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“Without a proper lattice formulation of a chiral gauge 
theory, it is unclear whether such models make any 
sense as fundamental field theories.” 
                                                    M. Creutz (2004)

“If a solution to putting chiral gauge theories on the 
lattice proves to be a complicated and not especially 
enlightening enterprise, then it probably is not worth the 
effort (unless the LHC finds evidence for a strongly 
coupled chiral gauge theory!).”
                                                     D.B. Kaplan (2009)

I simply find this a fun problem to spend some time thinking about
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 GOAL 

NOT about LHC physics via strong chiral gauge dynamics
(hence, won’t tell you which chiral gauge theory breaks EW symmetry and generates fermion masses with 
small S-parameter and no FCNCs...)

RATHER, I’d like to tell you where the lattice chiral gauge theory problem 
is at, and what are our attempts at improvement and progress

HOPING to convince you that it is a theoretically appealing problem, fun to 
think about ...and that doing this may even turn out to be useful, someday...

(many tools come together - both theoretical and “experimental”)

OUTLINE:

reminder/review or lightning intro/ of global chiral symmetry in 
vectorlike lattice gauge theories via Ginsparg-Wilson fermions

why do chiral gauge theories present a challenge?

what we are proposing, how is it different from the past, 
where does it stand, and where is it going? 

Sunday, December 5, 2010



Ginsparg-Wilson relation, its solution, and consequences: 

Ginsparg & Wilson, 1982: “A remnant of chiral symmetry on the lattice”[GW]
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We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the
gravity dual of N=4 super-Yang-Mills on R3 × S1. We show that D-branes geometrize volume
independence in the center-symmetric vacuum and give supergravity predictions for the range of
validity of reduced large-N models at strong coupling.

I. INTRODUCTION

Gauge-gravity duality is a powerful method to study

strongly-coupled gauge dynamics. It relates a weakly-

coupled theory of gravity to a lower dimensional large-

N gauge theory at strong coupling [1–3]. The best-

understood example is the AdS5/CFT4-correspondence

between N=4 supersymmetric Yang-Mills (SYM) the-

ory on R4
and weakly coupled type-IIB supergravity on

AdS5×S5, where all available evidence suggests that the

correspondence is exact, at least to leading order in 1/N .

S[χ] =

�

n,n�

χ̄nDnn�
χn

Another method to study gauge dynamics in lattice

and continuum formulations is the large-N volume in-

dependence [4, 5]. The statement of the volume inde-

pendence theorem is that large-N non-abelian quantum

gauge theories toroidally compactified on four-manifolds,

M4=R4−k × (S1
)
k
, have properties that are independent

of the (S1
)
k

compactification radii. More precisely, ex-

pectation values and connected correlators of single-trace

operators are the same in the reduced and infinite-volume

theories, to leading order in 1/N—if the operators are

neutral under the (ZN )
k

center symmetry and carry mo-

menta in the compact directions quantized in units of

the inverse compactification radii. Volume independence

holds provided two basic quantum mechanical conditions

are satisfied: i.) translation symmetry is not sponta-

neously broken and ii.) the (ZN )
k

center-symmetry is

not spontaneously broken.

In lattice-regularized gauge theories, where the lattice

is reduced to a single site, this equivalence is known as

“large-N reduction” or “Eguchi-Kawai (EK)-reduction.”

The necessary and sufficient conditions for the validity

of volume independence have been known since the early

80’s [6]. However, the first examples of gauge theo-

ries which satisfy them to arbitrarily small volumes were

found only recently [7]. Because of this, there has been

a recent resurgence of interest in this subject, particu-

larly in the lattice community (not only because small

volume large-N simulations are more cost effective, but

also for theoretical reasons, such as lattice supersymme-

try). Erich: pls supply refs - not too many and in
latex form from spires!

While much less appreciated than the AdS/CFT cor-

respondence, large-N volume independence is one of the

few exact results in gauge theories. Volume indepen-

dence holds for arbitrary values of the coupling, including

the strong-coupling limit of the gauge-gravity correspon-

dence. It is thus interesting to examine the consistency of

the two correspondences; at the very least, this provides

a consistency check on their exactness.

In this paper, we exhibit the simplest set-up where vol-

ume independence and AdS/CFT should hole simultane-

ously. We consider the gravity dual of strongly-coupled

N=4 SYM compactified on R3 × S1
and study how vol-

ume independence arises. We show that in the center-

symmetric vacuum D-branes “geometrize” volume inde-

pendence. The “geometrization” ensures that the expec-

tation value of, e.g., a Wilson loop in the uncompactified

(R3
) directions is independent of the S1

compactification

radius, for arbitrary interquark separation and in accor-

dance with the volume independence theorem.

II. CENTER-SYMMETRY BROKEN VACUUM:

VOLUME DEPENDENCE

The type-IIB background dual to N=4 SYM compact-

ified on R3 × S1
of radius R0 is:

ds2
=

u2

R2
3

(−dt2+
2�

i=1

dx2
i +R2

0dθ2
)+

R2
3

u2
du2

+R2
3dΩ

2
5. (1)

This is compactified AdS5×S5
or radius R3∼λ

1
4 in local

Poincare coordinates, expressed in terms of the energy

variable u ≡ r/l2s (further, we use string units ls=1 and

denote the ’t Hooft coupling of the dual SYM theory by

λ≡g2
Y MN). Compactification of a worldvolume direction

of the AdS5 background leads to a conical singularity: as

(1) shows, the proper radius of S1
, equal to uR0/R3,

becomes of order the string scale at uR0 ∼ λ
1
4 . The

masses of Kaluza-Klein excitations and string winding

modes become comparable, invalidating the supergravity

approximation. Thus, for energy scales uR0 < λ
1
4 the

non-singular gravity description is given by the T-dual

(along the x3 = R0θ direction) type-IIA background of

N D2 branes located on a dual circle of size 1/R0.

