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“circle compactification” = 

in the supersymmetric case, using holomorphy, one argues that 
with supersymmetric b.c. there is a smooth 4d limit

L - circumference of nonthermal circle 
R-radius, whenever difference matters
                  so more precisely 12,1 R    x S 

- many cases studied about 10 years ago 

for nonsupersymmetric theories, interest in “circle 
compactification” deformations has been rekindled more recently 
(Unsal w/ Shifman & Yaffe, in various combinations since about 2007)

why bother? 

various “deformations” of 4d field theories have been useful to study 
aspects of  nonperturbative dynamics 

13 R x S 

especially true in supersymmetry, where consistency with all 
calculable deformations play an important role, e.g.:
   - circle compactification of N=2 4d SYM 
      (Seiberg, Witten) 
   - circle compactification of N=1 4d SYM  
      (Aharony, Intriligator, Hanany, Seiberg, Strassler ; Dorey, Hollowood, Khoze, Mattis)  
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e.g., SU(2): 
eigenvalues of Wilson line (“Polyakov loop”) 

for pure YM theory,               is equivalent to a thermal setup - as 
temperature increases, thermal fluctuations cause a deconfinement phase 
transition -  center symmetry breaks and the trace of the Polyakov loop 
obtains a nonzero expectation value: 

13
 R x S 

if                             SU(2) broken to U(1) at high scale, e.g.  
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By now the existence of a large, non-baryonic con-
tribution to the energy density of the universe—Dark
Matter—is well established. The exact nature of this new
type of matter is the subject of much speculation. It is
searched for, in many experiments, both directly through
its scatterings with standard model (SM) particles and
indirectly through its annihilations to SM states. We
concentrate our attention in this letter on the results of
several of these experiments, PAMELA and ATIC, which
search for DM indirectly through its annihilations to elec-
trons/postirons and protons/anti-protons, and to a lesser
extent DAMA and CDMS, which look for DM directly
through its scattering off atoms.

Recently PAMELA, a satellite based experiment, re-
ported results for the flux ratio of protons to anti-protons
and for the flux ratio of positrons to the sum of elec-
trons and positrons. In the proton/anti-proton channel
they see no significant deviation [1] from the prediction of
anti-proton production from the propagation of cosmic-
rays through the galaxy. In the electron/postiron chan-
nel there appears to be a significant excess [2] starting
around energies of 10 GeV and continuing to the high-
est bins at 100 GeV. Both results are compatible with
previous experiments but with higher precision.

The ATIC balloon experiment collaboration [3] mea-
sured the total flux of electrons plus positrons out to
energies of order 1TeV. There is an excess over what is
expected from cosmic rays, peaked around 400-500 GeV.
This is in agreement with the measurement of another

balloon experiment PPB-BETS [4], which also observes
a peak around ∼ 500 GeV.

These excesses may be explained by astrophysical pro-
cesses, for instance nearby pulsars may be a source for
high energy positrons and electrons [5], or they could
be due to annihilation of DM in our galactic neighbour-
hood. Assuming the latter possibility, the above results
seem to indicate that the main annihilation is to electrons
and positrons and not to hadronic final states. One way
this can happen is if the DM does not annihilate directly
to the SM but instead first annihilates to a new state
which in turn decays to SM states. If this new state is
lighter than the proton, the final state will only contain
leptons [6, 7]. Thus, the lack of hadronic final states is
determined by the spectrum of new states [8–11].

Here, we consider instead the possibility that due to a
symmetry the new states only have tree-level couplings
to leptons but not to gauge bosons or quarks: leptophilic
dark matter. A model similar to this, gauging µ − τ
number, and thus giving no possible DAMA signal, was
briefly considered in [12], and lepton-friendly models in
the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
amine if it is possible to explain these excesses within the
leptophilic framework.

We begin, in Section II, by describing the symmetry
and the resulting model. In Section III, we discuss the
existing constraints on the model to arrive at the viable
region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-
plings to leptons, CDMS, which vetoes on electromag-
netic recoils, will have less sensitivity than DAMA, which
records both nuclear and electromagnetic recoils. In Sec-
tion V, we discuss whether leptophilic models can explain
why DAMA observes a modulated signal but CDMS does
not see any signal and the region of parameters where this
is possible. In Section VI, we conclude by recalling the
main features of the model in the two interesting regions
of parameter space. Finally, we note that the coupling of
the Dark Sector to neutrinos follows from the symmetries
of our model and point out the possibility of detection of

for centrally symmetric vacuum, 
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symmetry the new states only have tree-level couplings
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number, and thus giving no possible DAMA signal, was
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the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
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and the resulting model. In Section III, we discuss the
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By now the existence of a large, non-baryonic con-
tribution to the energy density of the universe—Dark
Matter—is well established. The exact nature of this new
type of matter is the subject of much speculation. It is
searched for, in many experiments, both directly through
its scatterings with standard model (SM) particles and
indirectly through its annihilations to SM states. We
concentrate our attention in this letter on the results of
several of these experiments, PAMELA and ATIC, which
search for DM indirectly through its annihilations to elec-
trons/postirons and protons/anti-protons, and to a lesser
extent DAMA and CDMS, which look for DM directly
through its scattering off atoms.

Recently PAMELA, a satellite based experiment, re-
ported results for the flux ratio of protons to anti-protons
and for the flux ratio of positrons to the sum of elec-
trons and positrons. In the proton/anti-proton channel
they see no significant deviation [1] from the prediction of
anti-proton production from the propagation of cosmic-
rays through the galaxy. In the electron/postiron chan-
nel there appears to be a significant excess [2] starting

around energies of 10 GeV and continuing to the high-
est bins at 100 GeV. Both results are compatible with
previous experiments but with higher precision.

The ATIC balloon experiment collaboration [3] mea-
sured the total flux of electrons plus positrons out to
energies of order 1TeV. There is an excess over what is
expected from cosmic rays, peaked around 400-500 GeV.
This is in agreement with the measurement of another
balloon experiment PPB-BETS [4], which also observes
a peak around ∼ 500 GeV.

These excesses may be explained by astrophysical pro-
cesses, for instance nearby pulsars may be a source for
high energy positrons and electrons [5], or they could
be due to annihilation of DM in our galactic neighbour-
hood. Assuming the latter possibility, the above results
seem to indicate that the main annihilation is to electrons
and positrons and not to hadronic final states. One way
this can happen is if the DM does not annihilate directly
to the SM but instead first annihilates to a new state
which in turn decays to SM states. If this new state is
lighter than the proton, the final state will only contain
leptons [6, 7]. Thus, the lack of hadronic final states is
determined by the spectrum of new states [8–11].

Here, we consider instead the possibility that due to a
symmetry the new states only have tree-level couplings
to leptons but not to gauge bosons or quarks: leptophilic
dark matter. A model similar to this, gauging µ − τ
number, and thus giving no possible DAMA signal, was
briefly considered in [12], and lepton-friendly models in
the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
amine if it is possible to explain these excesses within the
leptophilic framework.

We begin, in Section II, by describing the symmetry
and the resulting model. In Section III, we discuss the
existing constraints on the model to arrive at the viable
region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-
plings to leptons, CDMS, which vetoes on electromag-
netic recoils, will have less sensitivity than DAMA, which
records both nuclear and electromagnetic recoils. In Sec-

and theory weakly coupled (if no electrically charged light states) 
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however, “Casimir energy” in pure YM makes eigenvalues 
attract forcing  and breaking center symmetry (Gross, Pisarski 
& Yaffe...): 

on thermal circle in theories with fermions this is generic - 
thermal fluctuations always cause deconfinement, assuming 4d 
theory confines (see, e.g., various Casimir calculations in Unsal & Yaffe)

bad news - as far as learning about 4d theory: 

1.) means phase transition with L in theories with (approximate) center symmetry, 
so no smooth
2.) loss of calculability - abelianization - at small L - since the idea is to have a 
calculable small-L limit which is smoothly connected to 4d

-

-

-
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By now the existence of a large, non-baryonic con-
tribution to the energy density of the universe—Dark
Matter—is well established. The exact nature of this new
type of matter is the subject of much speculation. It is
searched for, in many experiments, both directly through
its scatterings with standard model (SM) particles and
indirectly through its annihilations to SM states. We
concentrate our attention in this letter on the results of
several of these experiments, PAMELA and ATIC, which
search for DM indirectly through its annihilations to elec-
trons/postirons and protons/anti-protons, and to a lesser
extent DAMA and CDMS, which look for DM directly
through its scattering off atoms.

Recently PAMELA, a satellite based experiment, re-
ported results for the flux ratio of protons to anti-protons
and for the flux ratio of positrons to the sum of elec-
trons and positrons. In the proton/anti-proton channel
they see no significant deviation [1] from the prediction of
anti-proton production from the propagation of cosmic-
rays through the galaxy. In the electron/postiron chan-
nel there appears to be a significant excess [2] starting
around energies of 10 GeV and continuing to the high-
est bins at 100 GeV. Both results are compatible with
previous experiments but with higher precision.

