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The theme of my talk is about inferring properties of infinite-
volume gauge theories by studying (arbitrarily) small-volume 
dynamics. 

The small volume may be 

or of characteristic 
size “L”

most of this talk

... is this crazy? desperate?



Eguchi-Kawai (EK) reduction (aka large-N volume independence)
  - an exact result in QFT most have not heard about...

To guide you through my talk, an outline:

 - failure of original EK and some recent developments “resurrecting” it
       

How is EK supposed to work? 
 - a holographic example in N=4 SYM: how two exact results fit together 

- potential uses thereof [many refs.]

Complementary regimes: 
volume independence vs. volume dependence

- continuity and semiclassical studies of confinement, chiral symmetry       
  breaking, conformality, deconfinement...

[Unsal, Yaffe ... 2007-]

[ Unsal w/ one of Yaffe, Shifman, EP,      
   Schafer, Argyres... 2007-...]

 [EP, Unsal 2010]



Eguchi and Kawai (1982) showed that the infinite set of loop (Schwinger-Dyson) 
equations for Wilson loops in pure Yang-Mills theory is identical in small-V and infinite-V 
theory, to leading order in 1/N:

expectation value of  any 
Wilson loop at infinite-L

expectation value of (folded)
Wilson loop at small-L

=
all topologically nontrivial
(w/ arbitrary winding) 
Wilson loops have 
vanishing expectation 
value 
 (= unbroken center) 

+  O(1/N)

“EK reduction” or “large-N reduction” or “large-N volume-independence” 

provided

To put my talk in context, some relevant history:

Note: this is an exact result in QFT (one of the few!).

... potentially exciting, since: 
1) simulations may be cheaper               (use single-site lattice ?)  

2) raises theorist’s hopes                        (that small-L easier to solve ?)



Kovtun, Unsal, Yaffe (2004)

From a modern point of view EK reduction is a large-N orbifold with respect to the 
group of translations.

Volume-independence viewed as an orbifold helps establish that
 VEVs and correlators of operators that are center-neutral and carry momenta 
quantized in units of 1/L (in compact direction) are the same on, 
say,                    , and in infinite-L theory, to leading order in 1/N.

- calculating vevs (symmetry breaking)  
                            - even if all dimensions small       
- calculating spectra (for generic theories/reps) 

                            - need at least one large dimension
  

Thus, a working example of EK would be good for 

To put my talk in context, some relevant history:To put my talk in context, some relevant history:



Some intuition of how EK reduction works (note EK valid at any coupling).
in perturbation theory:
from spectra (& Feynman graphs)
in appropriate background

or           at strong coupling: 

- use lattice strong-coupling expansion

- use gauge-gravity duality: 

an exact correspondence for large-N 
N=4 SYM - a conformal field theory; 
since EK also exact, it must be that
non-winding Wilson loops & appropriate 
correlators are insensitive to box 
if center-symmetric vacuum

To put my talk in context, some relevant history:

Since this is a holography workshop, 
will first consider a simple example...
                                      [EP, Unsal 2010]



gauge-gravity duality

SU(N) SYM

= - large & fixed

weakly-coupled type IIB 
supergravity on

radius in string units 
(large >>1)

1
N
_ (small,   >0)_

large-N volume independence

SU(N) SYM

compactified on 

SU(N) SYM on

exact for some 
observables

center symmetry unbroken

provided 

translational invariance unbroken -

-

“Eguchi-Kawai (EK) reduction”

-valid at strong coupling, large-N
-calculate correlators (Wilson loops) in dual CFT

-valid at any coupling, large-N
-calculate neutral correlators in large-V theory

exact dualitybelieved to be

two nonperturbative (exact) methods to study large-N gauge dynamics 



gauge-gravity duality

SU(N) SYM

= - large & fixed

weakly-coupled type IIB 
supergravity on

radius in string units 
(large >>1)

1
N
_ (small,   >0)_

large-N volume independence

SU(N) SYM

compactified on 

SU(N) SYM on

exact for some 
observables

center symmetry unbroken

provided 

translational invariance unbroken -

-

“Eguchi-Kawai (EK) reduction”

two nonperturbative (exact) methods to study large-N gauge dynamics 

1. do they fit together? how?
2. do we learn anything useful by understanding 1.?
  (apart from testing AdS/CFT...) 

exact dualitybelieved to be



the token AdS/CFT calculation - Wilson loop vev: 