The positions of the D2 branes on the dual circle

correspond to the eigenvalues of the Wilson loop Ω ≡

with lattice D obeying “GW relation”

“block-spin” action for average lattice fermions is then
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Ginsparg-Wilson relation, its solution, and consequences: 

and the lattice action 

Then, GW is equivalent to:

really, we have

Given such D,  define:

with

[GW]

or

Being only formally defined, GW was forgotten until ressurected in 1997 by Neuberger and 
by Hasenfratz, Laliena, Niedermayer after a fascinating development, worth a separate talk... 
           ... Callan-Harvey, Kaplan, Narayanan-Neuberger, Neuberger, P.Hasenfratz-Laliena-Niedermayer, Neuberger, Luescher 

For us, only imporant that an explicit form of a lattice D obeying GW exists!                                       

has an exact chiral symmetry for any `N` and `a` 

of an exactly massless Dirac fermion 
without doublers

 Everything below - but explicit form of D - known to GW in1982 (this notation due to Luescher, 1998).

not the usual chiral symmetry, but mode-dependent, reducing to continuum at E <<1/a 
deformed symmetry avoids Nielsen-Ninomiya theorem, giving massless fermions with chiral symmetry & no doublers

Ginsparg & Wilson, 1982: “A remnant of chiral symmetry on the lattice”
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Ginsparg-Wilson relation, its solution, and consequences: 

field dependence of transformation 
leads to nontrivial Jacobian 

global L and R symmetries 
of action U(1)  x U(1)

+  -

Jacobian vanishes for 
vector U(1), where both + and - 
done with same parameter 

then properties of D are useful to (easily, really) to show 
    “index theorem in QCD with finite cutoff” 

exact lattice chiral symmetry (not usual one for all modes!), 
exact (including anomalous) Ward identities, axial charge violation, ... 

         In vectorlike theories  -  big success!

moral:   

it will be important for us that exact chirality allows to introduce chiral components for each field, 
using appropriate projectors:

What is so different about chiral gauge theories? 

further,

Sunday, December 5, 2010



Ginsparg-Wilson relation, its solution, and consequences: 

We just learned that the Dirac fermion splits into L and R (+ or -) at finite ‘a’, so 
why not just integrate over those components in the path integral and be done? 
...after all, in anomaly-free case one does not really expect a problem...

In other words, why not define the formal continuum expression 

by choosing chirality eigenvectors, e.g.: 

introducing the chiral components of the spinors:

and defining Z as an integral over
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dα−dᾱ−eᾱi

−αj
−(w†

i [A]·D[A]·tj)

Another method to study gauge dynamics in lattice

and continuum formulations is the large-N volume in-

dependence [4, 5]. The statement of the volume inde-

pendence theorem is that large-N non-abelian quantum
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k
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of the (S1
)
k
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theories, to leading order in 1/N—if the operators are

neutral under the (ZN )
k
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the inverse compactification radii. Volume independence

holds provided two basic quantum mechanical conditions

are satisfied: i.) translation symmetry is not sponta-

neously broken and ii.) the (ZN )
k

center-symmetry is
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In lattice-regularized gauge theories, where the lattice

is reduced to a single site, this equivalence is known as
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found only recently [7]. Because of this, there has been

a recent resurgence of interest in this subject, particu-

larly in the lattice community (not only because small

volume large-N simulations are more cost effective, but

also for theoretical reasons, such as lattice supersymme-

try). Erich: pls supply refs - not too many and in
latex form from spires!

While much less appreciated than the AdS/CFT cor-

respondence, large-N volume independence is one of the

few exact results in gauge theories. Volume indepen-

dence holds for arbitrary values of the coupling, including

the strong-coupling limit of the gauge-gravity correspon-

dence. It is thus interesting to examine the consistency of

the two correspondences; at the very least, this provides

a consistency check on their exactness.

In this paper, we exhibit the simplest set-up where vol-

ume independence and AdS/CFT should hole simultane-

ously. We consider the gravity dual of strongly-coupled

N=4 SYM compactified on R3 × S1
and study how vol-

ume independence arises. We show that in the center-

symmetric vacuum D-branes “geometrize” volume inde-

pendence. The “geometrization” ensures that the expec-

tation value of, e.g., a Wilson loop in the uncompactified

(R3
) directions is independent of the S1

compactification

radius, for arbitrary interquark separation and in accor-

dance with the volume independence theorem.
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VOLUME DEPENDENCE

The type-IIB background dual to N=4 SYM compact-

ified on R3 × S1
of radius R0 is:
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=

u2
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3

(−dt2+
2�
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dx2
i +R2
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3
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du2

+R2
3dΩ

2
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This is compactified AdS5×S5
or radius R3∼λ

1
4 in local

Poincare coordinates, expressed in terms of the energy

variable u ≡ r/l2s (further, we use string units ls=1 and

denote the ’t Hooft coupling of the dual SYM theory by

λ≡g2
Y MN). Compactification of a worldvolume direction

of the AdS5 background leads to a conical singularity: as

(1) shows, the proper radius of S1
, equal to uR0/R3,

becomes of order the string scale at uR0 ∼ λ
1
4 . The

masses of Kaluza-Klein excitations and string winding

modes become comparable, invalidating the supergravity

approximation. Thus, for energy scales uR0 < λ
1
4 the

non-singular gravity description is given by the T-dual
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k
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k
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pectation values and connected correlators of single-trace
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menta in the compact directions quantized in units of

the inverse compactification radii. Volume independence
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are satisfied: i.) translation symmetry is not sponta-

neously broken and ii.) the (ZN )
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center-symmetry is

not spontaneously broken.

In lattice-regularized gauge theories, where the lattice

is reduced to a single site, this equivalence is known as

“large-N reduction” or “Eguchi-Kawai (EK)-reduction.”
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of volume independence have been known since the early

80’s [6]. However, the first examples of gauge theo-

ries which satisfy them to arbitrarily small volumes were

found only recently [7]. Because of this, there has been

a recent resurgence of interest in this subject, particu-

larly in the lattice community (not only because small

volume large-N simulations are more cost effective, but

also for theoretical reasons, such as lattice supersymme-

try). Erich: pls supply refs - not too many and in
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While much less appreciated than the AdS/CFT cor-

respondence, large-N volume independence is one of the

few exact results in gauge theories. Volume indepen-

dence holds for arbitrary values of the coupling, including

the strong-coupling limit of the gauge-gravity correspon-

dence. It is thus interesting to examine the consistency of

the two correspondences; at the very least, this provides

a consistency check on their exactness.

In this paper, we exhibit the simplest set-up where vol-

ume independence and AdS/CFT should hole simultane-

ously. We consider the gravity dual of strongly-coupled

N=4 SYM compactified on R3 × S1
and study how vol-

ume independence arises. We show that in the center-

symmetric vacuum D-branes “geometrize” volume inde-

pendence. The “geometrization” ensures that the expec-

tation value of, e.g., a Wilson loop in the uncompactified

(R3
) directions is independent of the S1

compactification

radius, for arbitrary interquark separation and in accor-

dance with the volume independence theorem.