The ATIC balloon experiment collaboration [3] mea-
sured the total flux of electrons plus positrons out to
energies of order 1TeV. There is an excess over what is
expected from cosmic rays, peaked around 400-500 GeV.
This is in agreement with the measurement of another
balloon experiment PPB-BETS [4], which also observes
a peak around ∼ 500 GeV.

These excesses may be explained by astrophysical pro-
cesses, for instance nearby pulsars may be a source for
high energy positrons and electrons [5], or they could
be due to annihilation of DM in our galactic neighbour-
hood. Assuming the latter possibility, the above results
seem to indicate that the main annihilation is to electrons
and positrons and not to hadronic final states. One way

this can happen is if the DM does not annihilate directly
to the SM but instead first annihilates to a new state
which in turn decays to SM states. If this new state is
lighter than the proton, the final state will only contain
leptons [6, 7]. Thus, the lack of hadronic final states is
determined by the spectrum of new states [8–11].

Here, we consider instead the possibility that due to a
symmetry the new states only have tree-level couplings
to leptons but not to gauge bosons or quarks: leptophilic
dark matter. A model similar to this, gauging µ − τ
number, and thus giving no possible DAMA signal, was
briefly considered in [12], and lepton-friendly models in
the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
amine if it is possible to explain these excesses within the
leptophilic framework.

We begin, in Section II, by describing the symmetry
and the resulting model. In Section III, we discuss the
existing constraints on the model to arrive at the viable
region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-
plings to leptons, CDMS, which vetoes on electromag-
netic recoils, will have less sensitivity than DAMA, which
records both nuclear and electromagnetic recoils. In Sec-
tion V, we discuss whether leptophilic models can explain
why DAMA observes a modulated signal but CDMS does
not see any signal and the region of parameters where this
is possible. In Section VI, we conclude by recalling the
main features of the model in the two interesting regions
of parameter space. Finally, we note that the coupling of
the Dark Sector to neutrinos follows from the symmetries
of our model and point out the possibility of detection of
neutrino flux from dark matter annihilations.

II. THE MODEL

We now describe the model: we add to the SM a Dark
Sector (DS) which contains a new Abelian gauge sym-
metry, U(1)DS . There is a Dirac fermion charged under
this group that is also odd under a DS-parity (all SM
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expected from cosmic rays, peaked around 400-500 GeV.
This is in agreement with the measurement of another
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a peak around ∼ 500 GeV.

These excesses may be explained by astrophysical pro-
cesses, for instance nearby pulsars may be a source for
high energy positrons and electrons [5], or they could

be due to annihilation of DM in our galactic neighbour-
hood. Assuming the latter possibility, the above results
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this can happen is if the DM does not annihilate directly
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lighter than the proton, the final state will only contain
leptons [6, 7]. Thus, the lack of hadronic final states is
determined by the spectrum of new states [8–11].

Here, we consider instead the possibility that due to a
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number, and thus giving no possible DAMA signal, was
briefly considered in [12], and lepton-friendly models in
the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
amine if it is possible to explain these excesses within the
leptophilic framework.

We begin, in Section II, by describing the symmetry
and the resulting model. In Section III, we discuss the
existing constraints on the model to arrive at the viable
region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-
plings to leptons, CDMS, which vetoes on electromag-
netic recoils, will have less sensitivity than DAMA, which
records both nuclear and electromagnetic recoils. In Sec-
tion V, we discuss whether leptophilic models can explain
why DAMA observes a modulated signal but CDMS does
not see any signal and the region of parameters where this
is possible. In Section VI, we conclude by recalling the
main features of the model in the two interesting regions
of parameter space. Finally, we note that the coupling of
the Dark Sector to neutrinos follows from the symmetries
of our model and point out the possibility of detection of
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however,  with periodic (non-thermal) b.c. this is not always so: 

if fermion rep judiciously chosen, at small circle, Casimir energy may 
cause eigenvalues to repel and thus pick center-symmetric vacuum 
(Unsal & Yaffe - e.g., many adjoints + possibly a few other complex 
representations)  a particular case of the above is supersymmetry, where  
Casimir energy = 0, so, can simply pick center-symmetric vacuum as a point on 
moduli space 

else, one can apply a “double-trace deformation” on the circle, 
forcing a center-symmetric expectation value for general 
representations (Shifman &Unsal) 
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region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-
plings to leptons, CDMS, which vetoes on electromag-
netic recoils, will have less sensitivity than DAMA, which
records both nuclear and electromagnetic recoils. In Sec-
tion V, we discuss whether leptophilic models can explain
why DAMA observes a modulated signal but CDMS does
not see any signal and the region of parameters where this
is possible. In Section VI, we conclude by recalling the
main features of the model in the two interesting regions
of parameter space. Finally, we note that the coupling of
the Dark Sector to neutrinos follows from the symmetries
of our model and point out the possibility of detection of

deformation term ~ 

-

- 
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the role of the deformation is two-fold: 

at infinite L the deformation is turned off - if theory has no anomaly free 
continuous global symmetries which could break as L changes, there is no 
other obvious phase transition that can occur with L (it appears that discrete 
chiral symmetries broken at any L);  center symmetry unbroken at small L as 
well as large L  = “smoothness conjecture”

ensures center symmetric vacuum, and thus calculability, at small L 
- both perturbative and nonperturbative dynamics 
  under control

1.) 

2.) 
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- here the theory is solvable by abelian 
duality: abelian confinement and mass gap 
can be show analytically (cf Seiberg-Witten 
theory)

- continuous connection to large radius as 
no gauge invariant order parameter can 
distinguish

- in some cases there already exist lattice 
studies of this story at various L - seem 
consistent with  smoothness conjecture 
modulo usual (here: technical) issues of 
chiral limit on the lattice ... but stay tuned.
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SU(2) broken to U(1):   “static” Prasad-Sommerfield monopole is 
the main topological background - an instanton in the            theory 
- all other instantons can be obtained from it by judicious 
combinations of  “gauge transformations” and holonomy shifts

“KK monopoles” 
(P.Yi & K. Lee; P. van Baal ~ 1997)
clearly, specific to locally 4d case
have opposite magnetic charge to that of self-
dual (BPS) monopole

13
 R x S 

“static” (BPS) monopoles

monopoles can destabilize perturbative vacuum and generate mass of the dual 
photon (Polyakov, 1977) 
[ + KK monopoles in the locally 4d case of interest to us]

-
-
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“monopoles can destabilize perturbative vacuum and generate mass of   
  the dual photon”  - a quick reminder: 

abelian duality in 3d 

 masslessness of scalar 

topological current in electric theory

 its conservation = absence of magnetic charge

presence of monopoles means continuous symmetry reduced
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We describe a simple model of Dark Matter, which explains the PAMELA/ATIC excesses while
being consistent with all present constraints. The DAMA annual modulation signal can also be
explained for some values of the parameters. The model consists of a Dark Sector containing a
weakly coupled broken U(1) gauge symmetry, under which only the Dark Matter state and the
leptons are charged.

I. INTRODUCTION

U(1)flux : σ → σ + c

v̂ =
π

L

v̂L

2
"= 0, π, ...

TrΩ = ei v̂L
2 + e−i v̂L

2 = 0

TrΩ = ei v̂L
2 + e−i v̂L

2 "= 0

1
L3

∫
d3x

∑

n

an| TrΩ(x)n|2

By now the existence of a large, non-baryonic con-
tribution to the energy density of the universe—Dark
Matter—is well established. The exact nature of this new
type of matter is the subject of much speculation. It is
searched for, in many experiments, both directly through
its scatterings with standard model (SM) particles and
indirectly through its annihilations to SM states. We
concentrate our attention in this letter on the results of
several of these experiments, PAMELA and ATIC, which
search for DM indirectly through its annihilations to elec-
trons/postirons and protons/anti-protons, and to a lesser
extent DAMA and CDMS, which look for DM directly
through its scattering off atoms.

Recently PAMELA, a satellite based experiment, re-
ported results for the flux ratio of protons to anti-protons
and for the flux ratio of positrons to the sum of elec-
trons and positrons. In the proton/anti-proton channel
they see no significant deviation [1] from the prediction of

anti-proton production from the propagation of cosmic-
rays through the galaxy. In the electron/postiron chan-
nel there appears to be a significant excess [2] starting
around energies of 10 GeV and continuing to the high-
est bins at 100 GeV. Both results are compatible with
previous experiments but with higher precision.

The ATIC balloon experiment collaboration [3] mea-
sured the total flux of electrons plus positrons out to
energies of order 1TeV. There is an excess over what is
expected from cosmic rays, peaked around 400-500 GeV.
This is in agreement with the measurement of another
balloon experiment PPB-BETS [4], which also observes
a peak around ∼ 500 GeV.