“UV-brane”

what about finite R ? 0

smallest U reached by worldsheet depends on “quark” separation R: 
                  U   ~ 1/R: larger loops probe “bulk” geometry deepermin

minU

(i.e., away from UV)



from U     ~ 1/R (“energy-distance relation”) it is clear that larger loops 
probe deeper (i.e., away from UV) in AdS - thus worldsheet sensitive to 
singularity - the 4d CFT static quark potential V(R) ~ 1/R should change 
(even for Wilson loop entirely in the noncompactified directions) 

min

atproper size of circle ~ string size when

conical singularity of metric: 
KK modes ~ winding modes, 
IIB SUGRA not good anymore

R << R0

 R >> R0

by dimensional 
reduction, expect: 

4d CFT behavior V~1/R

3d behavior V~g  log(R) 
3
2

(or  V~1/R   ... 1/R in various strong D2...M2 regimes) 2/3

at weak coupling

moral: natural to expect volume dependence  

question: how does Volume (In)Dependence show up in the gravity duals? 



question: how does Volume Independence show up in the gravity duals? 

corresponds to N D2 all at the 
same point on 
dual circle

now, locations of D2 on dual circle = eigenvalues of Polyakov loop
thus, if all N on top of each other, all eigenvalues identical (say =1):

and center symmetry is broken 



question: how does Volume Independence show up in the gravity duals? 

corresponds to N D2 all at the 
same point on 
dual circle

and center symmetry is broken 

unbroken center symmetry vacuum                           = equidistant distribution of N D2 branes on circle

corresponds to 1/R 0 

1/NR 0 

now, locations of D2 on dual circle = eigenvalues of Polyakov loop
thus, if all N on top of each other, all eigenvalues identical (say =1):



4

1/R 0 instead of  as in center-broken case:

near each of the N D2 branes SUGRA badly breaks down (large curvatures), 
however a distance 1/NR  away, SUGRA is valid0

3x  isometry restored at u >> 1/NR 0 it is clear from picture that 

each brane sources 1/r   “potential”5

“far” away, however, “potential” is 1/r4



each brane sources 1/r   “potential”5

“far” away, however, “potential” is 1/r4

3x  isometry restored at u >> 1/NR 0 it is clear from picture that 

near each of the N D2 branes SUGRA badly breaks down (large curvatures), 
however a distance 1/NR  away, SUGRA is valid0

thus, D2 on dual circle at ANY u (in the large-N limit)

recall D3 on original circle: 

at u >          > 01/NR 
0 

-

Thus: Volume Independence also arises naturally, once a center-symmetric vacuum is
considered. D-branes nicely geometrize volume independence in this simple example.

center-symmetric 
metrics are T-dual 
give same W(C)
for ANY SIZE LOOP

1/R 0 instead of  as in center-broken case:

Notice the appearance of “effective volume” N R   and that in N=4 center is a choice...0



2. do we learn anything useful from 1.?
    apart from testing AdS/CFT...  brings about one point:

1. do volume independence and AdS/CFT fit together? how?

by usual EK argument, loop equations for W(C) in reduced and “original” theory 
are the same - hence their solution should be as well (modulo ambiguities...see Yaffe ‘1980s)

as we saw, finding string worldsheet, and hence W(C), is the same problem in 
reduced and infinite-V theories

gravity dual gives an explicitly solvable realization of volume 
independence (first one above 2d)

in gravity dual, solving loop equations for W(C) is tantamount to finding the 
appropriate worldsheet

analytic use of EK in general non-SUSY theories 
still waiting for new techniques/ideas - 
                                      large-N matrix/model or QM vs large-N YM?



However, Bhanot, Heller, Neuberger (1982) noticed immediate problem 
with EK in pure YM:

  simplest argument - on S1, center symmetry breaks for L < L   
 (e.g. deconfinement transition) and thus invalidates EK reduction 

 Older proposed remedies:  e.g., Gonzalez-Arroyo, Okawa (1982) - TEK... + others
 later argued to have problems (Bringoltz/Sharpe 2009) (some recent  “twists” on TEK ?)   

c

                                            some relevant history:

A more recent  cure is argued to allow reduction valid to 
arbitrarily small L (e.g., single-site) if one adds either 

- periodic adjoint fermions   aka “twisted partition function”                           
  (in SUSY = Witten index; it will become clear later why these help)

or 

- appropriate double-trace deformations 

    

