Fluid Dynamics of Planetary Cores

PHY1530: Fluid Dynamics

Geometry

Rayleigh Benard Convection: (planar)

other differences: -spherical shell is rotating -gravity in radial direction -magnetic fields!

How Planets Make Magnetic Fields

Dynamo action:

Necessary condition for dynamo action:

Magnetic Reynolds number:
$$R_m = \frac{\nabla \times (\nu \times B)}{\frac{1}{\sigma \mu} \nabla^2 B} \approx \sigma \mu V L$$

•For dynamo action in a fluid, we need R_m >10-100

•For Earth's core: $R_m \sim 500$, for a sphere of copper: $R_m \sim 6$, for a typical star: $R_m \sim 10^9$

Summary of Planetary Dynamos

Comparing Planetary Magnetic Fields

+0.1mT +0.1mT

-0.1mT

Dimensional dynamo equations (using Boussinesq approximation)

N-S:
$$\left(\frac{\partial}{\partial t} + \vec{v} \bullet \nabla\right) \vec{v} + 2\vec{\Omega} \times \vec{v} = -\nabla p + \frac{\Delta \rho}{\rho} \vec{g} + v \nabla^2 \vec{v} + \frac{1}{\rho \mu} (\nabla \times \vec{B}) \times \vec{B}$$

Continuity:

$$\nabla \bullet \vec{v} = 0$$

n:
$$\left(\frac{\partial}{\partial t} - \eta \nabla^2\right) \vec{B} = \nabla \times (\vec{v} \times \vec{B})$$

Energy:

$$\left(\frac{\partial}{\partial t} - \kappa \nabla^2\right) T = -\vec{v} \bullet \nabla T$$

 \vec{v} : velocity

- $\vec{\Omega}$: rotation vector
- *P*: modified pressure
- ρ : density

 $\Delta \rho$: density perturbation

- \vec{g} : gravity
- V: viscosity
- \vec{J} : current density
- \vec{B} : magnetic field

 η : magnetic diffusivity = $(\sigma \mu_0)^{-1}$

 σ : electrical conductivity μ_0 : magnetic permeability K: thermal diffusivity T: temperature

Differences with RBC equations

$$N-S: \left(\frac{\partial}{\partial t} + \vec{v} \bullet \nabla\right) \vec{v} + 2\vec{\Omega} \times \vec{v} = -\nabla p + \frac{\Delta \rho}{\rho} \vec{g} + v \nabla^2 \vec{v} + \frac{1}{\rho \mu} (\nabla \times \vec{B}) \times \vec{B}$$
Coriolis force
$$Continuity: \quad \nabla \bullet \vec{v} = 0$$
Advection
$$Magnetic Induction: \quad \left(\frac{\partial}{\partial t} - \eta \nabla^2\right) \vec{B} = \nabla \times (\vec{v} \times \vec{B}) \quad \text{needed new equation for new variable 'B' in N-S}$$

$$G(\frac{\partial}{\partial t} - \kappa \nabla^2) T = -\vec{v} \bullet \nabla T$$

Non-dimensionalize:

Length:	$r = r_0 r'$	r_0 : core radius
Time	$t = \tau_{\eta} t' = \frac{r_0^2}{\eta} t'$	$ au_\eta$: magnetic diffusion time
Velocity	$v = \frac{r_0}{\tau_\eta} v' = \frac{\eta}{r_0} v'$	
Temperature	$T = \Delta T T$ '	h_T : heat flux at inner boundary
Magnetic field	$B = B_{\Lambda=1}B' = \sqrt{2\Omega\rho\mu\eta}B'$	$B_{\Lambda=1}$: Elsasser number=1 scale
pressure	$P = 2\Omega\eta\rho_o P'$	
and use equation of and a linear approx	f state (dimensional): Δho = imation for gravity (dimension	= $-\rho_0 \alpha (T - T_0)$ onal): $\vec{g} = -g_0 \vec{r} / r_0$

Plug into the equations, simplify and remove the primes gives....