These excesses may be explained by astrophysical pro-
cesses, for instance nearby pulsars may be a source for
high energy positrons and electrons [5], or they could
be due to annihilation of DM in our galactic neighbour-
hood. Assuming the latter possibility, the above results
seem to indicate that the main annihilation is to electrons
and positrons and not to hadronic final states. One way
this can happen is if the DM does not annihilate directly
to the SM but instead first annihilates to a new state
which in turn decays to SM states. If this new state is
lighter than the proton, the final state will only contain
leptons [6, 7]. Thus, the lack of hadronic final states is
determined by the spectrum of new states [8–11].

Here, we consider instead the possibility that due to a
symmetry the new states only have tree-level couplings
to leptons but not to gauge bosons or quarks: leptophilic
dark matter. A model similar to this, gauging µ − τ
number, and thus giving no possible DAMA signal, was
briefly considered in [12], and lepton-friendly models in
the context of supersymmetry, have been examined in
the past [13, 14]; here, we build a simple model and ex-
amine if it is possible to explain these excesses within the
leptophilic framework.

We begin, in Section II, by describing the symmetry
and the resulting model. In Section III, we discuss the
existing constraints on the model to arrive at the viable
region of parameter space. In Section IV, we explain how
this region of parameter space is not only consistent with
constraints, but may also explain the excesses discussed
above. Since the Dark Sector of our model only has cou-

11



with monopoles included, 
only discrete shift of dual 
photon remains:

monopole-induced mass of dual photon - physics of Debye mechanism 
(Polyakov, 1977)

example of a “topological flux operator”, 
i.e., induced by topological objects with nonzero 
magnetic charge; here given in pure SU(2) broken 
to U(1) YM 3d; similar in locally 4d

- 
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in theories with fermions “topological flux operators” due to 
monopoles and KK monopoles will carry fermion zero modes
what are the relevant index theorems? 

Callias, 1978 (E. Weinberg, 1980)

Nye & M. Singer, 2000 (Unsal & EP, 2008)13 R x S 

3
 R

-

-
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two obvious questions: 

1.) where does this come from? 2.) what number is it equal to in a 
given topological background?  

Unsal, EP; arxiv:0812.2085[hep-th](JHEP0903:027, 2009)

calculated index for various representations/backgrounds

showed & explained jumps of index as ratio holonomy/radius varied 

finally, techniques used to calculate index also good to study 
generation of CS terms and argue that some QCD-like theories 
should possess a CS phase on R3xS1  

we give a derivation along physicist’s lines (i.e. one we can 
understand) generalizing E. Weinberg’s work on Callias index 
in monopole background on R3 to R3 x S1

14



topological charge contribution:

as per Nye-Singer formula, the index has two contributions: 

operator trace identities (as in E.Weinberg) + anomaly equation 
(new element, as theory is locally 4d)

. . . . . . . . . . 

 tools: 

15



“eta-invariant” contribution:

KK sum = eta invariant of operator

eigenvalues by analytic continuation of 

both these terms are not integers, but their sum is
- best (apart from reading paper) is to look at plot, e.g., for SU(2) fundamental: 

16
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for SU(2): one kind of monopole, one value of holonomy - 

“sawtooth” function

index in 
charge-1
static  
monopole
background

“eta-invariant” contribution:
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nonperiodic (linear function of v) 
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topological charge 

“sawtooth” function

topological charge contribution:

for SU(2): one kind of monopole, one value of holonomy - 

index in 
charge-1
static  
monopole
background
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“sawtooth” function, periodic nonperiodic (linear function of v) 

sum = index

for SU(2): one kind of monopole, one value of holonomy - 

index in 
charge-1
static  
monopole
background
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“sawtooth” function, periodic nonperiodic (linear function of v) 

sum = index

for SU(2): one kind of monopole, one value of holonomy - 

index in 
charge-1
static  
monopole
background
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comments on the index formula: 

v < 1/(2R), R=L/(2 pi) -
should get 3d result, KK scale 
and monopole scale 
separated

index jumps as v crosses each 1/(2R) KK threshold 
-  non-normalizable zero modes of KK fermions 
become normalizable two per 3d (static) zero mode, 
so jump by 2

satisfying, nice math, etc., but should we ever care about v>1/(2R)...? 

 - Calias index result

index in 
charge-1
static  
monopole
background
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should we ever care about v>1/(2R)...? 

- in a non-SUSY theory, probably not (at least in center-stabilized setup)

- in SUSY theory, with SUSY b.c., perturbative potential for v vanishes 
  (Casimir energy=0)

hence, nonperturbative (super)potential can be generated 
by monopoles&KK monopoles  

semiclassically calculable: Davies, Hollowood, Khoze, Mattis,1999, 
schematically: 

W = exp(Z) + c exp(-Z),  Re Z~ v

used along with holomorphy to obtain 4d value of gaugino 
condensate agreement with weakly coupled 4d instanton 
calculation (remember weak vs. strong instanton calculation issue in 
SYM)

22



hence jumps of index at 2Rv>1 would be relevant for a calculation 
of  W in pure SYM that would give periodic answer 
  - such as found by Dorey in N=1* theory, alas not by an explicit calculation 

however,  W must be periodic function of 2Rv just as Casimir energy is 
(after KK sum) thus need to sum over KK partners of monoples and KK 
monopoles, 

these are obtained by starting with static solutions in vacua with 2Rv>1
this was done in a R  xS   study of compactified 5d Seiberg-Witten curves, but not 
in the 4d SYM setup Csaki, Erlich, Khoze, EP, Shadmi, Shirman, 2001

14
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calculated index for various representations/backgrounds

showed & explained jumps of index as ratio holonomy/radius varied 

finally, techniques used to calculate index also good to study 
generation of CS terms and argue that some QCD-like theories 
should possess a CS phase on R3xS1  

we gave a derivation along physicist’s lines (i.e. one we can 
understand) generalizing E. Weinberg’s work on Callias index 
in monopole background on R3 to R3 x S1

answers I told you so far : 

answers about index left to talk about: 
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calculation of kab in the background holonomy A4 gives:

kab =
∞∑

n=−∞

∫
d3k

π2
tr T a 1

k2 + (A4 + 2πn
L )2

T b (A4 + 2πn
L )

k2 + (A4 + 2πn
L )2

= tr T aT b
∞∑

n=−∞
sign

(
A4 +

2πn

L

)
, (5.2)

where a sum over all fermion matter representations is understood in the trace. To obtain the
second equality we noted that all generators above are in the Cartan and took the momentum
integral, leading to a KK sum identical to the one appearing in (2.15). Finally, we regulate
the sum via ζ-function as in the calculation of the η-invariant, and obtain:

kab = tr T aT b η[A4, 0] = tr T aT b

(
1 − 2

LA4

2π
+ 2

⌊
LA4

2π

⌋)
, (5.3)

where the function "...# is applied to each element of the diagonal matrix A4. To further

understand (5.3), note that if8 |A4| < π
L , we have 1 − 2L A4

2π + 2
⌊

LA4
2π

⌋
= −2LA4

2π + signA4,

and that after inserting this in (5.3) and using kab = kba, we find:

kab = −tr({T a, T b}A4)
L

2π
+ tr(T aT bsignA4) . (5.4)

To understand the meaning of the two terms in (5.4), we now use the decomposition of
the sign matrix sign(A4) in each representation R in terms of the unit matrix and Cartan
generators:

sign(A4R) = s01+
r∑

c=1

scT c, s0 =
1

dim(R)
trR[sign(A4)], sa =

1
T (R)

trR[sign(A4)T a] , (5.5)

and a similar decomposition for the holonomy A4 itself:

A4L

2π

∣∣∣∣
R

= a01 +
r∑

c=1

acT c, a0 =
L

2πdim(R)
trR[A4], ac =

L

2πT (R)
trR[A4T

c] . (5.6)

After inserting these in (5.4), we find:

kab =
∑

R

[
trR

(
{T a, T b}T c

)
(sc − ac) + T (R)δab(s0 − a0)

]
. (5.7)

fundamental, and that k is quantized. To see this, let U(x) denote a gauge rotation for which π3(G) is non-

trivial, i.e,
R

1
24π2 ενλκtr[U∂νU† U∂λU† U∂νU†] ≡

R
ω(x) ∈ Z. Under a gauge transformation, the variation of

the action is given in footnote (5) and yields SCS(AU ) = SCS(A)+ i(2πk)
R

ω(x), in Euclidean space, showing

that gauge invariance of the partition function demands quantization of k.
8If this condition is not obeyed, the following equations have to be modified accordingly, as was done in

the computation of the index.