Unsal, Yaffe 2008

1. Introduction and summary

In this paper, we study the dynamics of N = 2 supersymmetric pure gauge theory and its
N = 1 mass perturbation compactified on S1 ⇥ R3. We mostly work with an SU(2) gauge
group, with few mentions of SU(N), in particular with regard to non-’t Hooftian large-N
limits. We use a di�erent methodology relative to Ref. [1]. Our approach is shown in the
commutative diagram in Fig. 1.

tre��H(�1)F

Figure 1: Taking di�erent paths in the u-L plane (the horizontal direction u is the modulus of
Seiberg-Witten theory and the vertical L is the size of S1). Ref. [1] studied the softly broken N = 2
theory on R3 ⇥ S1 by using elliptic curves through path A. In this work, we reexamine the same
theory along the path BCD in moduli space. The CD branch is always semi-classical and allows us
to understand the relation between the topological defects responsible for confinement at small-L and
large-L in detail. The set-up provides new insights about confinement in N = 1 theories and related
nonsupersymmetric theories with multiple adjoint fermion representations.

The N = 2 and softly broken N = 1 theory on R4 are solved by using supersymmetry
and low-energy e�ective field theory, crucially supplemented by electric-magnetic duality [2].
Physically, one of the most interesting outcomes of the Seiberg-Witten solution is that the
N = 2 theory softly broken to N = 1 exhibits confinement of electric charges due to magnetic
monopole or dyon condensation. This is the first example of an analytically solvable confining
gauge theory in 4d.

In Ref. [1], Seiberg-Witten theory is studied on R3 ⇥ S1. A description of the vacuum
structure of the theory is given as a function of the circle radius L, interpolating between 3d
and 4d results. The description of the theory by elliptic curves provides much information
about the vacuum of the theory. However, many physical aspects of Seiberg-Witten theory
on R3 ⇥ S1 remain open. For example, one can ask what generates the mass gap for gauge
fluctuations at small S1 ⇥ R3? It turns out that adequately answering this question opens
interesting avenues in the study of confinement and topological defects in gauge theories, not
exclusively restricted to supersymmetric theories.

– 2 –

After giving example how EK reduction and AdS/CFT fit together, 
and seeing the role of center symmetry, back to...

“good samaritan” deformations [Veneziano]

(recall “in N=4 center is a choice...”)



Remedies proposed: reduction valid to arbitrarily small L (single-site) if:

Unsal, 
Yaffe 
2008

periodic adjoint fermions (more than one 
Weyl) - no center breaking, so reduction 
holds at all L 

used for current lattice studies 
is 4 ...3,5... Weyl adjoint theory 
conformal or not?

To put my talk in context, some relevant history:

small-L(=1) large-N (~20 or more...) simulations (2009-)
Hietanen-Narayanan; Bringoltz-Sharpe; Catterall et al
small-N large-L simulations (2007-) 
Caterall et al; del Debbio et al; Hietanen et al...

- “minimal walking TC”
- related by an “orientifold” large-N 
equivalence to theories with antisymmetric
tensor matter, another large-N limit of 
SU(3) QCD
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Weyl) - no center breaking, so reduction 
holds at all L 

used for current lattice studies 
is 4 ...3,5... Weyl adjoint theory 
conformal or not?

To put my talk in context, some relevant history:

theoretical studies

fix-N, take L-small: semiclassical studies of 
confinement  due to novel strange “oddball”
(nonselfdual) topological excitations, whose 
nature depends on fermion content 

- for vectorlike or chiral theories,        
  with or without supersymmetry

Unsal; 
Unsal-Yaffe; 
Unsal-Shifman; 
Unsal-EP 2007-

- a complementary regime to that      
  of volume independence, which      
  requires infinite N - a (calculable!)    
  shadow of the 4d “real thing”. 

double-trace deformations: 
deform measure to prevent center breaking 
at infinite-N, deformation does not affect 
(connected correlators of “untwisted”) observables

small-L(=1) large-N (~20 or more...) simulations (2009-)
Hietanen-Narayanan; Bringoltz-Sharpe; Catterall et al
small-N large-L simulations (2007-) 
Caterall et al; del Debbio et al; Hietanen et al...

