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why should one care?

currently popular scenarios for LHC-scale physics: 
weakly coupled models of electroweak symmetry breaking (S,T...)

keep in mind, however, that the kinds of strong-coupling gauge dynamics 
we understand - from experiment, theory, or numerics - are only a few

for example, while QCD-type technicolor models are out by EWPT,
there may exist other kinds of dynamics that work just fine 

in particular: 

             how well do we understand strong chiral gauge dynamics?



 how well do we understand strong chiral gauge dynamics?
            
                                                 - what tools do we have? 

tools one trusts

tools you don’t really know 
whether to trust unless confirmed by 
other means - experiment, numerics, 
or the tools on the l.h.s.

‘t Hooft anomaly matching

in SUSY: 
“power of holomorphy”

“MAC”

truncated Schwinger-Dyson 
equations

- there’s not much there...



the recently popular AdS/CFT-QCD type duals 
are not of great use in chiral gauge theories

large-N limit:

SU(5) with 5* and 10 ---- SU(N) with (N-4) N* and an N(N-1)/2

have different symmetries and symmetry realizations, as easily 

made evident, e.g., from the study of the supersymmetric case 

more concretely, at large-N “quark” loops are not suppressed [e.g., N
(N-1)/2 - representation], hence “mesons” are not free at infinite N; 
one doesn’t expect a nice classical “supergravity” description in a slice 
of AdS or a deformation thereof



while I motivated the desire to study chiral dynamics via “beyond the 
Standard Model” physics, recall that the SM itself is a chiral gauge theory

albeit weakly coupled at energies < O(TeV)

Do we have a nonperturbative formulation of the SM? 

( a purist’s question: “Does the SM exist?”)

We should recall that the lattice is the best way to calculate many 
things in QCD - though not all! - notably spectra and various matrix 
elements (meson decay constants, for one), in addition to giving a 
nonpertubative definition of the theory

        Can we apply similar methods to non-QCD-like theories?



 can we apply similar methods to non-QCD-like theories?

supersymmetric - some recent developments;
notably good in lower dimensional, nonchiral, superrenormalizable cases
phenomenologically interesting N=1 + matter,  4d case ... still open...      
                                                                                 see, e.g.,  Joel Giedt’s review hep-lat/0602007

CHIRAL?    - whether supersymmetric, or not - THIS TALK:

NOT about LHC physics via strong chiral gauge dynamics
(hence, will not discuss a potential theory of the world)

RATHER, I’d like to tell you where the lattice chiral gauge theory problem 
is at, and what attempts are being made at improvement and progress

HOPING to convince you that it is an interesting, theoretically appealing 
problem, fun to think about...
                                   ...and that doing this may even turn out to be useful!
many tools come together - some foreign to us before - both theoretical and “experimental”



the approach I’d like to discuss today is a combination of  “old” and “new” 
will put in larger perspective shortly

the logic basically goes like this:

so, one can ask a natural question -
                 can one start with a vectorlike theory, for example:

formulating vectorlike gauge theories (like QCD) on the lattice is not too much 
of  a problem - there are doublers, of course, but we learned to deal with them 

and then, deform the theory in such a way that 
                          - mirrors decouple from the low-energy spectrum
                          - the gauge symmetry remains unbroken ?



before attempting to answer:        WHY DO WE DO THIS?  

a lightning review of current situation with chiral lattice gauge theories:

Luescher has proven (1999-2000) that 
an exactly gauge invariant lattice action and measure exist 
for an anomaly free chiral gauge theory* 

based on seminal works of Ginsparg, Wilson (1982); D.B. Kaplan (1992); Narayanan, Neuberger 
(1994); Neuberger (1997); P. Hasenfratz, Niedermaier (1997); Luescher (1998); Neuberger (1998), 

however, outside of perturbation theory, there is 
no explicit formulation of the fermion path integral measure! 

- fascinating theoretical achievement, but not good enough
  for practical use, e.g. numerical simulations

* for the mathematically inclined: 
for U(1) gauge groups in finite volume and SU(2)xU(1) in infinite volume only; other cases open to proof! 



thus, 
attempts to construct a chiral lattice gauge theory via decoupling the 
mirrors from a vectorlike theory - where the measure is known explicitly - 
are still worthwhile and of possible practical importance*

in particular, 
Bhattacharya, Csaki, Martin, Shirman, and Terning (2005) 
proposed exactly such a construction combining Kaplan’s domain wall 
fermions with ideas coming from higgsless models in slices of AdS

while very imaginative and new, the BCMST construction was

   - never fully latticized (only 4d deconstructed version of 5d AdS slice)
   - chiral symmetries were realized only in appropriate asymptotic limits

hence, while trying to understand a 2d version of the model, we 
(Bhattacharya, Martin, EP, 2006) started thinking of other possible ways to 
accomplish same goal...

* another message for enthusiasts: 
   there may be other, not thought of yet, ways to do this!



back to our question -
                 can one start with a vectorlike theory, for example:

and then, deform the theory in such a way that 
                          - mirrors decouple from the low-energy spectrum
                          - the gauge symmetry remains unbroken ?

- a “normal” continuum physicist would say: NO! 

- however, the lattice affords possibilities a “normal” continuum physicist 
rarely thinks of! 



- for example, everybody knows that four-fermi interactions, if taken strong 
enough, break chiral symmetries

as per the NJL “gap equation” made ”believable” via large-N, gN=const 
(aka ”mean field”)

- few “continuum people” know, however, that if one takes coupling 
even stronger, the theory enters a “strong-coupling symmetric 
phase,” with only massive excitations and unbroken chiral symmetry

 - why haven’t most people heard about these phases? 

because these phases are a “lattice artifact” - the physics is that of 
“lattice particles” with small hopping probability

thus, these “lattice particles” are “heavier than the UV cutoff”
(think of an almost-insulator)



 I’m not sure who discovered them first

Eichten, Preskill  (1986; “Chiral gauge theories on the lattice”)
 - 4-fermi interactions ... [E-P]

A. Hasenfratz, Neuhaus (1988), strong Yukawa case - similar! 

E-P story “retold”

speaking in a continuum language 



one could include interactions for mirrors only: 

continuum language description - strong 4-fermi causes 

 a.) 10*-5-5 bound state fermion, gets Dirac mass with singlet 
 b.) (10*)    bound state fermion, gets Dirac mass with 5

none of these involves breaking SU(5) - here a mere spectator to strong 4-fermi 

3

---- “strong-coupling symmetric” phase

I called this phase a “lattice artifact” - E-P established its existence using, at large 4-fermi, 
a “hopping expansion,” i.e. treating kinetic terms as perturbation and 4-fermi as leading piece 
in action -  to get  a flavor of how it works, an easily manageable toy example:



space lattice only, canonical anticommutation relations: 

at g>>1 in lattice units, 
hopping is negligible: 

to leading order, at every site the same simple 4-fermion QM problem, rename: 

H conserves F(mod 4); 16 states = 1 + 1’ + 4 + 4* + 6 under SU(4)
H connects only 1 (= all fermions empty) and 1’ (= all fermions occupied)

so: (1-1’) has energy -g; (I+1’) has energy +g,  4,4*,6 have energy 0.

an easily manageable toy example SU(4) “chiral” symmetry



so, in the infinite-g limit, the lattice theory ground state is
       - unique 
       - an SU(4) - chiral symmetry - singlet

at first order in 1/g, hopping will turn on and (-g) site-localized states form 
a band,  

causing the SU(4)-singlet states to propagate... 
                           states are heavy, mass ~ g/a >> 1/a, the UV-cutoff

of course, there are non-singlet heavy states propagating, too, 
but no massless states 

as usual, the 1/g (strong-coupling) expansion has finite radius of convergence, 
hence above story should represent true ground state of theory for 
sufficiently large g

very much like “static limit” of lattice QCD, but infinite mass limit replaced by infinite four fermi



for the skeptics:
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troduce the fermion mass term into the action ( 1 ). 

