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Geometry 

fluid outer  
      core solid inner  

core 

hot 

cold 

Rayleigh Benard  
Convection: (planar) 

Core Convection: 
(spherical shell) 

other differences: 
-spherical shell is rotating 
-gravity in radial direction 
-magnetic fields! 

g 

g 



How Planets Make Magnetic Fields 
Dynamo action: 

complex 
motions + 

electrically 
conducting 

fluid 
+ 

presence 
of a  

magnetic field 

maintain magnetic 
field against 
Ohmic decay 

Magnetic Induction Equation: 
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∂
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change creation destruction 

(can derive from 
Maxwell’s eqn’s & 
Ohm’s law) 

Magnetic Reynolds number: 

� 

Rm = ∇ × (v × B)
1
σµ ∇

2B
≈σµVL

• For dynamo action in a fluid, we need Rm>10-100 

• For Earth’s core: Rm~500, for a sphere of copper: Rm~6, for a typical star: Rm~109 

Necessary condition for dynamo action: 



Summary of Planetary Dynamos 

Present 
Dynamos 

Earth 
Jupiter 
Saturn 

Uranus 
Neptune 

Ganymede 

Past 
Dynamos 

Mars 
Moon 

Planetesimals 

Jury Still 
Out 

Mercury Venus Io 

Current 
dynamo? 

Magneto- 
convective 
dynamo? 

Induced 
field? Past 

dynamo 
Past  
dynamo 



Comparing Planetary Magnetic Fields 



Dimensional dynamo equations 
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Continuity:   
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(using Boussinesq approximation) 

Magnetic Induction: 
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 v : velocity 

� 

p : modified pressure 

� 

T
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 g 
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 
J 
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 
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 
Ω : rotation vector 

: gravity 

: current density 
: magnetic field 

� 

ρ : density : temperature 

� 

Δρ : density perturbation 
� 

ν : viscosity 

� 

η : magnetic diffusivity =  

� 

(σµ0)
−1

� 

σ

� 

µ0

: electrical conductivity 
: magnetic permeability  

� 

κ : thermal diffusivity 



Differences with RBC equations 
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Lorentz force 

Coriolis force 

needed new equation for 
new variable ‘B’ in N-S 

advection 

diffusion 



Non-dimensionalize: 

Length: 

Velocity 

Time 

Temperature 

Magnetic field 

r = r0r '

t = τηt ' =
r0
2

η
t '

v = r0
τη

v ' = η
r0
v '

T = ΔTT '

B = BΛ=1B ' = 2ΩρµηB '

r0 :

τη :

hT :

BΛ=1 :

core radius 

magnetic diffusion time 

heat flux at inner boundary 

Elsasser number=1 scale 

Plug into the equations, simplify and remove the primes gives…. 

and use equation of state (dimensional): 
and a linear approximation for gravity (dimensional): 

Δρ = −ρ0α(T − T0 )

pressure P = 2ΩηρoP '

 
g = −g0

r / r0



Non-dimensional equations 

 
RoM

∂
∂t

+ v •∇⎛
⎝⎜

⎞
⎠⎟
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Continuity:   
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∇ •
 v = 0

Notice: 4 non-dimensional numbers: 
 RoM, Ra, E, qk  

(ie 4 independent control parameters) 

inertia Coriolis 
buoyancy 

viscous Lorentz pressure 
gradient 



Non-dimensional numbers 

Magnetic Rossby #: 

Ekman #: 

Modified Rayleigh #: 

Roberts #: 

Prandtl #: 

Magnetic Reynolds #: 

Kinetic Reynolds #: 

Elsasser #: 

Rossby #: 

(Input) 

(Output) 

� 

RoM = η
2ΩL2

� 

E = ν
2ΩL2

Ra = αT g0hT r0
2

2Ωη

� 

qκ = κ
η

� 

Pr = ν
κ

� 

ReM = UL
η

� 

Re = UL
ν

� 

Λ = B2

2Ωρµ0η

� 

Ro = U
2ΩL

� 

10−9

� 

10−15

� 

10−6

� 

10−1 →10−2

Earth’s core 

� 

750 Using velocities near CMB 

� 

1.5 ×109

� 

O(1)

� 

10−6

Using velocities near CMB 

Using velocities near CMB 

Using magnetic field near CMB 

? 
buoyancy/coriolis since  
rotation is main hindrance 
to convection 

(dependent on other 4) 