– 22 –

“4d” contribution
(~chiral anomaly)

“3d” contribution
(~”parity anomaly”)

- sometimes making sure 3d contribution vanishes requires choosing 
background with care

same tools (eta-invariant) give a general formula for the CS 
term in this geometry, as a function of matter representation 
and Wilson line that is turned on

for example, if A    is the Wilson line on the circle:4

- also, one can turn on Wilson lines for anomalous U(1) 
   anomaly-free U(1) bckgd Wilson lines do not generate CS, except may be by 3d term
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discrete Wilson lines give rise to gauge invariant CS terms which 
dominate at long distances (monopoles & friends are “excised”) - 
topological phase in the IR

these are “chirally twisted” vectorlike theories: e.g.  
YM with a number of adjoint Weyl fermions - in 
SYM,  i.e. one adjoint (say, SUSY inessential here),
twist by an element of the Z    anomaly-free 
subgroup of U(1)   - CS term generated for all b.c. 
but the periodic and antiperiodic one

R

2N

generally, one finds a rich phase structure as a function of various 
allowed  deformations - most of it specific to circle compactification, so 
perhaps of interest to cond.-mat. quantum critical points etc.? 

these must be discrete Wilson lines, since Wilson lines = b.c. on circle , 
must be in anomaly-free subgroup of U(1) in order to make sense; equivalently 
- above CS is then properly quantized
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how does SU(2) theory with a single I=3/2 Weyl fermion behave? 
chiral gauge theory, asymptotically free, (Witten) anomaly free 

as an application, consider an example of a chiral gauge theory with only a 
discrete global symmetry - where smoothness conjecture is expected to hold: 

3 1
do calculable R xS  deformations have to say anything useful about 
SU(2) I=3/2 theories? 

2

the index theorem on S1 × R3 [? ]:

I1 = 4, I2 = 6, Iinst = I1 + I2 = 10. (3)

The corresponding (anti-)monopole operators are:

M1 = e−S0eiσψ4, M1 = e−S0e−iσψ̄4,

M2 = e−S0e−iσψ6, M2 = e−S0eiσψ̄6, (4)

where S0 = 8π2

Ng2 = 8π2

2g2 is the monopole action in the
center-symmetric background and dσ = ∗F is the dual
photon. The product of the BPS and KK monopole op-
erators has the quantum numbers of the instanton (1):

I(x) ∼M1M2 ∼ e−Sinst ψ10, Sinst = 2S0 . (5)

Clearly, because of fermion zero modes, neither the
elementary monopoles, nor the instanton term provide a
mass term for the dual photon. Let us first demonstrate
that a mass term for the photon is allowed by symmetries.
Since Z10 is a true symmetry of the microscopic theory, it
must also be a symmetry of the long distance theory. In
particular, the invariance of the monopole operator M1

demands that σ must transform non-trivially under Z10.
Under (2), we have:

Z10 : ψ4 → ei 8πk
10 ψ4, σ → σ − 4πk

5
(6)

Since σ is periodic by 2π, k ∼ k + 5 are identified, thus
the true action of Z10 on the chiral order parameter ψ4

as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
variant under the Z5 discrete shift symmetry.

The Z5 discrete shift symmetry cannot prohibit a mass
term for the dual photon, but it can delay it in an e−S0

expansion. The symmetry (??) forbids all pure flux op-
erators of the type einσ but allows (ei5σ)l with an integer
l. Thus, the leading pure-flux operator appears at order
e−5S0 in the topological expansion and is of the form:

e−5S0(ei5σ + e−i5σ) ∼ e−5S0 cos 5σ . (7)

This is the first term in the semi-classical expansion
which is purely bosonic and, hence, may generate a mass
gap in the gauge sector of the theory.

Since σ ∼ σ + 2π, the potential (??) has five isolated
minima within the fundamental domain. This implies
spontaneous breaking of the Z5 down to Z1. The minima
are located at:

σ0|q =
2π

5
q, q = 0, . . . 4. (8)

In a Hilbert space interpretation, let us label these vacua
as |Ωq〉. Since the shift symmetry of the photon is inter-
twined with the discrete chiral symmetry in the small-S1

regime, this is the same as spontaneous breaking of the
discrete chiral symmetry. Expanding the σ field around

the minimum, it is clear that there is a fermion conden-
sate 〈ψ4〉 determined by the choice of the vacuum. In
particular,

〈Ωq|ψ4|Ωq〉 = e−S0ei 2π
5 q, q = 0, . . . 4 . (9)

which is the expected Z10 → Z2 pattern of the gauge
theory on R4.

Magnetic quintet: The Z5 topological shift symme-
try admits topological operators such as e−5S0ei5σ. We
wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
magnetic charge +5. It has the same quantum numbers
as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:

[M1]3[M2]2 , (10)

and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
We expect the fermion zero mode exchange to generate
a binding potential (which must be short-ranged, as the
fermion zero modes of ψ have an exponential fall-off) for
the constituents.

The magnetic and topological charges of the magnetic
quintet are:

(∫

S2
∞

B,
1

32π2

∫

R3×S1
GaG̃a

)
= ±

(
5,

1
2

)
(11)

where the signs are correlated. Its net number of the
fermionic zero modes is zero. In the effective theory, it
generates the operators e±5iσ.

II. SUPERSYMMETRIC CHIRAL SU(2) WITH
I = 3

2 MATTER

Next, we consider the supersymmetric N = 1 gauge
theory with a single chiral superfield in the I = 3/2 rep-
resentation. This theory was studied in detail by In-
triligator, Seiberg, and Shenker [ISS] in [? ], where it
was shown that if this theory exhibits confinement at the
origin of the moduli space, the theory will dynamically
break supersymmetry when a tree level superpotential
is added. By using recent techniques developed in the
non-supersymmetric context [? ? ], we will discuss the
confinement assumption and argue that the theory does

consider theory with center-stabilizing deformation

index theorem says that monopoles (1) and KK-monopoles (2) have: 
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2

the index theorem on S1 × R3 [? ]:

I1 = 4, I2 = 6, Iinst = I1 + I2 = 10. (3)

The corresponding (anti-)monopole operators are:

M1 = e−S0eiσψ4, M1 = e−S0e−iσψ̄4,

M2 = e−S0e−iσψ6, M2 = e−S0eiσψ̄6, (4)

where S0 = 8π2

Ng2 = 8π2

2g2 is the monopole action in the
center-symmetric background and dσ = ∗F is the dual
photon. The product of the BPS and KK monopole op-
erators has the quantum numbers of the instanton (1):

I(x) ∼M1M2 ∼ e−Sinst ψ10, Sinst = 2S0 . (5)

Clearly, because of fermion zero modes, neither the
elementary monopoles, nor the instanton term provide a
mass term for the dual photon. Let us first demonstrate
that a mass term for the photon is allowed by symmetries.
Since Z10 is a true symmetry of the microscopic theory, it
must also be a symmetry of the long distance theory. In
particular, the invariance of the monopole operator M1

demands that σ must transform non-trivially under Z10.
Under (2), we have:

Z10 : ψ4 → ei 8πk
10 ψ4, σ → σ − 4πk

5
(6)

Since σ is periodic by 2π, k ∼ k + 5 are identified, thus
the true action of Z10 on the chiral order parameter ψ4

as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
variant under the Z5 discrete shift symmetry.

The Z5 discrete shift symmetry cannot prohibit a mass
term for the dual photon, but it can delay it in an e−S0

expansion. The symmetry (??) forbids all pure flux op-
erators of the type einσ but allows (ei5σ)l with an integer
l. Thus, the leading pure-flux operator appears at order
e−5S0 in the topological expansion and is of the form:

e−5S0(ei5σ + e−i5σ) ∼ e−5S0 cos 5σ . (7)

This is the first term in the semi-classical expansion
which is purely bosonic and, hence, may generate a mass
gap in the gauge sector of the theory.

Since σ ∼ σ + 2π, the potential (??) has five isolated
minima within the fundamental domain. This implies
spontaneous breaking of the Z5 down to Z1. The minima
are located at:

σ0|q =
2π

5
q, q = 0, . . . 4. (8)

In a Hilbert space interpretation, let us label these vacua
as |Ωq〉. Since the shift symmetry of the photon is inter-
twined with the discrete chiral symmetry in the small-S1

regime, this is the same as spontaneous breaking of the
discrete chiral symmetry. Expanding the σ field around

the minimum, it is clear that there is a fermion conden-
sate 〈ψ4〉 determined by the choice of the vacuum. In
particular,

〈Ωq|ψ4|Ωq〉 = e−S0ei 2π
5 q, q = 0, . . . 4 . (9)

which is the expected Z10 → Z2 pattern of the gauge
theory on R4.

Magnetic quintet: The Z5 topological shift symme-
try admits topological operators such as e−5S0ei5σ. We
wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
magnetic charge +5. It has the same quantum numbers
as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:

[M1]3[M2]2 , (10)

and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
We expect the fermion zero mode exchange to generate
a binding potential (which must be short-ranged, as the
fermion zero modes of ψ have an exponential fall-off) for
the constituents.

The magnetic and topological charges of the magnetic
quintet are:

(∫

S2
∞

B,
1

32π2

∫

R3×S1
GaG̃a

)
= ±

(
5,

1
2

)
(11)

where the signs are correlated. Its net number of the
fermionic zero modes is zero. In the effective theory, it
generates the operators e±5iσ.