The partition function becomes 

Z ( m )  = e x p [ - N W ( m ) ]  

= Z i ( ~ f d ~ ' x d G )  e x p ( - S - m x ~ G ~  '~) 

= ~ e x p ( - S B + l n d e t ~ Q ) ,  

~,_~, = M~:,, + max,,. ( l 8) 

The mean-field free energy now depends on in: 

W(H, m ) = - 2 k d t a n h 2 H + H t a n h H - l n 2 c o s h t t  

- N - ~  ( ln  det~(l)H. (19) 

We have already computed the terms in W(H, m) 

proportional to 02 a t /n  = 0. Using a similar diagram- 

matic technique and making the same assumptions 

as before one can compute the terms proportional to 

m 2 and ma. The results are 

02 I$'(H, m)/Om2l,.=o 

= - 2 D / ( d + 2 y 2 ) + O ( r ~ 2 L  YZ<d/2 ,  

=2D/ (d+2y2)+O(ry2) ,  y 2 > d / 2 ,  (20) 

O W( H, m ) /Om l ,,=o 

= -2DYr~ / (d+2y2)+O(c ;  3) . ( 2 l )  

The latter equation is the MFA for the fermion con- 

densate because ((gO.,) = 0 W( m ) ~Ore. It vanishes in 

the symmetric phase o =  0. 

The fermion condensate in the theory ( 1 ) was cal- 

culated in ref. [17] by means of  a MC calculation 

with quenched fermions for k=0 .08  on an 83X 16 

lattice. In this case < 0 ) = 0 . 5 5 .  The agreement be- 

tween the results of  ref. [ 17 ] and formula (21 ) with 

a = 0 . 5 5  is very good in the region Y>x/rd/2-~l .4  

(fig. 3). At small Ythe agreement can be spoiled by 

the finite-size effects as the fermions become light. 

The applicability of  our assumptions can also be- 

come worse at small Y. 

4. Two phases with < 0 )  = 0 

Let us return to (20).  Notice that 

0 . 2 5 0  

0 . 2 2 5  

0 . 2 0 0  

0 . 1 7 5  

0 . 1 5 0  

0 . 1 2 5  

0 . 1 0 0  

0.0?5 
0.0 

+ 

+ 

+ 

1.'O 2.'o a.~ 4'o 5.~ 
Y 

Fig. 3. Fermion condensate. The curve corresponds to (21) with 
a= 0.55. The points represent the result of the quenched Monte 
Carlo computation [ 17 ]. 

02 W(ln ) /am 2[,. =o 

= -  Y (<G~,x~,~'v>- <G~, >-') • 
Y 

(22) 

The discontinuous behavior of  this four-fermion cor- 

relator indicates the first-order phase transition at 

Y= d,v/-~2. (Computing (22) we get one more term 

- -  ( 0 2 ~ ' / 0 H 2 )  - 1  (Ol4"2/OmOH) 2 in addition to (20) 

because of  the dependence o f  H on m. This term is 

continuous at Y =x / d / 2  and accounts for the contri- 

bution of  the intermediate state containing one 0 

particle. ) The line of  this phase transition divides the 

region where ry=0 into two phases distinguished by 

the sign of  the quantity (20).  

One can easily compute 0 2 W( In ) ~On72 for the the- 

ory of  a free massive lattice fermion and find that it 

becomes positive at large masses, m > d @ 2  >> 1. This 

suggests that for Y < x / ~ / 2  the theory contains the 

usual massless fermions, and for Y> ~ very mas- 

sive fermions (thus the fermions disappear from the 

low-energy spectrum ). 

We have computed (20) at a = 0 .  As it depends 

continuously on a, the phase transition line where it 

changes abruptly should continue to some depth into 

the broken phase a ¢ 0 .  It is in agreement with ref. 

[17] where a sharp change of  the fermion mass at 

Y~ 1.4 was observed for 0=0 .4-0 .8 .  
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We use mean field and large-d approximations to investigate the phase diagram of lattice scalar-fermion theory with Yukawa 
coupling. Four phases are found: the spontaneously broken phase ((0)  ¢0), the symmetric phase ((¢~) =0) with massless fer- 
mions, the symmetric phase without them and the antiferromagnetically ordered phase. Approximate formulae for phase transi- 
tion lines and for (q/~t) are derived. 

1. Introduction 

Nonperturbative lattice studies on the Higgs sector 

of  electroweak theory have attracted much attention 

recently. The simplest case is the theory with heavy 

Higgs particles and without heavy fermions. Then the 

Higgs selfcoupling is large and other couplings (gauge 

and Yukawa) are small. Neglecting them, one is left 

with the theory of  the scalar field with a large selfcou- 

piing. The Monte Carlo (MC)  study of  this lattice 

theory gives an upper bound on the Higgs mass: 

m ~< 700-800 GeV [ 1-10] .  

In the presence of  heavy fermions (e.g. the fourth 

generation) there is also a large Yukawa coupling. 

Neglecting the interactions governed by small cou- 

pling constants results in a scalar-fermion theory with 

Yukawa interaction. This theory should be treated 

nonperturbatively, e.g. on a lattice [ 11-19 ]. 

Recently, the phase diagrams of  some simple the- 

ories of  this kind (with a one-component [ 11,15-19 ] 

and a two-component  [ 13,14] scalar field) were 

studied by means of  MC simulations. 

The action of  the simplest scalar-fermion theory 

(one-component  scalar field, bare scalar selfcoupling 

2 = ~ ,  naive discretization of  fermions) has the form 

[16,171 

S = &  + SF + Sv  , 

Sa = - 2k  ~ Ox~x + u , 
.v,I* 

SF=! Z qJxT,,(q/ ,:+u-gx-u) =- 2 qT/~Kxy~(v 
x , u  x , l l  

S y =  ~ Y~xgVx~'x, / z = l , 2  ..... d, 0 x = _ + l .  (1) 
x 

The fields are defined in the sites of  a d-dimensional 

( d = 4 )  hypercubic lattice. Due to fermion species 

doubling this theory describes 2d= 16 Dirac fermions 

in the cont inuum limit. 

In this paper we apply the mean field and large-d 

approximations to derive the approximate phase dia- 

gram of  the theory ( 1 ). 

2. The mean field approximation (MFA) for scalar- 

fermion theory 

Integrating over the fermion degrees of  freedom in 

the partition function of  the theory ( 1 ), we obtain 
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kappa = 0.8



NJL transition

transition to 
“strong coupling 
symmetric 
phase”

for the skeptics:



simple SU(4) exersize, with a bit more group theory, can be repeated for SU(5) of E-P
(btw, singlet needed by E-P to have sensible “static limit” of Euclidean fermion path integral)

- the “E-P dream” was, essentially, to use this* phase to decouple the mirrors
*similar, can’t go there now;
  ask me later

- no continuum limit of this mirror theory - “everything mirror” 
is cutoff scale and heavier and decoupled from IR physics... ideally

showing that at infinite g   SU(5) ground state unique and singlet

- did the “E-P dream” work?