II. CENTER-SYMMETRY BROKEN VACUUM:

VOLUME DEPENDENCE

The type-IIB background dual to N=4 SYM compact-

ified on R3 × S1
of radius R0 is:

ds2
=
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(−dt2+
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i=1
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This is compactified AdS5×S5
or radius R3∼λ

1
4 in local

Poincare coordinates, expressed in terms of the energy

variable u ≡ r/l2s (further, we use string units ls=1 and

denote the ’t Hooft coupling of the dual SYM theory by

λ≡g2
Y MN). Compactification of a worldvolume direction

of the AdS5 background leads to a conical singularity: as

(1) shows, the proper radius of S1
, equal to uR0/R3,

becomes of order the string scale at uR0 ∼ λ
1
4 . The

masses of Kaluza-Klein excitations and string winding

modes become comparable, invalidating the supergravity

approximation. Thus, for energy scales uR0 < λ
1
4 the

non-singular gravity description is given by the T-dual

As I will now explain, the source of difficulty is the A-dependence of the chirality eigenvectors, 
which makes the chiral partition function eigenvector dependent.  The phase ambiguity of 
choosing an eigenvector basis becomes A-dependent and, if not “treated,” violates gauge 
invariance, even in anomaly-free models. 

for a chiral gauge theory partition function

recall
these vectors
are A-dependent

=

ii

In contrast: the vectorlike Z is not eigenvector-dependent: one can define it simply as an 
integral over the x-values of the spinors, as no projection is needed. 
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Difficulties for chiral lattice gauge theories with GW fermions: 

As A (gauge background) varies, the space of left-handed fields varies. 
Z changes with A: Z depends on eigenvectors AND operators (O=say D, or 
functions thereof):

! = 0

left-handed
fields

subspace moves with
the gauge field

Space of all Dirac fields

Fig. 6. The projector P̂
−

maps the space of all lattice Dirac fields to the subspace of

left-handed fields. Since the projector involves the lattice Dirac operator D, the sub-

space changes when the gauge field is varied.

any such algebra is unique up to a complex proportionality factor. In particular, if
we pass to a different orthonormal basis,

ṽj(x) =
∑

l

vl(x)
(
Q−1

)
lj

, c̃j =
∑

l

Qjlcl, (6.4)

the measure changes by the factor detQ, which is a pure phase factor since the
transformation matrix Q is unitary.

The antifermion measure D[ψ]left is defined in the same way, using a basis v̄k(x)
of left-handed fields. An important difference is that the basis can be taken to be
independent of the gauge field, while this is not possible in the fermion case, because
the subspace of left-handed fermion fields moves with the gauge field (see fig. 6). As
a result the fermion measure and the partition function

e−Seff [U ] =

∫
D[ψ]leftD[ψ]left e−SF[U,ψ,ψ] (6.5)

have a gauge-field dependent phase ambiguity. Evidently, the phase matters in the
functional integral (6.1), and the theory hence remains incompletely specified at the
quantum level until the ambiguity in the measure has been fixed.

Apart from this the structure of the theory has now been completely clarified. In
particular, since the integral over the fermion and antifermion fields is gaussian, the
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dence. It is thus interesting to examine the consistency of

the two correspondences; at the very least, this provides

a consistency check on their exactness.
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=
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We can find how w[A] change with A by solving:

perturbatively for small variations of “parameter” A, thinking of          
as Hamiltonian and w_i as eigenvectors. 

J
H
E
P
0
8
(
2
0
0
7
)
0
8
1

2. Splitting partition functions of vectorlike theories into chiral compo-

nents

2.1 Notations and basis vectors

In terms of the massive Wilson operator DW , the modified-γ5 matrix γ̂5 and the Neuberger-

Dirac operator D are expressed as [9]:

γ̂5 =
γ5A

√

(γ5A)2
, A ≡ 1 − DW , D ≡ 1 − γ5γ̂5 , (2.1)

where D transforms covariantly under gauge transforms, Dxy → eiωxDxye−iωy and the

Ginsparg-Wilson (GW) relation is equivalent to γ̂2
5 = 1. Next define the following complete

set of states:
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P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.3)

where we treat u,w as columns and u†, w† as rows. For a topologically trivial background,

the number of u and w eigenvectors is the same, equal to N2 each for a two-dimensional

square lattice (2N2 total dimension).5 We also define the eigenvectors of γ5, which can be

chosen independent of the gauge background:

γ5vi = vi , γ5ti = −ti (2.4)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.5)

2.2 Chiral variables, Jacobians, and their variations

Consider a vectorlike lattice theory with partition function:

ZV =

∫

∏

x

dΨxdΨ̄x eS , (2.6)

where x denotes both spinor and spacetime lattice indices. For the time being, we will take

the action S to be the usual kinetic action S =
∑

x,y ψ̄xDx,yψy ≡ (Ψ̄ ·D ·Ψ), which has an

exact chiral symmetry, Ψ → eiαγ̂5Ψ, Ψ̄ → Ψ̄eiαγ5 .

Now we change variables from Ψx, Ψ̄x to c±i , c̄±i defined by the following expansions in

terms of the γ5 and γ̂5 eigenvectors (we let x also include spinor index, thus x takes 2N2

values in 2d):

Ψx =
∑

i

c+
i wi(x) + c−i ui(x) (2.7)

Ψ̄x =
∑

i

c̄+
i t†i (x) + c̄−i v†i (x) . (2.8)

5Most of the formulae in this paper are valid in any even dimension; in a few obvious instances, however,

we specialize to two dimensions. Also, when necessary, we specialize to the case of a U(1) gauge group.

– 8 –

Now, recall QM perturbation theory. Change of eigenvector in direction perpendicular 
to unperturbed eigenspace completely determined by solving perturbatively for change 
of eigenvector due to small changes of the Hamiltonian. 

Change in parallel direction - a phase - is undetermined & usually ignored in QM, unless 
it can’t be (e.g., Berry’s phase...). Note that this undetermined phase precisely gives the 
change of Z due to eigenvector, as per “splitting theorem” above, which is a pure phase! 
This phase of Z can not be chosen arbitrary: the “Berry connection” = 

factorization: 
“splitting theorem”
for general chiral actions
(Shang, EP 2007)
not only for bilinear
(Neuberger, Luescher
late 1990s)
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I. INTRODUCTION

Gauge-gravity duality is a powerful method to study

strongly-coupled gauge dynamics. It relates a weakly-

coupled theory of gravity to a lower dimensional large-

N gauge theory at strong coupling [1–3]. The best-

understood example is the AdS5/CFT4-correspondence

between N=4 supersymmetric Yang-Mills (SYM) the-

ory on R4
and weakly coupled type-IIB supergravity on

AdS5×S5, where all available evidence suggests that the

correspondence is exact, at least to leading order in 1/N .

Z =

�
dψ−dψ̄−e

(ψ̄·D[A]·ψ)

Z =

�
dα−dᾱ−e

ᾱi
−αj

−(w†
i [A]·D[A]·tj)

δ log Z[A] =

�

i

(δw
†
i [A] · wi[A]) + � δS

δO
δO�

γ̂5[A]wi[A] = wi[A]

Another method to study gauge dynamics in lattice

and continuum formulations is the large-N volume in-

dependence [4, 5]. The statement of the volume inde-

pendence theorem is that large-N non-abelian quantum

gauge theories toroidally compactified on four-manifolds,

M4=R4−k × (S1
)
k
, have properties that are independent

of the (S1
)
k

compactification radii. More precisely, ex-

pectation values and connected correlators of single-trace

operators are the same in the reduced and infinite-volume

theories, to leading order in 1/N—if the operators are

neutral under the (ZN )
k

center symmetry and carry mo-

menta in the compact directions quantized in units of

the inverse compactification radii. Volume independence

holds provided two basic quantum mechanical conditions

are satisfied: i.) translation symmetry is not sponta-

neously broken and ii.) the (ZN )
k

center-symmetry is

not spontaneously broken.

In lattice-regularized gauge theories, where the lattice

is reduced to a single site, this equivalence is known as

“large-N reduction” or “Eguchi-Kawai (EK)-reduction.”

The necessary and sufficient conditions for the validity

of volume independence have been known since the early

80’s [6]. However, the first examples of gauge theo-

ries which satisfy them to arbitrarily small volumes were

found only recently [7]. Because of this, there has been

a recent resurgence of interest in this subject, particu-

larly in the lattice community (not only because small

volume large-N simulations are more cost effective, but

also for theoretical reasons, such as lattice supersymme-

try). Erich: pls supply refs - not too many and in
latex form from spires!

While much less appreciated than the AdS/CFT cor-

respondence, large-N volume independence is one of the

few exact results in gauge theories. Volume indepen-

dence holds for arbitrary values of the coupling, including

the strong-coupling limit of the gauge-gravity correspon-

dence. It is thus interesting to examine the consistency of

the two correspondences; at the very least, this provides

a consistency check on their exactness.

In this paper, we exhibit the simplest set-up where vol-

ume independence and AdS/CFT should hole simultane-

ously. We consider the gravity dual of strongly-coupled

N=4 SYM compactified on R3 × S1
and study how vol-

ume independence arises. We show that in the center-

symmetric vacuum D-branes “geometrize” volume inde-

pendence. The “geometrization” ensures that the expec-

tation value of, e.g., a Wilson loop in the uncompactified

(R3
) directions is independent of the S1

compactification

radius, for arbitrary interquark separation and in accor-

dance with the volume independence theorem.

II. CENTER-SYMMETRY BROKEN VACUUM:

VOLUME DEPENDENCE

The type-IIB background dual to N=4 SYM compact-

ified on R3 × S1
of radius R0 is:

ds
2

=
u2

R2
3

(−dt
2
+

2�

i=1

dx
2
i +R

2
0dθ

2
)+

R2
3

u2
du

2
+R

2
3dΩ

2
5. (1)

This is compactified AdS5×S5
or radius R3∼λ

1
4 in local

Poincare coordinates, expressed in terms of the energy

has a “curvature”, which is a known gauge invariant functional of A.
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Let’s try finding chiral Z[A] by starting with Z[some A_0, e.g.=0]  and integrating small changes...
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arg(Z) has a contribution from the eigenvectors (a “Berry connection”) whose Berry 
curvature is nonzero and depends on A. Hence this contribution to arg(Z) must be A-
dependent. If not, partition function is not gauge invariant, even in anomaly free case. 

In anomalous case -Neuberger, 1998- the Berry curvature integrates to a nonzero integer 
over some closed 2-cycles in field space, hence no nonsingular “Berry connection” can be 
found - and no nonsingular Z[A] exists then (e.g., simple examples in Shang, EP, 2007).

Luescher later (1999-00) proved a “reconstruction theorem:” for anomaly free U(1) 
theories no other obstructions exist and a “Berry connection” exists, which renders Z[A] smooth 
wrt A, gauge invariant, and (exponentially) local.

No explicit form for “Berry connection” given -Luescher’s is an existence proof- but an 
algorithm for constructing phase for any given A can be devised for U(1) and SU(2)xU(1)
anomaly free models (Kadoh, Kikukawa 2008; has not been yet (2010) implemented, even in 2d).

Again, since ,

- end of the intro/lightning review/ -

Finally, on the “existence proof frontier,” the proof has not been generalized to 
nonabelian case. Poses rather formidable mathematical problem...
(e.g., topological classification of nonabelian admissible lattice fields, exact form of nonabelian anomaly 
on the lattice at finite ‘a’, ‘N’ not known, but needed to find Berry connection nonperturbatively...)

aka “measure current”
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We have proposed a way to avoid this hard math AND provide an explicit definition of Z, 
with no need to find and fix a “Berry current”. 

Question: 
    since defining Z for a chiral theory is so hard, why not start with a vectorlike theory?

and then, “deform” the theory in such a way that 
                          - mirrors decouple from the low-energy spectrum
                          - the gauge symmetry remains unbroken 
and, at low energies, get the “quintessential” example of a 4d chiral gauge theory

Ask if it is possible to begin with, e.g.:

a normal continuum field theorist would say: no! 
- a string theorist might say:  may be 

e.g., if one allows the liberty to think of orbifolding as decoupling of states

- 

?

what we are proposing, how is it different from the past? 
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Imagine “deforming” the theory by adding four-Fermi interactions that act 
only on the mirror fields and taking them strong...

strong interactions bind, or “confine”, mirrors into vectorlike or singlet 
composites; these can gain mass without breaking SU(5) gauge symmetry

desired outcome (fantasy picture): 

What makes one think this is even remotely plausible? 

strong-coupling symmetric phases exist in lattice 4-Fermi or Yukawa models

many old refs, I learned from Eichten and Preskill, 1986 [E-P]

what we are proposing, how is it different from the past? 

Let’s study a toy example (invented to fit on transparency): 
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space lattice only (any dimension); canonical anticommutation relations: 

at g>>1 in lattice units, 
hopping is negligible: 

to leading order, at every site the same simple 4-fermion QM problem, rename: 

SU(4) “chiral” symmetry (the one to be gauged)

+

what we are proposing, how is it different from the past? 
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in the infinite-g limit, 
the lattice theory ground 
state is unique  and an SU(4) - “chiral” - singlet 

with a mass gap = g in lattice units

at first order in 1/g, hopping turns on, site-localized states form bands and
propagate; they are heavier than the lattice cutoff, mass ~ 1/(g a) 

infinite-g  ground state unique and SU(4) “chiral” singlet 

hence the name:  “strong-coupling symmetric phase” 

what we are proposing, how is it different from the past? 

the 1/g expansion has finite radius of convergence, hence this story represents the 
true ground state of theory,  for g sufficiently large
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very much like “static limit” of lattice QCD, but infinite mass limit replaced by infinite four-fermi

large-g phase same in any dimension provided static limit exists (= unique ground state at 
every site); major differences between dimensions occur at small-g 

-

-

we are not interested in a continuum limit of the “mirror” theory - everything 
“mirror” is cutoff scale (and heavier) and decoupled from IR physics 

gauge field appears only in hopping terms and so contributions of  heavy 
“mirror” sector to gauge field action should be ~ 1/g  (recall g is the strong 4-fermi...)

- 

- 

like high-T statistical mechanics where disorder always wins: neglect of kinetic terms 
= uncorrelated fluctuations at neigboring sites, maximum “entropy”

-

preemptive answers to FAQs:  

For the continuum folks among us, 
A FEW GENERAL WORDS ABOUT SUCH PHASES, TRUE WHENEVER THEY EXIST: 

(see fun 2d study of a similar story in gauged model with scalars Shang, EP (2008),            
 designed to answer some misguided criticism...)

what we are proposing, how is it different from the past? 

homework: repeat toy model study for SU(5) (E-P, 1986, reformulated for our purposes)

Homework: repeat toy model study for SU(5) (E-P, 1986)
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needed to have sensible “static limit” of Euclidean fermion path integral; E-P used Euclidean, 
not Hamiltonian, strong-couping expansion showing that at infinite-g  SU(5) ground state 
unique and singlet; hence a “strong-coupling symmetric phase” 

the “E-P dream” was, essentially, to use this* phase to decouple the doublers

*I am simplifying E-P story - here’s their dream phase diagram:

why two 4-fermi 
terms? II. mirror global symmetries, including anomalous ones, must be broken, 

or else get extra zero modes in instanton - wrong ‘t Hooft vertex

zero modes and lifting by g -coupling analogy: t-quark decoupling from QCD ‘t Hooft vertex vs non-decoupling 
from SU(2) ‘t Hooft vertex, no matter how heavy,

2

deformed by

1. so that static limit exists

why singlet?

what we are proposing, how is it different from the past? 

III. unbroken mirror global symmetries 
have ‘t Hooft anomalies, ‘t Hooft 
anomaly matching, valid also here when 
GW fermions used (Shang, EP 2009) 
then implies extra light states

Sunday, December 5, 2010



even a two-component Weyl field on the lattice, as E-P used, has opposite chirality massless 
excitations in it (fermion doubling)

a 1+1dim reminder: spatial lattice hermitean Hamiltonian of a 1-component Weyl fermion
remember (de)construction

to deal with doublers of Weyl lattice fermions, E-P introduced “r”-axis:  

- more 4-fermi terms, this time with derivatives in them, must break symmetry between                       
   “doubler” and “light” modes 

- hope to tune “r” to make light massless, while doublers heavy  (were able to only study one region)

region studied by E-P: 

lambda-axis of E-P = my g  , g 1 2

(symmetry) 

what we are proposing, how is it different from the past? 

“NJL” phase missing,  
 for some reason...
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Only one further study, by Golterman, Petcher, Rivas, 1993:  no proof, by all means, but in all 
regions that they could study using 1/N, strong- and weak-coupling expansions in r, lambda 
both “mirror” and “light” fermions became heavy at strong-4 fermi /”r”/, while at weak 4-
fermi, both “mirror” and “light” were massless, i.e. the theory was always vectorlike... 

Clearly, this dream was not likely to be easily fulfilled... 

lambda-axis of E-P = my g  , g 1 2

In hindsight, one expects E-P story to fail in the absence of symmetries: E-P is complicated 
by the fact that the strong 4-fermi interactions are felt by both “mirror” (here - doubler) 
and “light” fermions (no separation was known in 1986). 

There was no symmetry distinguishing light from heavy modes, needed to protect the light modes 
and allow the heavy ones to become massive. It was expected to “emerge” at some value of  
“r” ...which was never found.

Things would be a lot cleaner if the strong interactions only acted on “mirror” modes 
and if one could separate mirror and light already at finite (a,V)

- have to only deal with                                            and avoid tuning r 

- if chiral symmetries could be clearly and unambiguously defined, expect that unbroken exact   
  chiral symmetry, if such a thing existed at finite (a,V), would protect the light fermions

what we are proposing, how is it different from the past? 
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Turns out, Creutz, Rebbi, Tytgat, Xue, 1996, had made similar proposal using E-P + 
domain wall - before GW operator and exact chirality. But symmetries become 
exact only as size becomes infinite, so less “pretty,” hence more difficult to study 
- there has been no follow-up work whatsoever.

Since we now know how define of L and R components of Dirac - not Weyl, like E-P 
- fermions then, one can ask whether the “E-P dream” be resurrected as well? 

We need to only replace “doubler” by “mirror”... Bhattacharya, Martin, EP, 2006 

  to this end, note Z[A] separates into “light” and “mirror” explicitly in any A 
  (separation useful for mirror dynamics studies, as will become clear)

- measure of Z_vector is explicitly defined by the usual vector theory measure, no       
  phase ambiguity: could simulate “right now”...if infinite power available... but it’s         
  probably a good idea to first examine how the parts perform!

For any lattice vectorlike theory, we know how to define L and R fermions, and can write 
4-fermi or Yukawa interactions that only act on the mirror fields. 

what we are proposing, how is it different from the past? 

( )
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This gives an elegant gauge invariant formulation of “E-P like” ideas 
that has all the symmetries of the desired target theory...

                               ...should we be opening the champagne, then?

most importantly, the global symmetries, including anomalous ones, 
are exactly the ones of the target continuum theory  

              - there are exact chiral symmetries protecting light modes
               - all chiral symmetries acting on mirrors are explicitly broken
                 (none of previous “mirror decoupling” approaches did this)

what we are proposing, how is it different from the past? 

4-fermi breaking all mirror 
global symmetries except 
the one to be gauged
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not yet - a “few” questions remain to be answered first: 

in typical models, there is more than one strong Yukawa/4-fermi 
interaction - needed to break all classical mirror global symmetries - and 
there can be a nontrivial phase structure as their ratios change 
not necessarily a problem, but an issue to understand

2

with the exp.-local Yukawa/4-fermi mirror interactions, is it still true that a 
“strong coupling symmetric phase” exists? 
are the mirrors heavy?

1

- 1,2, and 3 can be addressed with background nondynamical gauge fields only
- NEED TO USE simulations: no simple analytic strong-coupling expansion as in original models with non-     
  exactly chiral fermions - beauty has a price... 
- however, in this matter of principle, we can stay in 2d at first
- adding dynamical gauge fields brings in a new set of questions, for example:  

what happens if one tries to decouple an anomalous mirror representation? 3

should we be opening the champagne, then?

with dynamical gauge fields included, is the long-distance theory unitary?  
we have defined a complex Euclidean partition function: different treatment of conjugate mirror 
fermion variables through the different chiral projectors

4

5 suppose all checks above are fine - apart from gaining intellectual satisfaction, 
what can we now learn about strong chiral gauge dynamics? 
can we calculate with T            < O(Gy) ?  simulation
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but we are (slowly) learning:

with the exp.-local Yukawa/4-fermi mirror interactions, is it still true that a 
“strong coupling symmetric phase” exists? 

1

yes, in the 2d models studied 
Joel Giedt, EP, hep-lat/0701004 

yes, in the 4d model  studied 
P. Gerhold, K. Jansen, arXiv:0707.3849[hep-lat]
(not all symmetries broken, due to different motivation; 
unlifted “mirror” zero modes quite easy to predict and spot)

are the mirrors heavy? 
               - it depends... this talk
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2

Joel Giedt, EP, hep-lat/0701004

there is a nontrivial phase structure in the 2d model studied 

reaching symmetric phase at strong coupling does not require 
fine-tuning (a large region in coupling space)

but we are (slowly) learning:

in typical models, there is more than one strong Yukawa/4-fermi 
interaction - needed to break all classical mirror global symmetries - and 
there can be a nontrivial phase structure as their ratios change 
not necessarily a problem, but an  issue to understand
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what happens if one tries to decouple an anomalous mirror 
representation? 

3

Yanwen Shang, EP, arXiv:0706.1043[hep-th]; 0901.3402[hep-lat]

important to differentiate between options 
- massless mirror fermion, Green-Schwarz field, nonunitarity ???                                                      

with gauge fields included, is the long-distance theory unitary?  
we have defined a complex Euclidean partition function: different treatment of conjugate mirror 
fermion variables through the different chiral projectors

4

not obvious, but some indications

this talk...

but we are (slowly) learning:

Yanwen Shang, EP, arXiv:0901.3402[hep-lat]
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5 suppose all checks above are fine - apart from gaining intellectual satisfaction, 
what can we now learn about strong chiral gauge dynamics? 
can we calculate with T            < O(Gy)?  simulation ...left for future work
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“simple” case: 

massless Schwinger model + singlet massless fermion + strong mirror interaction

will also call it “1-0 model”
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is a.) φ-independent and b.) nonzero. Hence, we would have been led to believe that the dynamics
governing the fluctuations of the pure-gauge degrees of freedom is unaffected by the mirror fermions,
to leading order in 1/y. Moreover, this argument would also imply that there is no fine-tuning, at
large y, required in order to keep the XY model in its high-temperature phase. Finally, a constant
determinant, as would be obtained at large-y from the above argument, indicates that there are no
massless fermion states, as a massless fermion state is expected to lead to a zero determinant.

The true story, however, is more complicated than the discussion of the previous paragraph.
This is due to the fact that the various Ψ̄± chiral components which enter X+ x, Y− x (2.7) and
Smass are somewhat smeared due to the nonlocality of the chiral projectors that define the chiral
components for the barred fields. However, the extent of the nonlocality of the Ψ̄±-component
is small, governed by the range of nonlocality of Neuberger’s operator, which is of order of the
lattice spacing with an exponential tail, as the analysis of [37, 38] shows. Hence, one expects that
the qualitative arguments of the previous paragraph still hold, together with the conclusion that
the mirror fermion fluctuations do not significantly affect the pure gauge fluctuations and their
determinant is nonzero. Section 3.3 is devoted to verifying this conjecture.

3 The simpler “toy” model

3.1 Definition of the toy model: action and symmetries

In our analytic and numerical study, we will use a simpler model that captures the main features of
the mirror sector dynamics at g = 0. The model has a minimal field content, allowing an exhaustive
study of the phase diagram using numerical methods with the computer resources available to us.

Our toy model is a U(1) lattice gauge theory with one charged Dirac fermion, ψ, of charge 1,
and a neutral spectator, χ. The desired spectrum of light fields in the target theory is the charged
ψ+ and the neutral χ−. The chirality components for the charged and neutral fermions are defined,
as in the previous section, by the projectors which include the appropriate Neuberger operators D1

or D0 for the barred components. The fermion part of the action of our toy model is:

S = Slight + Smirror (3.15)

Slight =
(

ψ̄+,D1ψ+
)

+ (χ̄−,D0χ−)

Smirror =
(

ψ̄−,D1ψ−

)

+ (χ̄+,D0χ+)

+ y
{(

ψ̄−,φ∗χ+
)

+ (χ̄+,φψ−) + h
[(

ψT
−,φγ2χ+

)

−
(

χ̄+, γ2φ
∗ψ̄T

−

)]}

.

Here φx = eiηx is the unitary higgs field and we do not show its kinetic term as it is the same as in
(2.10). The brackets indicate both summation over coordinates and an inner product of spinors, for
example

(

ψ̄−,φ∗χ+
)

≡
∑

x
ψ̄− xφ∗

xχ+ x and
(

ψ̄+,D1ψ+
)

≡
∑

x,y
ψ̄+ xD1 xyψ+y. There are two Yukawa

couplings in the model, y and yh, which are both taken real. The coupling h measures the ratio of
the Majorana to Dirac mass, while y is the overall strength of the Yukawa coupling. The Smirror

term above is the analogue of (2.8) in the “345” theory.
When y = h = 0, the lattice action (3.15) has four global U(1) symmetries, as every chiral

component can be rotated independently, as in Section 2. When both y and h are nonzero, there
are only two U(1) symmetries, acting on ψ+ and χ−, respectively. The first is the anomalous global
part of the gauge group and the second is the global symmetry of the spectator fermion. When
h = 0, the Majorana mass vanishes, and we have one extra exact U(1) that also acts on the charged
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At the end of this section, it is worth noting that this proposal carries some of the flavor7 of an
earlier construction of Eichten and Preskill [13], attempting to use strong four-Fermi interactions
to decouple mirrors and doublers (it is clear that integrating out our short-ranged φx will produce
strong multi-fermion interactions of the mirrors). Their proposal is known not to give rise to a
chiral gauge theory (see [34], where the similarity with Yukawa models was also used). In our case,
the modified lattice chiral symmetry that leads to exact decoupling of the chirality components
only allows us to make use of the Yukawa analogue of the strong four-Fermi coupling symmetric
phase (see the Appendix of [13])—a phase with unbroken gauge symmetry, where all fermions that
participate in the strong interactions are massive.

2.4 Action, partition function, and dynamics

To ensure that the dynamics of our lattice model reproduces that of the desired unbroken chiral
gauge theory, we need to demonstrate the existence of a strong-Yukawa-coupling symmetric phase
with chiral spectrum of massless fermions (recall again the strong coupling analysis of [22] which
showed that in the waveguide model the spectrum in this phase was vectorlike). Remarkably,
as we will find below, to leading order in the strong Yukawa coupling expansion and small gauge
coupling—precisely the regime where the waveguide idea broke down—there appear no new massless
modes and the spectrum of the unbroken gauge theory is chiral.

The total action of the lattice model is, finally:

S = SWilson + Skin + Smass + Sκ , (2.10)

Skin is defined in (2.1), Smass—in (2.8), SWilson is the usual plaquette action for the link variables
Ux,x+µ̂, appropriately modified to restrict the gauge field path integral to admissible gauge field
backgrounds, see [8], and Sκ is the action for the charge-1 unitary Higgs field:

Sκ =
κ

2

∑

x

∑

µ̂

[2 − ( φ∗
x Ux,x+µ̂ φx+µ̂ + h.c. )] . (2.11)

The dynamical issue that needs to be addressed is the existence of an “unbroken” phase where φ
is disordered (analogous to 〈φ〉 = 0, versus 〈φ〉 $= 0, in four dimensions), such that the gauge boson
is massless.

In the case without fermions, it is well known [35] that theories with unitary Higgs fields
(contrary to “everyday” continuum intuition) exhibit a symmetric phase, for small enough κ. The
essential idea8 is that for small κ large fluctuations of the unitary Higgs field—or, in the equivalent
unitary gauge, the pure-gauge fluctuations of the gauge field U—are not suppressed by the action
(2.11) and hence their correlation length is of order the lattice spacing. Thus, integrating out
the rapidly fluctuating Higgs fields results in renormalization of the gauge coupling plus a tower of
higher-dimensional gauge invariant local operators which are irrelevant for the long-distance physics
of the gauge theory. This is most easily seen upon integrating over the rapid fluctuations of φx,
or equivalently, the pure-gauge part of U , by explicitly performing the strong-coupling (small κ)
expansion. The leading correction is a small, O(κ4), shift to the inverse gauge coupling constant,

7We thank David B. Kaplan for pointing this out to us. We also note that a proposal to decouple the mirrors
by combining the (approximate) lattice chirality of domain wall fermions with the Eichten-Preskill ideas was made
earlier in [33].

8Sometimes called the “FNN mechanism” [36].

8

Joel Giedt, EP (2007), studied mirror partition function at A=0; 
clearly “light” theory is anomalous so don’t expect decoupling 
but cheap to study while still has nontrivial dynamics

mirror theory action

where does it stand? 
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Giedt, EP, 2007

- strong coupling symmetric phase with GW fermions exists, for a range of h
 
(similar findings of 4d studies of Gerhold and Jansen, different motivation)

y=infinity - drop kinetic term 

where does it stand? 
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, since Z[A] of 1-0 model gauge invariant:

we know exactly how lattice Z[A] splits into light + mirror, for arbitrary A:

and since light + mirror split of Z is locally smooth in A, polarization operator splits, too: 

but the light theory has a chiral charged fermion, hence its polarization 
operator is not transverse but gives anomaly of chiral light GW fermion: 

but total polarization operator is transverse,  so mirror must also be 
non-transverse, i.e. have opposite anomaly:

These are very usual considerations in continuum, leading to ‘t Hooft anomaly matching... 
It is a remarkable consequence of exact lattice chirality that they can be precisely transcribed, with all 
i’s and pi’s (and some extras like N,a + ...) to a lattice. (Could easily do in 4d, but need 3pt function.)

Details are fun and of great interest (to me) but I’ll spare you: Shang, EP, 2007,2009 (“splitting theorem”...).

Next, probe charged spectrum by studying polarization operator :

where does it stand? 
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The moral is, in low-momentum limit,  Fourier transform of the imaginary part of the 
mirror polarization operator obeys - we’re in Euclidean, anomaly is in ImLogZ: 

 and, so, Im-part of polarization operator should have some nonlocal contribution 
 
- in a unitary, Lorentz invariant theory, means also real part should be nonlocal

- poles in real part of polarization operator mean massless charged particles, so mirror

- independent on the strength of the mirror 4-fermi, Yukawa, etc. couplings - 
  this argument never used explicit form of mirror action, only gauge invariance of full Z! 

- true for any volume, lattice spacing (‘N’, ‘a’)

- analogous to ‘t Hooft anomaly matching in theories with strong IR dynamics

- strong non-gauge mirror dynamics has to comply with it

- as usual, anomaly matching does not tell us what the pole in the real part is from - 
  a Goldstone boson or massless fermion, and one needs to study the dynamics 

This condition on the mirror dynamics is exact:

should have light states

where does it stand? 
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Must better understand how our attempt to decouple one chirality of the 
Schwinger model in a mirror strong-coupling symmetric phase fails:

- a check on unitarity 
  could’ve imagined (as some did!) a nonlocal Im-part and a local Re-part - recall GW       
  not explicitly lattice Hamiltonian 
 
- relatively cheap exercise, if a bit long to set up 

- tools developed to express mirror polarization operator in terms of mirror correlators 
  are useful in current work (Giedt et al. studying anomaly-free case)

- hope to learn something about strong mirror dynamics, a la E-P, with GW fermions

where does it stand? 
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in continuum, loop of massless particle in 2d: 

90 

45 

0 

0 

0 

0 

to compare - loop of cutoff-scale mass particle
shows no small-k discontinuity

real part of polarization operator of free chiral GW fermion (= 1/2 vector)

this is not Monte-Carlo but exact sum over loop momenta with 
Mathematica on 16x16 lattice 

where does it stand? 

 and, so, Im-part of polarization operator should have some nonlocal contribution 
 
- in a unitary, Lorentz invariant theory, means also real part should be nonlocal

- poles in real part of polarization operator mean massless charged particles, so mirror

should have light states

remember from two slides ago, interested in Re(polarization operator) - tells us about spectrum:  
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90 

45 

0 

0 

0 

0 

small-k discontinuity seen even on 8x8 lattice:
(this plot, as well as one from previous page, has wrong absolute normalization)

in continuum, loop of massless particle in 2d: 

This gives the “light” polarization operator
to compute mirror polarization operator: 
must use Monte-Carlo as mirror theory is a strongly-coupled 
nonlinear system  

where does it stand? 
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to compute mirror polarization operator:  use Monte-Carlo, as 
mirror theory is a strongly-coupled nonlinear system

two steps involved: 

1. find expression of polarization operator in terms of mirror correlation    
   functions expressed in terms of variables of integration... 
   long and tedious, but now we know how to do it, reasonably fast, for      
   any theory- Shang, EP, 2009

2. use MC to calculate polarization operator...  

- use expansions in terms of chiral eigenvectors to define Z(mirror) 

- use of “splitting theorem” (crucial!) to find second derivative of LogZ(mirror) 
  wrt gauge field (i.e., polarization operator)

where does it stand? 
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what comes out?
after numerous checks and balances, e.g.:

- check that the divergence of Im-part exactly cancels that of light fermion
- checks of other exact (i.e. coupling-independent) properties of mirror polarization operator       
  that we had derived

lots of plots + long expressions - see 0901.3402 - will only show one

for h>1: real part of mirror polarization operator - probing number of 
massless charged modes - is like that of one charged massless fermion (this 
result is independent on h, so long as h>1)

where does it stand? 
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Yanwen Shang, EP, 2009

----never mind this curve

this it the Monte-Carlo 
calculation of the mirror 
polarization operator at 
y=infinity, h=3, 8x8 
lattice,
disordered phase, 
16000 field 
configurations
(error bars are 
almost invisible)

looking very much 
like the one from 
Mathematica   

I have not fudged 
anything!  
different value at k=0 has to do with 
Wilson line needed to avoid 
singularity when computing loop, not 
with error bars of MC

Monte-Carlo “proof” of ‘t Hooft anomaly 
matching at strong mirror coupling 

where does it stand? 

1

1

II

II
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what comes out?

for h>1: real part of mirror polarization operator - probing number of massless charged 
modes - is that of one charged massless fermion (this result is independent on h, so 
long as h>1)

for h = 0: real part of mirror polarization operator like that of three charged massless 
fermions (since anomaly same for all h, must be one - chirality and a +/- chirality pair)

can not interpolate through h=1, huge sign problem for h~0.7 about where a KT-like transition lies  

- so, ‘t Hooft anomaly matching is obeyed, by having, for h>1, the minimal number of massless  
  charged mirror fermions required by anomaly 

all this is in the “strong-coupling symmetric” phase, small \kappa; 
at large-\kappa - “broken phase” scalar Green-Schwarz field, massive gauge boson - 
understood perturbatively as well as via simulation (check)

- spectrum of mirror at strong coupling is consistent with long-distance unitarity 
  - some thought it wouldn’t be! 

where does it stand? 
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- anomaly matching works; mirror dynamics is “smart” - and appears unitary - both Re- 
  and Im- nonlocal

- Majorana couplings crucial - recall initially motivated by breaking all ungauged mirror   
  global symmetries

without them massless spectrum at y=infinity always 3 doubler modes  

what lessons are we learning?

where does it stand? 
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finally, the question on everybody’s mind: but what about anomaly free models? 

best I can say for now is it will depend on how mirror is implemented (symmetries again)
in principle, ‘t Hooft implies conditions even in that case 

- consider “345 model,” an anomaly-free 2d theory with 3- 4- 5+ charged fermions 
    3 is charge; - is chirality, etc.

3- 5+4-

3+ 5-4+

0- 0’- 0’’+

0+ 0’+ 0’’-

phi phi’ phi’’
three disjoint copies of our 1-0 model (3-0, 4-0 and 5-0 models)

three exact global symmetries appear when g=0
couple light/mirror fermions
imagine gauging each one & argue by ‘t Hooft

this implementation is bound to have massless mirrors:

where is it going? 

Sunday, December 5, 2010



- consider “345 model,” an anomaly-free 2d theory with 3- 4- 5+ charged fermions 
    3 is charge; - is chirality, etc.

3- 5+4-

3+ 5-4+

0-phi
break all global symmetries that involve mirror fields by allowing cross

so change mirror implementation

couplings between 3,4,5 mirrors (0- needed for static limit)

“experiment” is quite doable, as no gauge fields are involved, and most of the groundwork is done
345 (or 11112) chiral models in 2d are an obvious first try...

unless we, or anybody else willing to think about this, comes up with a general argument
 why there always should be massless states, only future “experiment” will tell for sure

but if there are no reasons, beyond anomaly matching, 
then why should there always  be massless mirror modes? 

there are people who can and will do it - Chen, Giedt (et al. ...), in progress.

now at g=0 only global symmetries are the three light chiral U(1)s

- no reason to think that there will be massless mirror states for all values of the couplings, 
  now that there’s no symmetry reason for this

0+

where is it going? 

best I can say for now is it will depend on how mirror is implemented (symmetries again)
in principle, ‘t Hooft implies conditions even in that case 

finally, the question on everybody’s mind: but what about anomaly free models? 
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SUMMARY

the  
“decoupling of mirror fermions via strong-coupling symmetric phases” idea, 
combined with “exact lattice chirality” leads to a proposed formulation of chiral 
lattice gauge theories, which is:

a.) exactly gauge invariant

b.) has explicit definition of path integral action and measure
      so one can study it numerically

but
       d.) requires more - but feasible - numerical + analytic work to study

 c.) has the correct - anomalous or not - Ward identities  
 of the continuum target theory

Sunday, December 5, 2010



most importantly,
      
e.) we have not seen reasons to give up - 

results on anomaly matching go in the right direction 
 - min number of fermions needed to match anomalies remains massless in the 
strong-coupling symmetric phase - 

hence, conjecture: at strong coupling, if no anomalies to match - no 
massless fermions?

I have not failed. I've just found 10,000 ways that won't work.
                                                                  

Thomas A. Edison

At the same time, we don’t know if we have succeeded or “not failed”, yet! 
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