II. SUPERSYMMETRIC CHIRAL SU(2) WITH
I = 3

2 MATTER

Next, we consider the supersymmetric N = 1 gauge
theory with a single chiral superfield in the I = 3/2 rep-
resentation. This theory was studied in detail by In-
triligator, Seiberg, and Shenker [ISS] in [? ], where it
was shown that if this theory exhibits confinement at the
origin of the moduli space, the theory will dynamically
break supersymmetry when a tree level superpotential
is added. By using recent techniques developed in the
non-supersymmetric context [? ? ], we will discuss the
confinement assumption and argue that the theory does
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the index theorem on S1 × R3 [? ]:

I1 = 4, I2 = 6, Iinst = I1 + I2 = 10. (3)

The corresponding (anti-)monopole operators are:

M1 = e−S0eiσψ4, M1 = e−S0e−iσψ̄4,

M2 = e−S0e−iσψ6, M2 = e−S0eiσψ̄6, (4)

where S0 = 8π2

Ng2 = 8π2

2g2 is the monopole action in the
center-symmetric background and dσ = ∗F is the dual
photon. The product of the BPS and KK monopole op-
erators has the quantum numbers of the instanton (1):

I(x) ∼M1M2 ∼ e−Sinst ψ10, Sinst = 2S0 . (5)

Clearly, because of fermion zero modes, neither the
elementary monopoles, nor the instanton term provide a
mass term for the dual photon. Let us first demonstrate
that a mass term for the photon is allowed by symmetries.
Since Z10 is a true symmetry of the microscopic theory, it
must also be a symmetry of the long distance theory. In
particular, the invariance of the monopole operator M1

demands that σ must transform non-trivially under Z10.
Under (2), we have:

Z10 : ψ4 → ei 8πk
10 ψ4, σ → σ − 4πk
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(6)

Since σ is periodic by 2π, k ∼ k + 5 are identified, thus
the true action of Z10 on the chiral order parameter ψ4

as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
variant under the Z5 discrete shift symmetry.

The Z5 discrete shift symmetry cannot prohibit a mass
term for the dual photon, but it can delay it in an e−S0

expansion. The symmetry (??) forbids all pure flux op-
erators of the type einσ but allows (ei5σ)l with an integer
l. Thus, the leading pure-flux operator appears at order
e−5S0 in the topological expansion and is of the form:

e−5S0(ei5σ + e−i5σ) ∼ e−5S0 cos 5σ . (7)

This is the first term in the semi-classical expansion
which is purely bosonic and, hence, may generate a mass
gap in the gauge sector of the theory.

Since σ ∼ σ + 2π, the potential (??) has five isolated
minima within the fundamental domain. This implies
spontaneous breaking of the Z5 down to Z1. The minima
are located at:

σ0|q =
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q, q = 0, . . . 4. (8)

In a Hilbert space interpretation, let us label these vacua
as |Ωq〉. Since the shift symmetry of the photon is inter-
twined with the discrete chiral symmetry in the small-S1

regime, this is the same as spontaneous breaking of the
discrete chiral symmetry. Expanding the σ field around

the minimum, it is clear that there is a fermion conden-
sate 〈ψ4〉 determined by the choice of the vacuum. In
particular,

〈Ωq|ψ4|Ωq〉 = e−S0ei 2π
5 q, q = 0, . . . 4 . (9)

which is the expected Z10 → Z2 pattern of the gauge
theory on R4.

Magnetic quintet: The Z5 topological shift symme-
try admits topological operators such as e−5S0ei5σ. We
wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
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as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:

[M1]3[M2]2 , (10)

and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
We expect the fermion zero mode exchange to generate
a binding potential (which must be short-ranged, as the
fermion zero modes of ψ have an exponential fall-off) for
the constituents.
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where the signs are correlated. Its net number of the
fermionic zero modes is zero. In the effective theory, it
generates the operators e±5iσ.
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was shown that if this theory exhibits confinement at the
origin of the moduli space, the theory will dynamically
break supersymmetry when a tree level superpotential
is added. By using recent techniques developed in the
non-supersymmetric context [? ? ], we will discuss the
confinement assumption and argue that the theory does
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It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
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as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
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and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
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is added. By using recent techniques developed in the
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Clearly, because of fermion zero modes, neither the
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as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
variant under the Z5 discrete shift symmetry.

The Z5 discrete shift symmetry cannot prohibit a mass
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This is the first term in the semi-classical expansion
which is purely bosonic and, hence, may generate a mass
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sate 〈ψ4〉 determined by the choice of the vacuum. In
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which is the expected Z10 → Z2 pattern of the gauge
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Magnetic quintet: The Z5 topological shift symme-
try admits topological operators such as e−5S0ei5σ. We
wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
magnetic charge +5. It has the same quantum numbers
as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:

[M1]3[M2]2 , (10)

and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
We expect the fermion zero mode exchange to generate
a binding potential (which must be short-ranged, as the
fermion zero modes of ψ have an exponential fall-off) for
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fermionic zero modes is zero. In the effective theory, it
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theory with a single chiral superfield in the I = 3/2 rep-
resentation. This theory was studied in detail by In-
triligator, Seiberg, and Shenker [ISS] in [? ], where it
was shown that if this theory exhibits confinement at the
origin of the moduli space, the theory will dynamically
break supersymmetry when a tree level superpotential
is added. By using recent techniques developed in the
non-supersymmetric context [? ? ], we will discuss the
confinement assumption and argue that the theory does
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photon. The product of the BPS and KK monopole op-
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Clearly, because of fermion zero modes, neither the
elementary monopoles, nor the instanton term provide a
mass term for the dual photon. Let us first demonstrate
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Since σ is periodic by 2π, k ∼ k + 5 are identified, thus
the true action of Z10 on the chiral order parameter ψ4

as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
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term for the dual photon, but it can delay it in an e−S0
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erators of the type einσ but allows (ei5σ)l with an integer
l. Thus, the leading pure-flux operator appears at order
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This is the first term in the semi-classical expansion
which is purely bosonic and, hence, may generate a mass
gap in the gauge sector of the theory.

Since σ ∼ σ + 2π, the potential (??) has five isolated
minima within the fundamental domain. This implies
spontaneous breaking of the Z5 down to Z1. The minima
are located at:
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In a Hilbert space interpretation, let us label these vacua
as |Ωq〉. Since the shift symmetry of the photon is inter-
twined with the discrete chiral symmetry in the small-S1

regime, this is the same as spontaneous breaking of the
discrete chiral symmetry. Expanding the σ field around

the minimum, it is clear that there is a fermion conden-
sate 〈ψ4〉 determined by the choice of the vacuum. In
particular,

〈Ωq|ψ4|Ωq〉 = e−S0ei 2π
5 q, q = 0, . . . 4 . (9)

which is the expected Z10 → Z2 pattern of the gauge
theory on R4.

Magnetic quintet: The Z5 topological shift symme-
try admits topological operators such as e−5S0ei5σ. We
wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
magnetic charge +5. It has the same quantum numbers
as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:

[M1]3[M2]2 , (10)

and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
We expect the fermion zero mode exchange to generate
a binding potential (which must be short-ranged, as the
fermion zero modes of ψ have an exponential fall-off) for
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fermionic zero modes is zero. In the effective theory, it
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as well as on the topological operator eiσ is Z5. Note
that the KK-monopole operator M2 is automatically in-
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The Z5 discrete shift symmetry cannot prohibit a mass
term for the dual photon, but it can delay it in an e−S0
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particular,
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wish to provide a physical interpretation of this operator.
It is apparent that this operator can only be induced by
a topological excitation with a vanishing index and with
magnetic charge +5. It has the same quantum numbers
as a five-monopole state with three BPS and two KK
monopoles. Since each constituent monopole has mag-
netic charge +1, naively, such an excitation should not
be stable, as there is a pair-wise Coulomb repulsion be-
tween the constituents. However, there are also interac-
tions induced by the fermion zero-mode exchange, as in
the stability of magnetic bions [? ]. (A magnetic bion
of a newer variety will be discussed in Section 3.) This
is by no means a simple interaction as it must, at lead-
ing order, be a five-body interaction which glues these
constituents into a magnetic quintet. Schematically,
consider the product operator:
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and contract twelve fermion zero modes ψ12 in [M1]3
with the twelve opposite chirality fermions ψ̄12 in [M2]2.
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may generate a mass gap in the gauge sector of the theory. The dual photon mass is

mσ ≈ 1
Le−5S0/2. Using the one loop result for the renormalization group β function:

e−8π2/g2
= (ΛL)β0 , β0 =

11

3
N − 2
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T (j)Nw

f , T (j) =
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3
j(j + 1)(2j + 1) , (8)

with j = 3/2 and Nw
f = 1, we obtain mσ ≈ Λ(ΛL)4 in the ΛL $ 1 domain.