- gauge field appears only in hopping terms and so contributions 
of mirror sector to gauge field action should be ~ 1/g



- did the “E-P dream” work?

no - the reason was, in essence, that, in 1986, there was no way to define 
chiral components of a spinor field on the lattice - even a two-component Weyl field on 
the lattice (that they used) has opposite chirality massless excitations in it, because of the fermion 
doubling 

because of the lack of L/R separation on lattice - notice that L/R separation requires the 

notion of chiral symmetry - the strong 4-fermi was “felt” by both “mirror” and “light” 
fermions

hence,  both “mirror” and “light” fermions became heavy at strong-4 fermi,
while at weak 4-fermi, both “mirror” and “light” were massless, 
i.e. the theory was vectorlike

-  study of E-P model by Golterman, Petcher, Rivas (1993) 

- so what has changed?



Ginsparg-Wilson relation, its solution and consequences: 

- so what has changed?

after a series of seminal papers in the 90’s (Kaplan, Narayanan/Neuberger, Neuberger, 

Hasenfratz/Niedermayer, Luescher, Neuberger) it was realized that there is an exact 
definition of chirality at any nonzero lattice spacing 
...rediscovering, in 1997, Ginsparg/Wilson of 1982! 

definition of L and R components of Dirac fermions is possible
          - somewhat complicated, but exact at any (a, N)! 
          - exact chirality transforms, anomaly, Ward identity, index theorem...

so, naturally, one can ask, can the “E-P dream” be resurrected as well?

to explain our proposal and later/current work in more detail, need a quick review of 

Creutz, Rebbi, Tytgat, Xue, 1996, similar proposal using E-P + domain wall - before GW 
operator and exact chirality - symmetries become exact only as size becomes infinite, so 
less pretty, and much more difficult to study theoretically, so, there was no follow-
up work whatsoever...

one note: 

Bhattacharya, Martin, EP, 2006 



Ginsparg-Wilson [GW], 1982

but what is D?  -  ressurection by Neuberger, 1997, D is “local”, but with an exponential tail

then,  there is an exact chiral symmetry (GW, 1982; formulation of Luscher, 1999)

two sets of chiral projectors:

GW implies:

of lattice action 

note that,
really, we have

given D, define:

Ginsparg-Wilson relation, its solution and consequences: 



field dependence of 
transformation leads to 
Jacobian (vanishes for vector)

then properties of D are useful to (easily, really!) to show that:

global L and R symmetries 
of action

exact lattice chiral symmetry (not usual one for all modes!), 
exact (anomalous) Ward identities, axial charge violation, ... 
               in vectorlike theories  -  big success!

 biggest drawback - no Hamiltonian formulation!    only evidence for unitarity

moral:   



finally, can explain our formulation

“345” theory fields:  3-  4-  5+ 0+  and their   mirrors:  3+ 4+ 5-  0-         

while target 3-4-5 theory has following exact classical

introduce chiral components for
each field, using appropriate projectors:

- because simulations are cheapest in 2d, consider a 2d chiral U(1) theory, the “345” model

[Bhattacharya, Martin, EP, hep-lat/0605003]

8 global chiral U(1)s are symmetries of S    :kin

 (easily formulated for 4d, 5*-10 theory, but no evidence, so far, except words...)



include Yukawa couplings involving mirrors that violate all unwanted U(1)s 
(gauge invariant, with unitary Higgs field with no kinetic term ~ multifermion) 

e.g.: (Dirac) and (Majorana)

from the remaining classical symmetries of the action

- this completes the definition of the model.

three, 345, 133, U(1)  ,  are exact and one is anomalous, 111, 
obeying an exact anomalous Ward identity (exactly as in 
continuum!):

0



since for GW fermions - as a consequence of exact lattice chiral symmetry, 
exactly as in continuum: 

and since the Yukawa (multi-fermi) are written only in terms of the mirror 
fields, the action is completely “light”/”mirror” split 

                              - “light” fields do not feel the strong mirror interactions! 
                                              recall - cause of problem for E-P “dream”

so, we have proposed a lattice formulation of chiral gauge 
theories, which is, unlike any other:

exactly gauge invariant

global symmetries, incl. anomalous ones, are as in 
desired target continuum theory

the fermion measure is that of a vectorlike theory, 
so it is explicitly defined

-

-

-



why aren’t we opening the champaign, then?

  in other words, it looks like we have realized the E-P dream:

3-

4-

5+

0+

3+0-

5-4+
mass terms“     ”     

note that,
really, we have

so L/R components defined with
                       

are slightly nonlocal...



a “few” questions remain: 

with these slightly nonlocal Yukawa/4-fermi mirror interactions, is it still 
true that a “strong coupling symmetric phase” exists? 
are the mirrors heavy?

in typical models, there is more than one strong Yukawa/4-fermi 
interaction - needed to break all classical mirror global symmetries, less there will be extra 

unlifted instanton mirror zero modes - and there can be a nontrivial phase 
structure as their ratios change

2

1

1 and 2 can be addressed without gauge fields, but NEED TO USE NUMERICS; 
no simple analytic strong-coupling expansion as in original models with non-
exactly chiral fermions - beauty has a price! - then, adding gauge fields brings in a 
new set of questions: 

what happens if one tries to decouple an anomalous mirror 
representation? 

3

with gauge fields included, is the long-distance theory unitary? 
note the different treatment of conjugate mirror fermion variables with respect to interactions with  
gauge field through the 4-fermi/Yukawa chiral projectors; hopes that this is irrelevant...

4

and we don’t know all the answers yet...
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what happens if one tries to decouple an anomalous mirror 
representation? 

3

with gauge fields included, is the long-distance theory unitary? 
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is it still true that a “strong coupling symmetric phase” exists?
Joel Giedt, EP (2007)
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is a.) φ-independent and b.) nonzero. Hence, we would have been led to believe that the dynamics
governing the fluctuations of the pure-gauge degrees of freedom is unaffected by the mirror fermions,
to leading order in 1/y. Moreover, this argument would also imply that there is no fine-tuning, at
large y, required in order to keep the XY model in its high-temperature phase. Finally, a constant
determinant, as would be obtained at large-y from the above argument, indicates that there are no
massless fermion states, as a massless fermion state is expected to lead to a zero determinant.

The true story, however, is more complicated than the discussion of the previous paragraph.
This is due to the fact that the various Ψ̄± chiral components which enter X+ x, Y− x (2.7) and
Smass are somewhat smeared due to the nonlocality of the chiral projectors that define the chiral
components for the barred fields. However, the extent of the nonlocality of the Ψ̄±-component
is small, governed by the range of nonlocality of Neuberger’s operator, which is of order of the
lattice spacing with an exponential tail, as the analysis of [37, 38] shows. Hence, one expects that
the qualitative arguments of the previous paragraph still hold, together with the conclusion that
the mirror fermion fluctuations do not significantly affect the pure gauge fluctuations and their
determinant is nonzero. Section 3.3 is devoted to verifying this conjecture.