Non-dimensional equations

N-S:
$$Ro_{M}\left(\frac{\partial}{\partial t} + \vec{v} \bullet \nabla\right)\vec{v} + \hat{z} \times \vec{v} = -\nabla p + Ra(T - T_{0})\vec{r} + E\nabla^{2}\vec{v} + \vec{J} \times \vec{B}$$

inertia Coriolis pressure buoyancy viscous Lorentz
MIE: $\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) + \nabla^{2}\vec{B}$
Energy: $\left(\frac{\partial}{\partial t} - \vec{q}_{x}\nabla^{2}\right)T = -\vec{v} \bullet T$
Continuity: $\nabla \bullet \vec{v} = 0$
Notice: 4 non-dimensional numbers:

 Ro_M , Ra, E, q_k (ie 4 independent control parameters)

Non-dimensional numbers

(Input)	n	Earth's core		
Magnetic Rossby #:	$Ro_M = \frac{\eta}{2\Omega L^2}$	10 ⁻⁹		
Ekman #:	$E = \frac{v}{2\Omega L^2}$	10 ⁻¹⁵		
Modified Rayleigh #:	$Ra = \frac{\alpha_T g_0 h_T r_0^2}{2\Omega\eta}$?	buoyancy/coriolis since rotation is main hindrance	
Roberts #:	$q_{\kappa} = \frac{\kappa}{\eta}$	10 ⁻⁶	TO CONVECTION	
Prandtl #:	$\Pr = \frac{v}{\kappa}$	$10^{-1} \rightarrow 10^{-2}$	(dependent on other 4)	
(Output) Magnetic Reynolds #:	$\operatorname{Re}_{M} = \frac{UL}{\eta}$	750	Using velocities near CMB	
Kinetic Reynolds #:	$\operatorname{Re} = \frac{UL}{v}$	1.5×10 ⁹	Using velocities near CMB	
Elsasser #:	$\Lambda = \frac{B^2}{2\Omega\rho\mu_0\eta}$	<i>O</i> (1)	Jsing magnetic field near CMB	
Rossby #:	$Ro = \frac{U}{2\Omega L}$	10 ⁻⁶	Using velocities near CMB	

Comparing planets

	Earth	Ganymede	Jupiter	Uranus
Ω , rotation rate (s ⁻¹)	7×10^{-5}	1×10^{-5}	2×10^{-4}	1.4×10^{-5}
Density (kg/m ³)	1.1×10^{4}	6×10^{3}	1×10^{3}	1×10^{3}
Size of dynamo region (m)	3×10^{6}	7×10^{5}	3×10^{7}	$\sim 1 \times 10^{7}$
$H_{\rm T}$, temperature scale height (m)	1×10^{7}	4×10^{7}	1×10^{8}	1×10^{7}
Conductive heat flow along adiabat (W/m ²)	1.5×10^{-2}	1×10^{-3}	$< 10^{-1}$	$< 10^{-2}$
Nominal convective heat flow (W/m ²)	1×10^{-2}	1×10^{-3}	3	$\sim 10^{-1}$
Magnetic diffusivity (m ² /s)	2	4	30	~ 100
$R_{\rm m}$ based on $v_{\rm ml}$	3×10^{3}	70	3×10^{4}	700
$R_{\rm m}$ based on $v_{\rm mac}$	50	5	400	25
A, Elsasser number at top of dynamo	0.3	0.3	0.3	$\sim 0.01?$
$Ro_M = \frac{\eta}{2\Omega L^2}$	1.5×10^{-9}	2×10^{-7}	8×10 ⁻¹¹	3×10 ⁻⁸
$E = \frac{V}{2\Omega L^2}$	7.6×10 ⁻¹⁶	5×10 ⁻¹⁴	2×10^{-18}	3×10 ⁻¹⁶
$q_{\kappa} = \frac{\kappa}{\eta}$	2.5×10^{-6}	1.2×10^{-6}	1.6×10^{-7}	5×10^{-8}

Some Rotating MHD

$$Ro_{M}\left(\frac{\partial}{\partial t} + \vec{v} \bullet \nabla\right)\vec{v} + \hat{z} \times \vec{v} = -\nabla p + Ra(T - T_{0})\vec{r} + E\nabla^{2}\vec{v} + \vec{J} \times \vec{B}$$

Start simple

-no magnetic field, buoyancy

-consider mainstream flow (inertia & viscosity small) -dominant force balance given by:

$$\hat{z} \times \vec{v} = -\nabla p$$

-take curl of equation to get:

$$\frac{\partial \vec{v}}{\partial z} = 0$$
 "Taylor Proudman
Theorem"

-main force balance requires z-independent motion -non-penetrative boundary conditions & continuity eq'n give: $\vec{v} = V_G(s)\hat{\phi}$

-i.e. motion constrained to cylinders coaxial with the rotation axis, called "geostrophic flow":

Some Rotating MHD

Add buoyancy: 2 effects:

(1) Thermal Winds $2\rho \vec{\Omega} \times \vec{v} = -\nabla p - \rho \alpha \Theta \vec{g}$

take curl:

$$\frac{\partial \vec{v}}{\partial z} = \frac{\alpha}{2\Omega} (\vec{g} \times \nabla \Theta)$$

so if temp. varies with latitude or longitude, it can cause variations of velocity in the z direction, but not in "r" direction (b/c g in r direction)