Since σ ∼ σ + 2π, the potential (7) has five isolated minima within the fundamental

domain. This implies spontaneous breaking of the Z5 down to Z1. The minima are located

at:

σ0|q =
2π

5
q, q = 0, . . . 4. (9)

In a Hilbert space interpretation, let us label these vacua as |Ωq〉. Since the shift symmetry

of the photon is intertwined with the discrete chiral symmetry in the small-S1 regime, this

is the same as spontaneous breaking of the discrete chiral symmetry. Expanding the σ field

around the minimum, it is clear that there is a fermion condensate 〈ψ4〉 determined by the

choice of the vacuum. In particular,

〈Ωq|ψ4|Ωq〉 = e−S0ei 2π
5 q, q = 0, . . . 4 . (10)

which is the expected Z10 → Z2 pattern of the gauge theory on R4.

Magnetic quintet: The Z5 topological shift symmetry admits topological operators such

as e−5S0ei5σ. We wish to provide a physical interpretation of this operator. It is apparent

that this operator can only be induced by a topological excitation with a vanishing index

and with magnetic charge +5. It has the same quantum numbers as a five-monopole state

with three BPS and two KK monopoles. Since each constituent monopole has magnetic
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KK

BPS

- monopoles and anti-KK monopoles repel each other electromagnetically (same 
magnetic charge objects) 

- fermions generate attractive interactions between instantons and should be 
responsible for “gluing” 2M + 3 anti-KK - if indeed the theory confines

- like the “magnetic bion” of Unsal’s that generates mass gap in QCD with adjoints, 
including SYM - a bound state of M and anti-KK (and we know it should exist 
because of SUSY)

- unlike Mithat’s “bion”, attraction is short-range as fermions are massive and it is 
hard to analytically establish existence of object  - and hence show that the theory 
has confinement at small L - the dynamics is likely to involve the nonabelian sector 
and fermion back-reaction   

- despite chiral nature of theory, rep. is pseudoreal, has real determinant and so it can be 
studied on the lattice (phase of chiral det is the main difficulty for lattice chiral theories);  “cooling” (i.e. 
smoothing) of lattice field configurations one could look for charge-5 objects (as usual, 
issues with taking chiral limit will slow progress, but situation is bound to improve in future)

- so, this is an, in principle, testable story...                

 cartoon of  “magnetic quintet”
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future; we only note here that, in the continuum, the fermion determinant of this chiral

gauge theory is real (I = 3/2 is a pseudoreal representation), thus the biggest obstacle to

lattice studies of chiral gauge theories is absent in this case.

II. SUPERSYMMETRIC CHIRAL SU(2) WITH I = 3
2 MATTER

Next, we consider the supersymmetric N = 1 gauge theory with a single chiral superfield

in the I =3/2 representation. This theory was studied in detail by Intriligator, Seiberg, and

Shenker [ISS] in [2], where it was shown that if this theory exhibits confinement at the origin

of the moduli space, the theory will dynamically break supersymmetry when a tree level

superpotential is added. By using recent techniques developed in the non-supersymmetric

context [4, 8], we will discuss the confinement assumption and argue that the theory does

not confine. If so, the dynamical breaking of supersymmetry does not take place in this

theory.

Let Qabc ≡ Q = q +
√

2θψ + θθF denote the chiral multiplet in the I =3/2 representation

and λ—the adjoint gaugino. The basic gauge singlet chiral operator is u = Q4. The instanton

vertex is:

I(x) = e−Sinstψ10λ4, (12)

and an exact anomaly-free chiral U(1)R symmetry holds quantum mechanically, under which:

[λ] = +1,

[Q] =
3

5
, [ψ] = −2

5
, (13)

[u] =
12

5
, [ψu] = [q3ψ] =

7

5
.

Here, ψu denotes the fermionic component of u.

At the classical level, the theory has a moduli space of degenerate vacua, a Higgs branch

parameterized by u $= 0, along which SU(2) is completely broken. Classically, there is a

singularity at the origin u = 0, where massless gauge fluctuations appear. Our interest is

the dynamical behavior of this asymptotically free theory at the origin.

As argued by ISS, there are two logical possibilities at u = 0 at the quantum mechanical

level. The first is a non-abelian Coulomb phase of strongly interacting quarks and gluons,

and the other is a confining phase (without chiral symmetry breaking) where the singularity

7
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W = cu5/6Λ−1/3

another application:            ISS(henker) SU(2) SUSY - breaking proposal

if theory confines, with u - the single massless composite saturating ‘t Hooft 
(as is easily checked), adding W=u gives “simplest” SUSY breaking theory in IR                                                                     

hard to be sure, ‘cause difficult to study: strong coupling, none of the usual 
SUSY deformations 

does circle compactification deformation - the only one available - say 
anything? 

some ancient history, 1995:

allowed by symmetries but bad weak-coupling limit, so c=0

 does it confine? -  probably not, most likely CFT: b =1& Intriligator, 2005 0

31



Here, we would like to show the microscopic origin of this superpotential. Our discussion

also provides new insights to SQCD superpotentials or quantum modified moduli spaces

discussed in [10].
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FIG. 3: (a) is the monopole operator M1, e.g., (16), (29) dictated by the index theorem. (b) is

the Yukawa vertex. (c) is a modified monopole operator M̃1 e.g, (22), (30) obtained upon Yukawa

contractions. Note that M̃1 has exactly two fermionic zero modes and can thus contribute to the

superpotential.

Recall the monopole operator (16) M1 = e−S0e−φ+iσψ4λ2 pertinent to the Coulomb

branch of the gauge theory on R3. The structure of the fermion zero modes is dictated

by the index theorem and, as it stands, M1 has more than two zero modes and cannot

contribute to a superpotential. However, this argument does not take into account the

Yukawa interactions, which may lift zero modes. The Yukawa interaction is of the form

qλ̄ψ̄ + h.c.. Contracting the Yukawa interaction (twice) with the monopole operator soaks

up two λ and two ψ zero modes and introduces two scalars as shown in Fig.3:

e−S0e−φ+iσψ4λ2(x)

(∫
d3y qλ̄ψ̄(y)

)2

−→ M̃1 ≡ e−S0e−φ+iσq2ψ2 . (22)

A possible non-locality of the integrals is cut-off by the mass term in the ψ propagator

at large distances while, at short distances, the monopole size puts a natural cut-off. The

11

Y ∼ e−φ+iσ+.... Note that,
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This assertion is true for all supersymmetric theories studied in [10], and we believe it holds

in general. As a side note, we wish to point that an analog of this statement, smoothness

of physics as a function of radius is also achieved for certain non-supersymmetric vector-like

and chiral gauge theories by using double-trace deformations [4]. Of course, the beauty

in both supersymmetric and non-supersymmetric cases is that we can connect a strongly

coupled dynamical regime into a semi-classically tractable regime, where we can essentially

solve the theory. This is the importance of studying gauge theories on S1 × R3.

The way to obtain WS1×R3 [Y, Λ, M, . . .] is to start with the theory on R3, find the su-

perpotential on R3 and add to it any contribution that may arise due to extra topological

excitations inherent to compactification [10].

A. Supersymmetric I = 3
2 theory on R3

Since chiral anomalies are not present in odd dimensions, the U(1)R symmetry of the

locally four dimensional theory enhances to U(1)R′ × U(1)A upon dimensional reduction

to R3. The superpotential of the three-dimensional theory is constrained by the global

symmetries, under which:

U(1)R′ U(1)A

λ 1 0

ψ −1 1

Q 0 1

Y 2 −4

. (20)

The charges of Y can be inferred in many ways [10] (one is via the index theorem on R3,

see e.g. [8]). Note that only M1 (M1) is invariant under (20), but not M2 (M2). The

latter does not exist in the gauge theory on R3. In terms of the superfields parameterizing

the Higgs and the Coulomb branches (u = Q4 and Y ), there is a unique superpotential

permitted by symmetries and holomorphy:

W [Y, u] = Y u . (21)

This type of superpotential is reminiscent of the ones studied in the context of SQCD in

Section 6 of [10]. Although the superpotential (21) and the ones in [10] are permitted by

symmetries, their physical (non-perturbative) origin is not yet discussed in the literature.

10

resulting expression can be viewed as a modified monopole operator denoted as M̃1, with

just two zero modes, an exemplar of non-perturbatively generated superpotential:

W [Y, Q] = Y Q4, M̃1 =
∂2W

∂q2
ψψ , (23)

in the semi-classical domain. There are well-known textbook examples where instantons on

R4 produce a non-perturbative superpotential on the Higgs branch of SQCD, see for example

[12]. The crucial difference here is that the above modification of the monopole operator

takes place on the Coulomb branch, in the absence of any Higgs vev insertion. Despite that,

the reduced monopole operator is local from the viewpoint of long-distance theory.