3 The simpler “toy” model

3.1 Definition of the toy model: action and symmetries

In our analytic and numerical study, we will use a simpler model that captures the main features of
the mirror sector dynamics at g = 0. The model has a minimal field content, allowing an exhaustive
study of the phase diagram using numerical methods with the computer resources available to us.

Our toy model is a U(1) lattice gauge theory with one charged Dirac fermion, ψ, of charge 1,
and a neutral spectator, χ. The desired spectrum of light fields in the target theory is the charged
ψ+ and the neutral χ−. The chirality components for the charged and neutral fermions are defined,
as in the previous section, by the projectors which include the appropriate Neuberger operators D1

or D0 for the barred components. The fermion part of the action of our toy model is:

S = Slight + Smirror (3.15)

Slight =
(

ψ̄+,D1ψ+
)

+ (χ̄−,D0χ−)

Smirror =
(

ψ̄−,D1ψ−

)

+ (χ̄+,D0χ+)

+ y
{(

ψ̄−,φ∗χ+
)

+ (χ̄+,φψ−) + h
[(

ψT
−,φγ2χ+

)

−
(

χ̄+, γ2φ
∗ψ̄T

−

)]}

.

Here φx = eiηx is the unitary higgs field and we do not show its kinetic term as it is the same as in
(2.10). The brackets indicate both summation over coordinates and an inner product of spinors, for
example

(

ψ̄−,φ∗χ+
)

≡
∑

x
ψ̄− xφ∗

xχ+ x and
(

ψ̄+,D1ψ+
)

≡
∑

x,y
ψ̄+ xD1 xyψ+y. There are two Yukawa

couplings in the model, y and yh, which are both taken real. The coupling h measures the ratio of
the Majorana to Dirac mass, while y is the overall strength of the Yukawa coupling. The Smirror

term above is the analogue of (2.8) in the “345” theory.
When y = h = 0, the lattice action (3.15) has four global U(1) symmetries, as every chiral

component can be rotated independently, as in Section 2. When both y and h are nonzero, there
are only two U(1) symmetries, acting on ψ+ and χ−, respectively. The first is the anomalous global
part of the gauge group and the second is the global symmetry of the spectator fermion. When
h = 0, the Majorana mass vanishes, and we have one extra exact U(1) that also acts on the charged

10

toy 2d Yukawa-unitary Higgs model with Ginsparg-Wilson fermions 

exact chiral symmetry, zero gauge fields in simulation:
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At the end of this section, it is worth noting that this proposal carries some of the flavor7 of an
earlier construction of Eichten and Preskill [13], attempting to use strong four-Fermi interactions
to decouple mirrors and doublers (it is clear that integrating out our short-ranged φx will produce
strong multi-fermion interactions of the mirrors). Their proposal is known not to give rise to a
chiral gauge theory (see [34], where the similarity with Yukawa models was also used). In our case,
the modified lattice chiral symmetry that leads to exact decoupling of the chirality components
only allows us to make use of the Yukawa analogue of the strong four-Fermi coupling symmetric
phase (see the Appendix of [13])—a phase with unbroken gauge symmetry, where all fermions that
participate in the strong interactions are massive.

2.4 Action, partition function, and dynamics

To ensure that the dynamics of our lattice model reproduces that of the desired unbroken chiral
gauge theory, we need to demonstrate the existence of a strong-Yukawa-coupling symmetric phase
with chiral spectrum of massless fermions (recall again the strong coupling analysis of [22] which
showed that in the waveguide model the spectrum in this phase was vectorlike). Remarkably,
as we will find below, to leading order in the strong Yukawa coupling expansion and small gauge
coupling—precisely the regime where the waveguide idea broke down—there appear no new massless
modes and the spectrum of the unbroken gauge theory is chiral.

The total action of the lattice model is, finally:

S = SWilson + Skin + Smass + Sκ , (2.10)

Skin is defined in (2.1), Smass—in (2.8), SWilson is the usual plaquette action for the link variables
Ux,x+µ̂, appropriately modified to restrict the gauge field path integral to admissible gauge field
backgrounds, see [8], and Sκ is the action for the charge-1 unitary Higgs field:

Sκ =
κ

2

∑

x

∑

µ̂

[2 − ( φ∗
x Ux,x+µ̂ φx+µ̂ + h.c. )] . (2.11)

The dynamical issue that needs to be addressed is the existence of an “unbroken” phase where φ
is disordered (analogous to 〈φ〉 = 0, versus 〈φ〉 $= 0, in four dimensions), such that the gauge boson
is massless.

In the case without fermions, it is well known [35] that theories with unitary Higgs fields
(contrary to “everyday” continuum intuition) exhibit a symmetric phase, for small enough κ. The
essential idea8 is that for small κ large fluctuations of the unitary Higgs field—or, in the equivalent
unitary gauge, the pure-gauge fluctuations of the gauge field U—are not suppressed by the action
(2.11) and hence their correlation length is of order the lattice spacing. Thus, integrating out
the rapidly fluctuating Higgs fields results in renormalization of the gauge coupling plus a tower of
higher-dimensional gauge invariant local operators which are irrelevant for the long-distance physics
of the gauge theory. This is most easily seen upon integrating over the rapid fluctuations of φx,
or equivalently, the pure-gauge part of U , by explicitly performing the strong-coupling (small κ)
expansion. The leading correction is a small, O(κ4), shift to the inverse gauge coupling constant,

7We thank David B. Kaplan for pointing this out to us. We also note that a proposal to decouple the mirrors
by combining the (approximate) lattice chirality of domain wall fermions with the Eichten-Preskill ideas was made
earlier in [33].

8Sometimes called the “FNN mechanism” [36].
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all simulations done at infinite y (economics reasons!) i.e. dropping mirror kinetic terms
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Figure 1: Comparison of susceptibilities for κ = 0.1. The dashed line indicates the susceptibilities for the
pure XY model with same κ (undistinguishable, within errors for N = 4, 8, 16). Here and below, large errors
at h = 0.7 and 0.8 are due to the sign problem at h < 1.

Figure 2: Comparison of susceptibilities for κ = 0.5. The dashed lines indicate the susceptibilities for the
pure XY model with same κ.

34

2d Yukawa-unitary Higgs model with Ginsparg-Wilson fermions, 

  show one plot only:  scalar susceptibility at infinite y, as function of h, kappa=0.1
               (~ inverse “mass squared” of scalar in lattice units)

- also measured other order parameters:
Binder cumulant, fermion composite -”Dirac”and “Majorana”- susceptibilities, and vortex density - 
all show similar behavior as a function of h, no indication of long-range correlations for h > 1

Joel Giedt, EP (2007)

- strong coupling symmetric phase exists



strong coupling symmetric phase exists also in at least one 4d model with exactly chiral fermions:  

SU(2)_L x SU(2)_R chirally invariant Yukawa-Higgs model with GW fermions

10

IV. RESULTS FOR LARGE YUKAWA COUPLING CONSTANT

In this section we want to address the region of large Yukawa coupling constants, i.e. yN ! 1. From
our large Nf calculations we expect here a ferromagnetic, an anti-ferromagnetic and a symmetric
phase. The large Nf calculation also revealed that significant finite size effects can be present in the
symmetric phase which may render its detection difficult. This large Nf approach was carried out by
scaling the Higgs field and the coupling constants according to

yN = ỹN , λN =
λ̃N

Nf
, κN =

κ̃N

Nf
, Φn =

√

Nf · Φ̃n , (25)

where the quantities ỹN , λ̃N , κ̃N , and Φ̃n were held constant in the limit Nf → ∞.