Comparing planets 

� 

RoM = η
2ΩL2

� 

E = ν
2ΩL2

� 

qκ = κ
η

� 

1.5 ×10−9

� 

7.6 ×10−16

� 

2.5 ×10−6

� 

2 ×10−7

� 

8 ×10−11

� 

3×10−8

� 

5 ×10−14

� 

2 ×10−18

� 

3×10−16

� 

1.2 ×10−6

� 

1.6 ×10−7

� 

5 ×10−8



Some Rotating MHD 

Start simple  
   -no magnetic field, buoyancy 
   -consider mainstream flow (inertia & viscosity small) 
   -dominant force balance given by: 
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ˆ z ×  v = −∇p

-take curl of equation to get: 
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∂
 v 

∂z
= 0

-main force balance requires z-independent motion 
-non-penetrative boundary conditions & continuity  
  eq’n give: 

  

� 

 v = VG (s) ˆ φ 

-i.e. motion constrained to cylinders coaxial with the rotation axis,  
called“geostrophic flow”:  

“Taylor Proudman 
Theorem” 
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Add buoyancy: 2 effects: 
Some Rotating MHD 

(2) Convection (1) Thermal Winds 
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2ρ
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take curl: 
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so if temp. varies with latitude or  
longitude, it can cause variations of  
velocity in the z direction, but 
not in “r” direction (b/c g in r direction) 

-geostrophic flows & thermal winds can’t 
transport heat from  interior to CMB (no radial 
motion) 
-convective motions require presence of other  
 forces (viscous, inertia, magnetic) to offset   
 effect of rotation (Taylor-Proudman Theorem) 
-however, convection still satisfies Taylor-  
 Proudman theorem to leading order (derivatives  
 in z much smaller than other directions) 
-convection at onset: 

C 

H 

C 



Some Rotating MHD 
Now lets add a magnetic field: 
   -either Lorentz force is part of dominant force balance 
   -or its not 

If it is:   
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2ρ
 
Ω ×
 v = −∇p +

 
J ×
 
B − ραΘ g “magnetostrophic balance” 

Can determine necessary B magnitude for this balance 
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B ⇒ B ~ 2Ωρµη



Weak & Strong Dynamos 

If Lorentz force part of dominant balance: 
      -“strong field dynamo”, magnetic field is stronger 
      - convection is ‘easier’ (i.e. lower critical Ra #) b/c magnetic field  
        balances Coriolis force, easing rotational constraint  
      - so planets want to be in this regime 
 
If it isn’t: 
     - “weak field dynamo”, magnetic field generally weaker 
     - rotational constraint makes convection difficult 
     - magnetic field doesn’t affect velocity field so much  
       (Lorentz force is small) 
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Why not ignore viscosity and inertia? 
-involved in balancing deviations from a Taylor state --> important dynamically 
-without them: 

-with inertia and viscosity, can balance the Lorentz torque: 

(Taylor State) 

inertia viscosity 

viscosity: lorentz torque scales with u, so any initial torque results in motion  
                that acts to decrease torque.  Eventually torque=0 and u=0 and you  

    are in a Taylor state 
inertia: lorentz torque scales with acceleration du/dt, so any initial torque  

 results in acceleration.  When torque=0, still have u, so you overshoot 
 --> “Torsional oscillations” 

Note: also can’t ignore viscosity b/c of degree of equation 

-in a Taylor state, magnetic torques on surface of cylinders in the core vanish 
-this is a major constraint on the structure of the magnetic field 



Evidence for torsional oscillations 
-is there any evidence for torsional oscillations?  Yes! observational evidence in length  
 of day records and geomagnetic jerks 



Numerical Models: 

Navier-Stokes, 
Magnetic Induction 
& Energy equations 

Spherical geometry 
Boundary conditions (B,v,T) 

Approximations 

Evolve in time 

Output: B,v,T 

+ �

The Process 

Input B,v,T 

Characteristics 

• geometry: 

� 

rio = ri
ro

� 

E = ν
2Ωro

2 <<1

� 

Ro = η
2Ωro

2 <<1

Ra =
αgoΔTro
2Ωη

>> Rac

• small viscosity:  

• small inertia: 

• strong convection: 



Results from dynamo models 
(KB) weak field dynamo (KB) strong field dynamo 



convection cells in dynamo models 



How far are we? 



A Kageyama et al. Nature 2008 

axial component of the vorticity 

E=2.3x10-7: (lowest ever achieved),   E=2.6x10-6 

similar to 
experiments 

Using the Earth Simulator: 
(but not equilibrated yet,  
magnetic field weak) 

Convection cells in dynamo models 



Experiments: 

Karlsruhe dynamo Dan Lathrop’s planetary dynamo 



Case Study: Earth’s dynamo 
Field characteristics: axial dipole dominance, chaotic reversals, secular 
variation, high latitude flux spots 



Earth-like Numerical Model: 