The superpotential (23) induces a bosonic potential,

V (φ, q) = e−2S0e−2φq6(1 +O(q2)) (24)

Note that (24) is independent of σ, as it must, because the 3d theory possesses two shift

symmetry under which σ → σ+2αR′ and σ → σ−4αA, as manifest by the charge assignments

shown in (20). The Coulomb branch is not lifted by the potential (24), which vanishes for

q = 0 and arbitrary φ > 0. The Coulomb branch is expected to persist in the strong coupling

domain as well.

One related question that may be asked is whether the long distance regime of the theory

on R3 may be described in terms of the Y and u fields at the intersection point of Higgs

and Coulomb branches. If so, the microscopic discrete parity anomalies must match to the

macroscopic ones. Below, we demonstrate a mismatch. The parity anomaly is defined as:

kij = 1
2tr(qiqj) = 1

2

∑

f

qf,iqf,j , (25)

where qf,i is the charge of the fermion f under U(1)i and the sum is over over all fermions.

For microscopic anomalies, we find:

kR′R′ =
1

2

[
3(1)2 + 4(−1)2

]
=

7

2
∈ Z + 1

2 ,

kR′A =
1

2
[3(1)(0) + 4(−1)(1)] = −2 ∈ Z ,

kAA =
1

2

[
3(0)2 + 4(1)2

]
= 2 ∈ Z , (26)

by adding the contributions of the three adjoint fermions λ and the four components of the

I = 3/2 fermions ψ. The macroscopic anomalies of the fermionic components (ψY , ψu) of
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resulting expression can be viewed as a modified monopole operator denoted as M̃1, with

just two zero modes, an exemplar of non-perturbatively generated superpotential:

W [Y, Q] = Y Q4, M̃1 =
∂2W

∂q2
ψψ , (23)
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so Coulomb branch not 
lifted (note no region 
where Y and U both light)

- Y and u do not obey ‘t Hooft for R’, A parity anomalies 
- at origin need new degrees of freedom 
- most likely 3d CFT of strongly coupled “quarks”, gluons, gluinos

This assertion is true for all supersymmetric theories studied in [10], and we believe it holds

in general. As a side note, we wish to point that an analog of this statement, smoothness

of physics as a function of radius is also achieved for certain non-supersymmetric vector-like

and chiral gauge theories by using double-trace deformations [4]. Of course, the beauty

in both supersymmetric and non-supersymmetric cases is that we can connect a strongly

coupled dynamical regime into a semi-classically tractable regime, where we can essentially

solve the theory. This is the importance of studying gauge theories on S1 × R3.

The way to obtain WS1×R3 [Y, Λ, M, . . .] is to start with the theory on R3, find the su-

perpotential on R3 and add to it any contribution that may arise due to extra topological

excitations inherent to compactification [10].

A. Supersymmetric I = 3
2 theory on R3

Since chiral anomalies are not present in odd dimensions, the U(1)R symmetry of the

locally four dimensional theory enhances to U(1)R′ × U(1)A upon dimensional reduction

to R3. The superpotential of the three-dimensional theory is constrained by the global

symmetries, under which:

U(1)R′ U(1)A

λ 1 0

ψ −1 1

Q 0 1

Y 2 −4

. (20)

The charges of Y can be inferred in many ways [10] (one is via the index theorem on R3,

see e.g. [8]). Note that only M1 (M1) is invariant under (20), but not M2 (M2). The

latter does not exist in the gauge theory on R3. In terms of the superfields parameterizing

the Higgs and the Coulomb branches (u = Q4 and Y ), there is a unique superpotential

permitted by symmetries and holomorphy:

W [Y, u] = Y u . (21)

This type of superpotential is reminiscent of the ones studied in the context of SQCD in

Section 6 of [10]. Although the superpotential (21) and the ones in [10] are permitted by

symmetries, their physical (non-perturbative) origin is not yet discussed in the literature.
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the (Y, u) superfields are:

kR′R′ =
1

2

[
1(1)2 + 1(−1)2

]
= 1 ∈ Z ,

kR′A =
1

2
[1(−4)(1) + 1(−1)(4)] = −4 ∈ Z ,

kAA =
1

2

[
1(−4)2 + 1(4)2

]
= 16 ∈ Z . (27)

Due to the mismatch of the kR′R′ anomalies, the (Y, u) fields cannot provide a consistent

description of long distance theory. The “chiral” I = 3/2 theory on R3 in this sense differs

from the vector-like SQCD examples studied in [10] for which the parity anomalies of the

microscopic fermion and the macroscopic fields (Y, M, ...) match.

In the next Section, we will discuss chiral I = 3/2 theory compactified on R3 × S1,

and point a crucial difference in the description of supersymmetric theories with chiral and

vector-like matter. Before we dwell into that, we would like to discuss the microscopic origin

of one of the superpotentials discussed in Ref. [10], the simplest example being Nf = 2

SQCD on R3. This will also be useful for comparison with the chiral case. In this case,

there is a unique superpotential permitted by symmetries and consistent with holomorphy.

It is expressed in terms of Y superfield labeling the Coulomb branch and meson fields,

Mab = QaQb, a, b = 1, . . . , 2Nf labeling the Higgs branch, and is given by

W = −Y Pf(M) = −Y M12M34 (28)

where Pf is the Pfaffian. We first give microscopic derivation of (28), following the same

line of reasoning as in the chiral I = 3/2 theory.

The monopole operator on the Coulomb branch of Nf = 2 SQCD is

M1 = e−S0e−φ+iσψ1ψ2ψ3ψ4λ
2 . (29)

As usual, the structure of zero modes is dictated by index theorem. Exactly as in the chiral

I = 3/2 theory, there are too many zero modes, but the theory also has Yukawa interactions

qaλ̄ψ̄a + h.c., which lift fermion zero modes in pairs and introduce scalars for each pair, see

Fig. 3, resulting in the modified monopole operator:

M̃1 ≡ e−S0e−φ+iσ(q1q2ψ3ψ4 + . . .) =
∑

a,b

∂2W

∂qa∂qb
ψaψb . (30)

Here, ellipsis stands for other permutations and W is the superpotential given in (28). This

expressions are valid in the semi-classical domain along the Coulomb branch. The bosonic
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potential is formally similar to (24), hence neither the Coulomb, nor the Higgs branch is

lifted in Nf = 2 SQCD on R3.

B. Compactification to R3 × S1

For the vectorlike supersymmetric theories studied in [10], compactification on S1 induces

a term in the superpotential, ηY . This is due to the fact that all fundamental matter zero

modes are localized into one topological excitation (a BPS magnetic monopole, the analog

of M1), while the other topological excitation (the KK monopole) only carries two adjoint

zero modes, and thus generates an operator M2 = e+φ−iσλ2. Consequently, it contributes

to the superpotential via an ηY deformation to the three dimensional superpotential.

In the Nf = 2 example described above, these two type of monopole operators induces

terms like

M̃1 +M2 = e−S0e−φ+iσ(q1q2ψ3ψ4 + . . .) + e+φ−iσλ2 (31)

which naturally arise from the superpotential

W = −Y Pf(M) + ηY (32)

proposed in Ref. [10]. Integrating out Y from the resulting superpotential on S1 × R3 then

gives rise to quantum modified moduli space Pf(M) = η, the correct result on R4 [10], as

summarized in (19).

If one calculates the bosonic potential on what used-to-be Coulomb branch of the theory

on R3, it is modified on R3 × S1 into (formally)

V (φ, q) = e−2S0e−2φq6(1 +O(q2)) + e−2S0e−2φ (33)

The KK-monopole induced superpotential generates a “run-away” for the φ field. However,

since the φ-space is compact for the gauge theory on R3 × S1, this just means that the two

eigenvalues of the Wilson line (located at ±φ) will merge together. This regime is highly

quantum, meaning that it does not admit a semi-classical description. Even staying within

the semi-classical domain and setting q = 0, we see that the potential V (φ, 0) ∼ e−2φ is

non-vanishing. Thus, the Coulomb branch is lifted and the vacua are located at Y = 0.

In the chiral case, the situation is drastically different. The extra topological excitation

M2, shown in (16) for our theory, has six matter and two adjoint zero modes. Yukawa

14
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compare with “similar” vectorlike theory-        

- here, in contrast, Y and M obey ‘t Hooft for parity anomalies 
- at origin no need for new degrees of freedom 3d CFT of Y, M              
   composites - recall cubic superpotential relevant in 3d (Wilson-Fisher fixed point)

- “turning on” finite radius - new finite action topological objects - 
   the KK monopoles - contribute to W - two zero modes (fund. only)

- Coulomb branch lifted, hence vacuum at strong coupling (Y=0) 
-  Y gets mass, M’s become free - integrating out Y gives 4d quantum            
   constraint - nice match to known 4d results, consistent with various flows

as far as I can tell, 
ours is the first 
explanation of 
origin of this W

Aharony, Hanany, Intriligator, Seiberg, 
Strassler 1997

Yukawa “lifting”

looks “runaway” but 
recall periodic....