〈s〉
〈m〉

κN

M
ag

n
et

iz
at

io
n
s
〈m

〉,
〈s
〉

0.10.050-0.05-0.1

3

2.5

2

1.5

1

0.5

0

〈s〉
〈m〉

κN

M
ag

n
et

iz
at

io
n
s
〈m

〉,
〈s
〉

0.10.050-0.05-0.1

3

2.5

2

1.5

1

0.5

0

〈s〉
〈m〉

κN

M
ag

n
et

iz
at

io
n
s
〈m

〉,
〈s
〉

0.10.050-0.05-0.1

3

2.5

2

1.5

1

0.5

0

(a) (b) (c)

FIG. 8: The behaviour of the average magnetization 〈m〉 and staggered magnetization 〈s〉 as a function of κN

on a 44- (a), 84- (b) and 164-lattice (c). In the plots we have chosen ỹN = 30, λ̃N = 0.1 and Nf = 2.

In Fig. 8, we show the numerically obtained values for the average magnetizations 〈m〉 and 〈s〉 on
various sized lattices as a function of κN for a large value of the Yukawa coupling constant yN = 30.
Fig. 8 demonstrates that indeed the symmetric phase emerges only on sufficiently large lattices, while
on small lattices the magnetization does not vanish as a function of decreasing κN even deeply within
the anti-ferromagnetic phase. Instead 〈m〉 reaches a plateau with a clearly non-vanishing value in the
limit κN → −∞. This becomes especially well observable for the smallest considered lattice, the 44-
lattice presented in Fig. 8a. Thus, one may erroneously conclude that there is no symmetric phase at
large values of the Yukawa coupling constant, if one considers too small lattices. However, the plateau
value of 〈m〉 is fully consistent with our analytical results predicting a finite volume effect causing a
non-vanishing magnetization 〈m〉 > 0 also for arbitrarily negative values of κN . To demonstrate this
latter statement we restate here one result of Ref. [25] for the effective action of a field configuration
in terms of its magnetizations m and s in the large yN -limit, reading

Seff [Φ] = SΦ − Nf ·
∑

n

8 log

∣
∣
∣
∣
m + s · (−1)

P

µ
nµ

∣
∣
∣
∣
− Nf · 8 log |m̃|− Nf · 56 log

∣
∣m̃2 − s̃2

∣
∣ (26)

with the abbreviations

m̃ =
m

m2 − s2
and s̃ =

s

s2 − m2
. (27)

Considering only the ground state of this effective action one cannot correctly predict the phase
transition of the model, as discussed in Ref. [25]. However, it is sufficient to correctly predict the
behaviour of 〈m〉 and 〈s〉 in the limit of large negative (and positive) values of the hopping parameter
κN , as demonstrated in Fig. 9, where we plot again the average magnetizations for the 44-lattice
together with the finite volume analytical expectations, obtained by minimizing the effective action of
Eq. (26). The convergence of the numerical results to the analytical finite volume prediction is very
well observed in Fig. 9b.

P. Gerhold, K. Jansen (2007)

different motivation..., single Yukawa coupling- only Dirac, no Majorana
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Figure 15: The lower bound on the charged mirror inverse propagator eigenvalue, Nmin Ω1, for κ = 0.5.
The dashed lines show the same quantities in the broken (κ → ∞) phase; their oscillations and dips are
explained by eqn. (B.10). The minimum mass eigenvalues are obtained, in units of L−1

phys., by multiplying
the plotted quantity by the dimensionless (large) Yukawa coupling Y ; see Section 3.4.

Figure 16: The lower bound on the neutral mirror fermion eigenvalue, Nmin Ω2, for κ = 0.5. Note that
the charged fermions are heavier than the neutral in the symmetric phase.
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                                                             2d Yukawa-unitary Higgs model with Ginsparg-Wilson fermions
lowest, as function of momentum, inverse eigenvalue of the L-R components of mirror fermion 
Green’s function (zero means massless pole) 

scaling with y, N, L:   ~ y N    L x -1

Joel Giedt, EP (2007)

in units of inverse
size of system L

(values of exponent x depend weakly  on kappa, h, but  x is usually about 1)

   -  mirrors look heavy -  
but more to come -  

dotted lines: “broken” (spin-wave) phase values, where perturbation theory good, check that agrees with MC 

   have we decoupled an anomalous representation without a trace? 



what happens if one tries to decouple an anomalous mirror representation?
Yanwen Shang, EP, arXiv:0706.1043[hep-th] + in progress

I discussed split of action into “light” and “mirror” components, 
using GW to split kinetic term and defining Yukawa/4-fermi only in “mirror” terms: 

but does measure split similarly? 
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2. Splitting partition functions of vectorlike theories into chiral compo-

nents

2.1 Notations and basis vectors

In terms of the massive Wilson operator DW , the modified-γ5 matrix γ̂5 and the Neuberger-

Dirac operator D are expressed as [9]:

γ̂5 =
γ5A

√

(γ5A)2
, A ≡ 1 − DW , D ≡ 1 − γ5γ̂5 , (2.1)

where D transforms covariantly under gauge transforms, Dxy → eiωxDxye−iωy and the

Ginsparg-Wilson (GW) relation is equivalent to γ̂2
5 = 1. Next define the following complete

set of states:

γ̂5ui = −ui , γ̂5wi = wi (2.2)

P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.3)

where we treat u,w as columns and u†, w† as rows. For a topologically trivial background,

the number of u and w eigenvectors is the same, equal to N2 each for a two-dimensional

square lattice (2N2 total dimension).5 We also define the eigenvectors of γ5, which can be

chosen independent of the gauge background:

γ5vi = vi , γ5ti = −ti (2.4)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.5)

2.2 Chiral variables, Jacobians, and their variations

Consider a vectorlike lattice theory with partition function:

ZV =

∫

∏

x

dΨxdΨ̄x eS , (2.6)

where x denotes both spinor and spacetime lattice indices. For the time being, we will take

the action S to be the usual kinetic action S =
∑

x,y ψ̄xDx,yψy ≡ (Ψ̄ ·D ·Ψ), which has an

exact chiral symmetry, Ψ → eiαγ̂5Ψ, Ψ̄ → Ψ̄eiαγ5 .

Now we change variables from Ψx, Ψ̄x to c±i , c̄±i defined by the following expansions in

terms of the γ5 and γ̂5 eigenvectors (we let x also include spinor index, thus x takes 2N2

values in 2d):

Ψx =
∑

i

c+
i wi(x) + c−i ui(x) (2.7)

Ψ̄x =
∑

i

c̄+
i t†i (x) + c̄−i v†i (x) . (2.8)

5Most of the formulae in this paper are valid in any even dimension; in a few obvious instances, however,

we specialize to two dimensions. Also, when necessary, we specialize to the case of a U(1) gauge group.
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The change of variables leads to a Jacobian:

∏

x

dΨxdΨ̄x =
1

J

∏

i

dc+
i dc−i dc̄+

i dc̄−i (2.9)

J = det||wi(x)uj(x)|| det||v†i (x)t†j(x)|| , (2.10)

(note that ||wi(x)uj(x)|| is a 2N2 × 2N2 dimensional matrix, with x indexing rows and

i, j-columns) and the partition function becomes:

ZV =

∫

∏

x

dΨxdΨ̄xe
S =

1

J

∫

∏

i

dc+
i dc−i dc̄+

i dc̄−i e
P

i,j c̄+i c+j (t†i ·D·wj)+c̄−i c−j (v†i ·D·uj)

=
1

J
det||(t†i · D · wj)|| det||(v†i · D · uj)|| . (2.11)

Under infinitesimal changes of the gauge field background:

Ux,µ → Ux,µ + δηx,µUx,µ , (2.12)

which, in the case of gauge transformations, take the form:

δωUx,µ

∣

∣

gauge
= i (ωxUx,µ − Ux,µωx+µ) ≡ −i (∇µωx) Ux,µ , (2.13)

the various factors in ZV change as described below.