(2) Convection

-geostrophic flows & thermal winds can't transport heat from interior to CMB (no radial motion)

-convective motions require presence of other forces (viscous, inertia, magnetic) to offset effect of rotation (Taylor-Proudman Theorem)
-however, convection still satisfies Taylor-Proudman theorem to leading order (derivatives in z much smaller than other directions)
-convection at onset:

Some Rotating MHD

Now lets add a magnetic field: -either Lorentz force is part of dominant force balance -or its not

If it is: $2\rho \vec{\Omega} \times \vec{v} = -\nabla p + \vec{J} \times \vec{B} - \rho \alpha \Theta \vec{g}$ "magnetostrophic balance"

Can determine necessary B magnitude for this balance

$$\left|2\rho\vec{\Omega}\times\vec{v}\right|\sim\left|\vec{J}\times\vec{B}\right|\Rightarrow B\sim\sqrt{2\Omega\rho\mu\eta}$$

Weak & Strong Dynamos

$$Ro_{M}\left(\frac{\partial}{\partial t}+\vec{v}\bullet\nabla\right)\vec{v}+\hat{z}\times\vec{v}=-\nabla p+Ra(T-T_{0})\vec{r}+E\nabla^{2}\vec{v}+\vec{J}\times\vec{B}$$

If Lorentz force part of dominant balance:

- -"strong field dynamo", magnetic field is stronger
- convection is 'easier' (i.e. lower critical Ra #) b/c magnetic field balances Coriolis force, easing rotational constraint
- so planets want to be in this regime

If it isn't:

- "weak field dynamo", magnetic field generally weaker
- rotational constraint makes convection difficult
- magnetic field doesn't affect velocity field so much (Lorentz force is small)

Why not ignore viscosity and inertia?

-involved in balancing deviations from a Taylor state --> important dynamically -without them: $\hat{z} \times u = -\nabla p + i \times B + R_a \Theta \hat{r}$.

$$\times u = -\nabla p + j \times B + R_a \Theta \hat{r},$$

$$\longrightarrow \int_{\Sigma} (j \times B)_{\phi} dS = 0, \quad \text{(Taylor State)}$$

-in a Taylor state, magnetic torques on surface of cylinders in the core vanish -this is a major constraint on the structure of the magnetic field

-with inertia and viscosity, can balance the Lorentz torque:

$$R_o(1-s^2)^{\frac{1}{2}}\frac{\partial u_\phi(s)}{\partial t} + E^{\frac{1}{2}}(1-s^2)^{-\frac{1}{4}}u_\phi(s) = \frac{1}{4\pi s}\int_{\Sigma} (j \times B)_\phi \, dS.$$

inertia viscosity

viscosity: lorentz torque scales with u, so any initial torque results in motion that acts to decrease torque. Eventually torque=0 and u=0 and you are in a Taylor state inertia: lorentz torque scales with acceleration du/dt, so any initial torque results in acceleration. When torque=0, still have u, so you overshoot --> "Torsional oscillations"

Note: also can't ignore viscosity b/c of degree of equation

Evidence for torsional oscillations

-is there any evidence for torsional oscillations? Yes! observational evidence in length of day records and geomagnetic jerks

Figure 3 Change in the length of day derived directly from geodetic observations (*solid line*) and that are predicted from calculations of the core angular momentum derived from geomagnetic observations. The *square symbols* show the results of Jault et al (1988) and the *diamond symbols* the results of Jackson et al (1993).

Characteristics •geometry: $r_{io} = \frac{r_i}{r_o}$ •small viscosity: $E = \frac{V}{2\Omega r_o^2} << 1$ $Ro = \frac{\eta}{2\Omega r_o^2} << 1$ •small inertia: •strong convection: $Ra = \frac{\alpha g_o \Delta T r_o}{2\Omega \eta} >> Ra_c$

Results from dynamo models

(KB) weak field dynamo

(KB) strong field dynamo

convection cells in dynamo models

How far are we?

Convection cells in dynamo models

A Kageyama et al. Nature 2008

Using the Earth Simulator: (but not equilibrated yet, magnetic field weak)

axial component of the vorticity

similar to experiments

E=2.3x10⁻⁷: (lowest ever achieved), E=2.6x10⁻⁶

Experiments:

Karlsruhe dynamo

Dan Lathrop's planetary dynamo

Case Study: Earth's dynamo

Earth-like Numerical Model:

