
contribution of the noise to the work over many periods will
be negligible.

The torque calculations were used to generate effective
damping coefficients over a range of wind speeds �see Fig.
7�. For wind speeds from 4 to 30 m/s, the damping coeffi-
cients at 0.3 rad are similar to those measured in Ref. 3. At
wind speeds greater than 30 m/s, the negative damping co-
efficient begins to drop in magnitude. Particularly at high
wind speeds, the work is very sensitive to the magnitude of
the time step of the discrete code and the period over which
the work is averaged. Morgenthal noticed this problem as
well.11 His simulations of another bridge section gave a drop
in the magnitude of the damping coefficient that was incon-
sistent with the measurements. Therefore, it is not clear
whether the drop in the negative damping at high velocities
is a real or computational effect. Because of the noise in the
data, the few periods we were able to simulate, and the vari-
ability in the simulation output due to the variations caused
by the turbulent nature of the flow, the error could be as high
as 30%–50% for some points. Furthermore, the experimental
data were taken when the bridge was allowed to oscillate
freely, with increasing amplitude, while in the simulation the
amplitude of the bridge oscillation was fixed.

Given these observations, how does our model discussed
in Sec. IV compare to the computational and historical evi-
dence? The generic description of the physics is consistent
with the behavior of the bridge over one period of oscillation
of the bridge �ignoring the high frequency noise�. The vortex
forms in a large low pressure region and separates from the
front truss as the front deck moves downward. A simplifica-
tion of this behavior occurs at very high wind speeds when
the low pressure covers the entire bridge before the front
edge begins to drop. Furthermore, the pressure generated by
the vortex seems to decay at the far edge of the bridge. The
advantages of this model can be seen in Figs. 9–11. The
Larsen model does not adequately explain the data or the
simulations at wind speeds above 20 m/s. The fluid flow in
Figs. 9–11 is in reasonable agreement with our model.

However, our model is not completely consistent with the

Fig. 8. Frame from the simulation at 19 m/s. There is a large vortex greater
than halfway across the bridge as it becomes level. This image is very
similar to the frame from the original movie. There is also a low pressure
region that covers the length of the deck, which is consistent with our
model.
general behavior of the bridge. There is no simple math-
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ematical description of the torque generated by the windflow
that summarizes the pressure and vorticity over the full range
of wind speeds. The parameters of the model �given in Eq.
�10�� were chosen to be consistent with a large low pressure
region at high wind speeds and a single vortex at low wind
speeds. Our model suffers some difficulties at intermediate
wind speeds, around 10–14 m/s in particular. The constant
low pressure region associated with the moving front of the
wake does not cover the entire bridge behind the front.
Nonetheless, the model uses a step function from the front of
the vortex to the windward edge of the bridge to model the
behavior of the large vortex. In addition, the velocity of the
vortices is taken to be at constant, which is not a good ap-
proximation at these speeds, thus only encapsulating the time
average behavior.

Further modifications of our model have not been made
because they would require more parameters �there are al-
ready four parameters in the model�. Because our model fits
the damping coefficient, such refinements would make little
difference in comparison to the data and would only alter the
details of the pressure distribution as a function of time.
Therefore, given the current data, it would be difficult to
improve the model in a measurable way. We have so far
assumed that the amplitude dependence of the force is linear
�a requirement for the torque to be proportional to �̇�. This

Fig. 9. The simulated flow over the bridge cross section as the deck rises at
a wind of 23 m/s. Each point represents a point vortex. �Top Side� A vortex
begins to form behind the front edge as a low pressure region forms. This
low pressure is due to the separation of the moving fluid from the boundary
of the deck. As the deck rises this region will become larger. �Under Side�
The vortex that formed on the bottom is being blown off the deck. The
pressure on the bottom is decreasing uniformly.

Fig. 10. The simulated flow over the bridge cross section halfway through
the rise of the front edge at a wind of 23 m/s. Each point represents a point
vortex. �Top Side� The vortex has grown to cover one-half of the deck.
Because the deck is still rising, the low pressure region extends from the
front of the deck to the backmost edge of the vortex. �Under Side� The
bottom of the deck has now been completely exposed to laminar flow. Few

vortices remain.
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assumption was tested using torque measurements over a
range of amplitudes at a fixed wind speed. The work done in
a period generally increases with amplitude. Over a range of
amplitudes �that is, the maximum deflection of the bridge�
from 0.1 to 0.25 rad the linear assumption appears to be
valid. At lower wind speeds the dependence is not certain
due to noise caused by turbulence. This problem is most
significant at low amplitudes where the fluctuations in the
torque from turbulence �random noise� become larger than
the average induced torque. Because of the limited time of
our simulation, determining the average is difficult.

VI. CONCLUSION

Our goal has been to explain a wide class of observed
phenomena by a single simple mechanism. In trying to un-
derstand fluid structure interactions such as occurred with the
Tacoma Narrows Bridge, accomplishing this goal is non-
trivial. Fluid mechanics has typically been the domain of
experimentalists because the governing equations are notori-
ously difficult to solve. Only now is computer power becom-
ing equal to the task. Many past attempts to explain instabili-
ties have been rejected on the basis that they have either
gotten the physics wrong or have neglected crucial aspects of
the physics. It was Larsen that identified the crucial role
played by vortex generation and motion.

Our model is a further step toward the goal of a compre-
hensive explanation of the phenomena observed on the
morning of November 7, 1940. Most of the data can be ad-
equately explained using the vortex-induced model. Further
work is required to explain the onset of the violent oscilla-
tory behavior, but it seems that the main features of the wind
structure interaction over a large range of wind speeds can be
explained by a vortex formation model. However, the range
of wind speeds for which the model is applicable has not
been fully established. At extreme high and low wind speeds,
computations become less reliable and experiments are dif-
ficult. At very low wind speeds, vortices may cease to form
and at high wind speeds the structure of the wake may lose
all periodicity. Nevertheless, our model seems appropriate
over a wide enough range that it should be useful for many
applications. In particular, it gives physics teachers a model
with which to replace the naive and incorrect resonance

Fig. 11. The simulated flow over the bridge cross section after the full rise
of the front edge at a wind of 23 m/s. �Top Side� As the deck descends from
the maximum height, the vortex is now being pushed off the back edge. The
vortex has grown to cover a large part of the bridge. �Under Side� Laminar
flow dominates because the bottom has been completely exposed to the
wind.
model so often used in undergraduate lectures.
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