(i) The change of the “positive chirality” determinant is:

δη ln det ||(t†i · D · wj)|| =
∑

j,k

(w†
j · D

−1 · tk)(t†k · δηD · wj)

+(w†
j · D

−1 · tk)(t†k · D · δηwj)

= tr(P̂+D−1δηD) +
∑

j

(w†
j · δηwj) .

To obtain (2.14), in the first line we used
∑

k(w
†
j ·D−1 ·tk)(t†k ·D·wi) = δji, while in the

second line we used the freedom to insert
∑

k vkv
†
k (which, using P̂+D−1 = D−1P−,

is killed by the projectors); finally, we used completeness,
∑

k tkt
†
k + vkv

†
k = 1. The

trace in (2.14) is over spinor as well as space-time indices.

We note that the first term in (2.14) reflects the change of the operator, D, while the

second is due to the change of basis vectors wi, which depend on the gauge background

(while the t, v-vectors do not). We stress that this factorization of the change of the

“positive chirality” determinant into separate terms, one due to the change of the

operators and the other due to the change of basis vectors, is a general feature of

chiral partition functions. This will be proven for partition functions defined with a

general chiral action in section 4.2, and will be important in what follows.
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:
〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏
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dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:
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〉
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∏
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∏
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〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏
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simply because δS
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ux = 0, following from chirality of the action, eq. (4.13). Similar prop-
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c̄i
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δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):
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(w†
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(δt†i · ti) +
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〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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remarkably, the change of the basis vectors factorizes in the change of Z,
no matter what the action -

Shang, EP, 2007: proved “splitting theorem” for a general variation 
of a general chiral lattice action - e.g. our “mirror”w/  Yukawa: 

why we care?                 
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left-handed
fields

subspace moves with
the gauge field

Space of all Dirac fields

Fig. 6. The projector P̂
−

maps the space of all lattice Dirac fields to the subspace of

left-handed fields. Since the projector involves the lattice Dirac operator D, the sub-

space changes when the gauge field is varied.

any such algebra is unique up to a complex proportionality factor. In particular, if
we pass to a different orthonormal basis,

ṽj(x) =
∑

l

vl(x)
(
Q−1

)
lj

, c̃j =
∑

l

Qjlcl, (6.4)

the measure changes by the factor detQ, which is a pure phase factor since the
transformation matrix Q is unitary.

The antifermion measure D[ψ]left is defined in the same way, using a basis v̄k(x)
of left-handed fields. An important difference is that the basis can be taken to be
independent of the gauge field, while this is not possible in the fermion case, because
the subspace of left-handed fermion fields moves with the gauge field (see fig. 6). As
a result the fermion measure and the partition function

e−Seff [U ] =

∫
D[ψ]leftD[ψ]left e−SF[U,ψ,ψ] (6.5)

have a gauge-field dependent phase ambiguity. Evidently, the phase matters in the
functional integral (6.1), and the theory hence remains incompletely specified at the
quantum level until the ambiguity in the measure has been fixed.

Apart from this the structure of the theory has now been completely clarified. In
particular, since the integral over the fermion and antifermion fields is gaussian, the
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  in perturbation theory - not determined 
  (phase of Z); but not always completely arbitrary 

Erich’s running notes, version of September 6, 2007

1 Gauge invariance, transversality, and the “light”–“mirror” split

1.1 Transversality:

γ̂5 ti = −ti (1)

Gauge invariance of the partition function:

lnZ[A + δωA] = ln Z[A] , (2)

where U(x, x + µ) = eiAµ(x) , δωAµ(x) = −∇µωx, ∇µωx = ωx+µ − ωx, implies:

∑

µx

δ ln Z[A]

δAµ(x)
∇µω(x) = 0 , (3)

with ∇∗
µωx = ωx − ωx−µ. Taking δ

δω(x) of (2), we find:

∑

µ

∇∗
µx

δ ln Z[A]

δAµ(x)
= 0 , (4)

which, by expanding in Aµ around Aµ = 0, yields:

∑

µ

∇∗
µx

δnZ[A]

δAµ(x)δAµ1
(x1) . . . δAµn−1

(xn−1)

∣

∣

∣

∣

A=0

= 0 , (5)

i.e. transversality of all n-point functions of Aµ. This should apply to the full partition function of
our vectorlike theory, of course, such as the 1-0 model of Giedt-Poppitz (GP).

1.2 Local smoothness of the split:

Now it is important to realize that the singularity in the “light”-“mirror” split of the partition
funciton discussed by Poppitz-Shang (PS) is of topological nature. Thus it can be moved around
by redefining the phases of the basis vectors (as explicitly discussed in the PS paper for the Wilson-
line subspace). More generally, due to the smoothness of the P̂ projectors, a locally smooth basis
of eigenvectors should always be possible to define. The local smoothness of the basis then implies
that in an analysis near Aµ = 0, (4) will apply also for the split partition function, as discussed at
length below.

The following is a slight elaboration on the Golterman-Shamir (GS) argument. It is needed
in order to simplify the calculation of the contributions to the polarization operator of the gauge
field from the “light” and “mirror” fields. This is a technical advantage which uses the results of
PS, notably the “splitting theorem.” If one varies the full theory partition function first, without
using a locally smooth light-mirror split (as suggested by GS), and then substitutes Aµ = 0 and the
corresponding Aµ = 0 basis vectors of GP/PS to do the calculation of the polarization operator,
one finds that the gauge current involves terms that mix “light” and “mirror” particles. This is
makes the calculation rather inconvenient, as the “light” contribution is calculated “by hand” and
the mirror—via MC. To make this point clearer, it is already easy to see in the gauge current,
which in the y = 0 “light” plus “mirror” theory is (ψ̄ · δµD · ψ), with δµ a shorthand notation for
δD[A]/δAµ(x). We now substitute the expansions ψ = αi

−ti +αi
+ui, in terms of the γ5 eigenvectors

1

because most of the “action” regarding anomalies happens in the       -eigenvectors 
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2. Splitting partition functions of vectorlike theories into chiral compo-

nents

2.1 Notations and basis vectors

In terms of the massive Wilson operator DW , the modified-γ5 matrix γ̂5 and the Neuberger-

Dirac operator D are expressed as [9]:

γ̂5 =
γ5A

√

(γ5A)2
, A ≡ 1 − DW , D ≡ 1 − γ5γ̂5 , (2.1)

where D transforms covariantly under gauge transforms, Dxy → eiωxDxye−iωy and the

Ginsparg-Wilson (GW) relation is equivalent to γ̂2
5 = 1. Next define the following complete

set of states:

γ̂5ui = −ui , γ̂5wi = wi (2.2)

P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.3)

where we treat u,w as columns and u†, w† as rows. For a topologically trivial background,

the number of u and w eigenvectors is the same, equal to N2 each for a two-dimensional

square lattice (2N2 total dimension).5 We also define the eigenvectors of γ5, which can be

chosen independent of the gauge background:

γ5vi = vi , γ5ti = −ti (2.4)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.5)

2.2 Chiral variables, Jacobians, and their variations

Consider a vectorlike lattice theory with partition function:

ZV =

∫

∏

x

dΨxdΨ̄x eS , (2.6)

where x denotes both spinor and spacetime lattice indices. For the time being, we will take

the action S to be the usual kinetic action S =
∑

x,y ψ̄xDx,yψy ≡ (Ψ̄ ·D ·Ψ), which has an

exact chiral symmetry, Ψ → eiαγ̂5Ψ, Ψ̄ → Ψ̄eiαγ5 .

Now we change variables from Ψx, Ψ̄x to c±i , c̄±i defined by the following expansions in

terms of the γ5 and γ̂5 eigenvectors (we let x also include spinor index, thus x takes 2N2

values in 2d):

Ψx =
∑

i

c+
i wi(x) + c−i ui(x) (2.7)

Ψ̄x =
∑

i

c̄+
i t†i (x) + c̄−i v†i (x) . (2.8)

5Most of the formulae in this paper are valid in any even dimension; in a few obvious instances, however,

we specialize to two dimensions. Also, when necessary, we specialize to the case of a U(1) gauge group.

– 8 –

(Berry phase!) 

change in direction perpendicular to eigenspace 
completely determined by solving perturbatively 
for change of eigenvector due to small changes of   
“parameter” A:

- 

since Z(chiral) defined via t,v - to what extent is Z(chiral) arbitrary? where/when does this show up? 
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:
〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:
〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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2. Splitting partition functions of vectorlike theories into chiral compo-

nents

2.1 Notations and basis vectors

In terms of the massive Wilson operator DW , the modified-γ5 matrix γ̂5 and the Neuberger-

Dirac operator D are expressed as [9]:

γ̂5 =
γ5A

√

(γ5A)2
, A ≡ 1 − DW , D ≡ 1 − γ5γ̂5 , (2.1)

where D transforms covariantly under gauge transforms, Dxy → eiωxDxye−iωy and the

Ginsparg-Wilson (GW) relation is equivalent to γ̂2
5 = 1. Next define the following complete

set of states:

γ̂5ui = −ui , γ̂5wi = wi (2.2)

P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.3)

where we treat u,w as columns and u†, w† as rows. For a topologically trivial background,

the number of u and w eigenvectors is the same, equal to N2 each for a two-dimensional

square lattice (2N2 total dimension).5 We also define the eigenvectors of γ5, which can be

chosen independent of the gauge background:

γ5vi = vi , γ5ti = −ti (2.4)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.5)

2.2 Chiral variables, Jacobians, and their variations

Consider a vectorlike lattice theory with partition function:

ZV =

∫

∏

x

dΨxdΨ̄x eS , (2.6)

where x denotes both spinor and spacetime lattice indices. For the time being, we will take

the action S to be the usual kinetic action S =
∑

x,y ψ̄xDx,yψy ≡ (Ψ̄ ·D ·Ψ), which has an

exact chiral symmetry, Ψ → eiαγ̂5Ψ, Ψ̄ → Ψ̄eiαγ5 .

Now we change variables from Ψx, Ψ̄x to c±i , c̄±i defined by the following expansions in

terms of the γ5 and γ̂5 eigenvectors (we let x also include spinor index, thus x takes 2N2

values in 2d):

Ψx =
∑

i

c+
i wi(x) + c−i ui(x) (2.7)

Ψ̄x =
∑

i

c̄+
i t†i (x) + c̄−i v†i (x) . (2.8)

5Most of the formulae in this paper are valid in any even dimension; in a few obvious instances, however,

we specialize to two dimensions. Also, when necessary, we specialize to the case of a U(1) gauge group.
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Neuberger, 1998; Luescher, 1999:

since change of ImLog Z due to change of A largely controlled by eigenvectors, 
our “splitting theorem” encodes, on the lattice, the fact that anomalies do not 
depend on the action 
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the gauge field

Space of all Dirac fields

Fig. 6. The projector P̂
−

maps the space of all lattice Dirac fields to the subspace of

left-handed fields. Since the projector involves the lattice Dirac operator D, the sub-

space changes when the gauge field is varied.

any such algebra is unique up to a complex proportionality factor. In particular, if
we pass to a different orthonormal basis,

ṽj(x) =
∑

l

vl(x)
(
Q−1

)
lj

, c̃j =
∑

l

Qjlcl, (6.4)

the measure changes by the factor detQ, which is a pure phase factor since the
transformation matrix Q is unitary.

The antifermion measure D[ψ]left is defined in the same way, using a basis v̄k(x)
of left-handed fields. An important difference is that the basis can be taken to be
independent of the gauge field, while this is not possible in the fermion case, because
the subspace of left-handed fermion fields moves with the gauge field (see fig. 6). As
a result the fermion measure and the partition function

e−Seff [U ] =

∫
D[ψ]leftD[ψ]left e−SF[U,ψ,ψ] (6.5)

have a gauge-field dependent phase ambiguity. Evidently, the phase matters in the
functional integral (6.1), and the theory hence remains incompletely specified at the
quantum level until the ambiguity in the measure has been fixed.

Apart from this the structure of the theory has now been completely clarified. In
particular, since the integral over the fermion and antifermion fields is gaussian, the
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:
〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:
〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY †
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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term from (2.12) is found, with some effort, to be 

i~+2 tr[v(dA)n] • (2.14) 
(2~r)~(n + I)[ 

This result is also easily extracted from Feymnan diagram techniques [12] where the 

extra factor of 1/(n  + 1) compared with the normalization factor in (2.5) corre- 

sponds to Bose symmetrization in the (n + 1) external gauge currents at the vertices 

of an (n + 1)-agon. We have, then, a method for reproducing, with the correct 

normalization, the results of [6] for higher dimensional non-abelian anomalies. In the 

next section, we give a deeper topological understanding of the suggestive form of 

these results by showing how they follow from an even higher dimensional index 

theorem. 