  SU(2) with 4 doublets, also start in 3d work towards 4d: 
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interactions will again lift matter and adjoint zero modes in pairs, leading to a modified

monopole operator M̃2. For comparison with (16), we collect below the formulae for the

modified monopole operators in I = 3/2 theory:[? ]

M̃1 = e−S0e−φ+iσq2ψ2, M̃1 = e−S0e−φ−iσψ̄2q̄2,

M̃2 = e−S0e+φ−iσψ4q2, M̃2 = e−S0e+φ+iσψ̄4q̄2. (34)

As stated above, the KK-monopole induced M̃2 has too many zero modes to contribute to

superpotential, hence it does not. Thus, the superpotential on R3 is not modified on R3×S1

(of course, the locally four dimensional theory only has an U(1)R = U(1)R′ + 3
5U(1)A linear

combination of symmetries due to the anomaly, under which (21) is automatically invariant).

This crucially implies that the Coulomb branch persists even quantum mechanically, unlike

the case of SQCD described below. In the decompactification limit, we may integrate out

Y , i.e., set ∂W [Y,u]
∂Y = 0, to obtain WR4 [u] = 0—giving a new derivation of the result proposed

in [2].

At large S1 × R3 or strong coupling, the index theorem is still valid, although the semi-

classical approximation used above no longer holds. Assume that the size of the circle

r(S1) " Λ−1 so that the dynamics of the theory all the way to r(S1) is essentially the gauge

theory on R4. It is evident that the only way “the photon component” of the SU(2) gauge

fluctuations can acquire a mass is the spontaneous breaking of the U(1)R symmetry by a

chiral condensate, i.e, e−S0eiσ〈ψ4〉〈λ2〉 + c.c ∼ e−S0 cos σ. However, as argued on R4 in [2],

in the supersymmetric theory, the spontaneous breaking of U(1)R is not compatible with

holomorphy and weak coupling limits and 〈λλ〉 = 0. The fermion bilinear λλ is an element of

the chiral ring—the class of operators annihilated by supercharge Qα̇ of one chirality—and

as such its value is independent of the size of the S1 circle [11]. Consequently, the gaugino

condensate must vanish at any value of radius. Since U(1)R symmetry and topological U(1)J

shift symmetry of the dual photon are intertwined at any radius, and since U(1)R is unbroken,

this implies that “the photon component” of the SU(2) gauge fluctuations cannot acquire

a mass neither in weak, nor at the strong coupling regime. Of course, the photon is not a

sensible gauge invariant quantity in the large S1 regime, and gauge invariance demands that

the SU(2) gauge bosons must remain massless. This means that the disfavored possibility in

Ref. [2], i.e., an interacting strongly coupled CFT at the origin of the moduli space is, in our

15

M1 = e−S0e−φ+iσψ4λ2,

M2 = e−S0e+φ−iσψ6λ2,

resulting expression can be viewed as a modified monopole operator denoted as M̃1, with

just two zero modes, an exemplar of non-perturbatively generated superpotential:

W [Y, Q] = Y Q4, M̃1 =
∂2W

∂q2
ψψ , (23)

in the semi-classical domain. There are well-known textbook examples where instantons on

R4 produce a non-perturbative superpotential on the Higgs branch of SQCD, see for example

[12]. The crucial difference here is that the above modification of the monopole operator

takes place on the Coulomb branch, in the absence of any Higgs vev insertion. Despite that,

the reduced monopole operator is local from the viewpoint of long-distance theory.

The superpotential (23) induces a bosonic potential,

V (φ, q) = e−2S0e−2φq6(1 +O(q2)) (24)

Note that (24) is independent of σ, as it must, because the 3d theory possesses two shift

symmetry under which σ → σ+2αR′ and σ → σ−4αA, as manifest by the charge assignments

shown in (20). The Coulomb branch is not lifted by the potential (24), which vanishes for

q = 0 and arbitrary φ > 0. The Coulomb branch is expected to persist in the strong coupling

domain as well.

One related question that may be asked is whether the long distance regime of the theory

on R3 may be described in terms of the Y and u fields at the intersection point of Higgs

and Coulomb branches. If so, the microscopic discrete parity anomalies must match to the

macroscopic ones. Below, we demonstrate a mismatch. The parity anomaly is defined as:

kij = 1
2tr(qiqj) = 1

2

∑

f

qf,iqf,j , (25)

where qf,i is the charge of the fermion f under U(1)i and the sum is over over all fermions.

For microscopic anomalies, we find:

kR′R′ =
1

2

[
3(1)2 + 4(−1)2

]
=

7

2
∈ Z + 1

2 ,

kR′A =
1

2
[3(1)(0) + 4(−1)(1)] = −2 ∈ Z ,

kAA =
1

2

[
3(0)2 + 4(1)2

]
= 2 ∈ Z , (26)

by adding the contributions of the three adjoint fermions λ and the four components of the

I = 3/2 fermions ψ. The macroscopic anomalies of the fermionic components (ψY , ψu) of

12

the existing supersymmetric literature, we denote by φ the shifted expectation value of

the holonomy, with respect to the center-symmetric value). The Coulomb branch of the

supersymmetric theory is parameterized by the chiral superfield Y ∼ e−φ+iσ+.... Note that,

as in (5), the product M1M2 is just the instanton vertex (12).

Since U(1)R is a true symmetry of the microscopic theory, it must be a symmetry of

the long distance theory (in the small-S1 regime where the long distance theory can be

constructed), as well as of all topological operators (at any S1, including strong coupling).

Otherwise this would have implied that it is anomalous. Under U(1)R,

ψ4λ2 → ei 2α
5 ψ4λ2, ψ6λ2 → e−i 2α

5 ψ6λ2 . (17)

Thus, the monopole operators are invariant under the U(1)R if the dual photon transforms

by a continuous shift symmetry, as opposed to the discrete shift symmetry (6) in the non-

supersymmetric case:

σ → σ − 2

5
α, [Y ] = −2

5
. (18)

In this sense, U(1)R intertwines with the topological continuous shift symmetry U(1)J of

the dual photon [? ]. Therefore, unlike the non-supersymmetric theory, a mass term of the

dual photon due to a topological operator of the form einσ is not allowed. A parity-odd

Chern-Simons mass term does not get generated either [8]. This implies that the photon

and its supersymmetric partners must remain massless in the small-S1 regime.

Before discussing the strong coupling large-S1 regime, we need to know whether there is

any superpotential being generated on R3×S1. To do so, we follow the strategy of Sections

6 and 7 of ref. [10]. One of the main points of the analysis there is that if a supersymmetric

gauge theory on R3 × S1 has a nonperturbative superpotential WS1×R3 [Y, Λ, M, . . .] (where

Λ is the 4d holomorphic strong scale, M and ellipsis are mesons and other relevant compos-

ites), the superpotential WR4 [Λ, M, . . .] or quantum moduli space on R4 can be obtained by

integrating out Y , the superfield associated with the Coulomb branch on S1 × R3 (this is

because φ and σ parameterize a sigma model with a target T 2, whose size shrinks to zero

in the R4 limit). This implies that the vacuum structure of a supersymmetric gauge theory

on S1 × R3 can be used to deduce the vacuum structure of the same theory on R4, i.e,

WS1×R3 [Y, Λ, M, . . .] −→︸︷︷︸
Integrate out Y

WR4 [Λ, M, . . .] or quantum moduli space . (19)
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back to SU(2) with I=3/2 - “turn on” nonzero L:

however, as opposed to vectorlike theory, index of KK monopoles too big

symmetry-wise: R-symmetry intertwined with topological shift symmetry  

so, Coulomb branch, unlike vectorlike example, is not lifted by KK monopoles

so no mass gap in the gauge sector at small L, origin-CFT (not one of  Y,u) 

thus our story seems consistent with 4d arguments that theory is a CFT, and 
not confining - hence no SUSY breaking upon addition of  W = u 
(u is quite irrelevant at f.p.) 

as already shown in 3d, monopole superpotential on C-branch:

as L increases, can imagine generating mass gap due to R symmetry 
breaking from fermion condensates (strong multifermion interactions - 
NJL) but not  consistent with SUSY
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generally, the moral was that, along with center-stabilized deformations (in non-
SUSY case), these              compactifications give a calculable regime where 
the IR physics, including nonperturbative effects is under quantitative control

in some cases, one argues that the dynamics is smooth as the size of the 
circle varies - some (preliminary) lattice studies seem to support this

confinement, when it occurs, is due to condensation of objects of nonzero 
magnetic charge - similar to Polyakov’s 3d mechanism - but often of quite 
exotic objects, with constituents that only exist on locally-4d manifolds, for 
example:
   - QCD with adjoints “bions” (Unsal 2007)
   - chiral I=3/2 SU(2) “quintets” (Unsal, EP 2009)
   - other weird ones exist as well
in many cases, lattice can be used to verify the qualitative picture that has 
emerged and study how it evolves in “infinite”-4d limit

conclusions 

perhaps other SUSY theories, left out 10 yrs ago, can be (beneficially?) 
studied with this deformation, and some lose ends tied...
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