3. The index theorem for non-abelian anomalies 

The relation between the 2n-dimensional non-abelian anomaly and a (2n + 2)- 

dimensional index theorem involves a specific two-parameter family of 2n-dimen- 

sional gauge field configurations. For definiteness, we take our euclideanized 

spacetime manifold to be the compactified S 2" (and appeal to familiar arguments for 

transcribing results to R2~), parametrized by coordinates x ~, /~ = 1, 2n. The gauge 

group we take to be a simply connected semi-simple compact Lie group G. We begin 

with a reference gauge field A, assumed to be a connection on a trivial bundle (zero 

instanton sector) over S 2n and consider a one-parameter family of gauge trans- 

formed configurations, 

A °= g-~( O)Ag(O) + g-X(O)dxg (0) ,  

where 

(dx = dxl '~x~)  , (3.1) 

g(O,x):  S x!S 2 " ~ G  (3.2) 

satisfies g(0, x) = g(2rr, x) - 1. A ° describes a circle in the gauge connection space 

~[ which we may continue inwards to a disc @ bounded by this circle by defining 

A t,° - tA ° = tg-X(A + dx)g.  (3.3) 

A t, 0 is a two-parameter family of gauge fields parametrized by polar coordinates t, 0 

on the disc ®, not necessarily related by gauge transformation. Along the boundary 

of ®, the gauge field A t-x'O reduces to our original one-parameter family of gauge 

transformed configurations (fig. 1). 
The fermion determinant det(i/) t'e) can now be considered as a complex function 

of the gauge fields on ®. We are free to choose the reference gauge field A to give a 
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non-zero Weyl determinant on the boundary (a field A producing accidental zero 

modes or representing a non-zero instanton sector can be treated in terms of a new 

determinant defined with zero modes omitted and introduces no useful complica- 

tions). In terms of the operator b of (2.8), we may write the Weyl determinant along 

the boundary as 

det( i b ( A ' ) )  = I d e t (  ,~ (  A ) )e  '~(' ' A), (3.4) 

where we have made use of the fact that the modulus of the determinant is invariant 

under gauge transformations. The U(1) phase of the determinant, however, may 

have an anomalous variation, so in general the function det(iD t'°) restricted to the 

boundary of the disc defines a mapping e'~(°,A): $I--> S I. Such mappings are 

characterized by an integer winding number 

1 (2~r., OW,o A) (3.5) 
" = So a o - g g  t , 

If we can find circumstances in which topological considerations require this 

winding number to be non-zero, then we have proven in particular that the phase 

must change under a gauge transformation, thus demonstrating the existence of an 

anomaly. Our strategy in' this section will be to find an appropriate (2n + 2)- 

dimensional Dirac operator whose index turns out to be equal to this winding 

number. The integral form for the index then generates an expression for the 

non-abelian anomaly in standard form. 

We first need to discuss further the behavior of det(iD ' '°) for t ÷ 1. This function 

may have zeroes at one or more points in the interior of @. These zeroes generically 

occur at isolated points (since an arbitrary perturbation of a Dirac operator with 

zero index typically mixes any positive and negative chirality zero modes to produce 

Fig. 1. The disc @ which parametrizes the two-parameter family of gauge fields A t'° of (3.3) with polar 
coordinates t, 0. The index of a zero of det(t/~ t'°) m the interior of °-0 is defined as the winding number 
of the phase of det(tD t'°) around a small circle enclosing a zero (see ! at upper left). The configuration 
pictured has two zeroes of index + 1 ( x 's) and one of index - 1 (o) so the net winding number of the 

phase around the boundary of the disc is + 1. 

change of phase w of chiral determinant along loop  = winding number 

such loops with nonzero n exist iff a non-contractible two-sphere in gauge orbit space

Erich’s running notes, version of September 6, 2007

1 Gauge invariance, transversality, and the “light”–“mirror” split

1.1 Transversality:

π5(G) = π2(A/G) (1)

if π1(G) = 0 (2)

Gauge invariance of the partition function:

lnZ[A + δωA] = ln Z[A] , (3)

where U(x, x + µ) = eiAµ(x) , δωAµ(x) = −∇µωx, ∇µωx = ωx+µ − ωx, implies:

∑

µx

δ ln Z[A]

δAµ(x)
∇µω(x) = 0 , (4)

with ∇∗
µωx = ωx − ωx−µ. Taking δ

δω(x) of (4), we find:

∑

µ

∇∗
µx

δ ln Z[A]

δAµ(x)
= 0 , (5)

which, by expanding in Aµ around Aµ = 0, yields:

∑

µ

∇∗
µx

δnZ[A]

δAµ(x)δAµ1
(x1) . . . δAµn−1

(xn−1)

∣

∣

∣

∣

A=0

= 0 , (6)

i.e. transversality of all n-point functions of Aµ. This should apply to the full partition function of
our vectorlike theory, of course, such as the 1-0 model of Giedt-Poppitz (GP).

1.2 Local smoothness of the split:

Now it is important to realize that the singularity in the “light”-“mirror” split of the partition
funciton discussed by Poppitz-Shang (PS) is of topological nature. Thus it can be moved around
by redefining the phases of the basis vectors (as explicitly discussed in the PS paper for the Wilson-
line subspace). More generally, due to the smoothness of the P̂ projectors, a locally smooth basis
of eigenvectors should always be possible to define. The local smoothness of the basis then implies
that in an analysis near Aµ = 0, (6) will apply also for the split partition function, as discussed at
length below.

The following is a slight elaboration on the Golterman-Shamir (GS) argument. It is needed
in order to simplify the calculation of the contributions to the polarization operator of the gauge
field from the “light” and “mirror” fields. This is a technical advantage which uses the results of
PS, notably the “splitting theorem.” If one varies the full theory partition function first, without
using a locally smooth light-mirror split (as suggested by GS), and then substitutes Aµ = 0 and the
corresponding Aµ = 0 basis vectors of GP/PS to do the calculation of the polarization operator,
one finds that the gauge current involves terms that mix “light” and “mirror” particles. This is
makes the calculation rather inconvenient, as the “light” contribution is calculated “by hand” and
the mirror—via MC. To make this point clearer, it is already easy to see in the gauge current,
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in anomalous mirror case, mirror partition function has singularities 
(a trivial consequence of Neuberger/Luescher)

now, our simulations used precisely this singular mirror partition function, defined via 
eigenvectors, which are discontinuous at A=0; expect different (from A=0) spectrum 
once path integral over A done

- 

in anomaly-free mirror case, mirror partition function is a smooth function of A
(in finite volume only; use “splitting theorem” recursively to show smoothness to all orders)

- 

furthermore, using our splitting theorem, combined with Neuberger/Luescher results,  we showed that: 

simulations with gauge fields - Joel Giedt, in progress...

one can still learn a lot (e.g. unitarity!) by studying polarization operator in  
mirror, as well as higher correlation functions, around A=0, in progress...

anomaly-free models a lot more interesting (but expensive!) 
singular “light”-”mirror” splits  do not afflict them

but it is still good (and cheaper!)  to understand precisely what happens in 
anomalous case, at least for purely theoretical reasons
(and how/if problems are resolved in anomaly-free case)

in regard to this “would-be-anomalous” model,  current work in two directions: 

- 

- 



NOT about LHC physics via strong chiral gauge dynamics
I did not discuss a potential theory of the world

RATHER, I told you where the lattice chiral gauge theory problem 
is at, and what attempts are being made at improvement and progress

I HOPE to have convinced you that it is an interesting, theoretically 
appealing problem, fun to think about...
                                   ...and that doing this may even turn out to be useful!

many tools come together - some foreign to us before - both theoretical and “experimental”

this talk was 



*a lot more...

IN SHORT:

the  “decoupling of mirror fermions via strong-coupling symmetric 
phases” idea, combined with “exact lattice chirality” leads to a proposed 
formulation of chiral lattice gauge theories which is:
     
       a.) exactly gauge invariant
  
       b.) has explicit definition of path integral action and measure

       c.) has the correct - anomalous or not - Ward identities of the 

but
       d.) requires (more*) numerical work to study

and
       e.) we have not seen reasons to give up, yet! 

continuum target theory