- “minimal walking TC”
- related by an “orientifold” large-N 
equivalence to theories with antisymmetric
tensor matter, another large-N limit of 
SU(3) QCD



Remedies proposed: reduction valid to arbitrarily small L (single-site) if:

Unsal, 
Yaffe 
2008

periodic adjoint fermions (more than one 
Weyl) - no center breaking, so reduction 
holds at all L 

used for current lattice studies 
is 4 ...3,5... Weyl adjoint theory 
conformal or not?

To put my talk in context, some relevant history:

REST OF 
THIS TALK:

theoretical studies

fix-N, take L-small: semiclassical studies of 
confinement  due to novel strange “oddball”
(nonselfdual) topological excitations, whose 
nature depends on fermion content 

- for vectorlike or chiral theories,        
  with or without supersymmetry

Unsal; 
Unsal-Yaffe; 
Unsal-Shifman; 
Unsal-EP 2007-

- a complementary regime to that      
  of volume independence, which      
  requires infinite N - a (calculable!)    
  shadow of the 4d “real thing”. 

double-trace deformations: 
deform measure to prevent center breaking 
at infinite-N, deformation does not affect 
(connected correlators of “untwisted”) observables

small-L(=1) large-N (~20 or more...) simulations (2009-)
Hietanen-Narayanan; Bringoltz-Sharpe; Catterall et al
small-N large-L simulations (2007-) 
Caterall et al; del Debbio et al; Hietanen et al...

- “minimal walking TC”
- related by an “orientifold” large-N 
equivalence to theories with antisymmetric
tensor matter, another large-N limit of 
SU(3) QCD



theoretical studies

fix-N, take L-small: semiclassical studies of 
confinement  due to novel strange “oddball”
(nonselfdual) topological excitations, whose 
nature depends on fermion content 

          
   

Unsal; 
Unsal-Yaffe; 
Shifman-Unsal; 
Unsal-EP 2007-

However, the “Debye screening” is now due to composite 

objects, the “magnetic bions” of the title.

Polyakov’s 3d mechanism of confinement by “Debye screening” 
in the monopole-anti-monopole plasma extends to (locally) 4d theories. 

In 4d theories with periodic adjoint fermions, for small-L, 
dynamics is semiclassically calculable (including confinement).
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fix-N, take L-small: semiclassical studies of 
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However, the “Debye screening” is now due to composite 

objects, the “magnetic bions” of the title.

Polyakov’s 3d mechanism of confinement by “Debye screening” 
in the monopole-anti-monopole plasma extends to (locally) 4d theories. 

 
For this talk only consider 4d SU(2) theories 

with N    = multiple adjoint Weyl fermions w

 w N   =1 is            
 N=1SUSY YM

 N   =4  
- “minimal walking technicolor”
- happens to be N=4 SYM             
  without the scalars

 w

“applications”:

~ Seiberg-Witten theory
   with soft-breaking mass

N   =5.5  w asymptotic freedom lost

In 4d theories with periodic adjoint fermions, for small-L, 
dynamics is semiclassically calculable (including confinement).



In 4d theories with periodic adjoint fermions, for small-L, 
confining dynamics is semiclassically calculable.

is now an adjoint 3d scalar Higgs field

but it is a bit unusual - 
a compact Higgs field:

thus, natural 
scale of “Higgs vev” is leading to

such shifts of A   vev absorbed  into shift of KK number “n”4

hence, semiclassical if L << inverse strong scale 

  exactly this happens in theories with more than one periodic Weyl adjoints

  follows from two things, without calculation:
  1.) existence of deconfinement transition in pure YM and 2.) supersymmetry 

in pure YM, at small L (high-T),  Veff min at A  =0 & max at pi/L (Gross,Pisarsky,Yaffe 1980s)

in SUSY Veff=0, so one Weyl fermion contributes the negative of gauge boson Veff
4

Q.E.D.



However, the “Debye screening” is now due to composite 

objects, the “magnetic bions” of the title.

Polyakov’s 3d mechanism of confinement by “Debye screening” 
in the monopole-anti-monopole plasma extends to (locally) 4d theories. 

since SU(2) broken to U(1) at scale 1/L

there are monopole-instanton solutions of finite Euclidean action, constructed 
as follows:

(for SU(N) W mass is 1/NL, so validity of 
Abelian description is1/NL >> strong scale) 



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

vev at origin
vev at infinity

monopole-instanton of action ~ v/g
3
2



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

vev at origin
vev at infinity

monopole-instanton of action ~ v/g
3
2

monopole 
trivially
embedded in 4d

M



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

vev at origin
vev at infinity

monopole-instanton of action ~ |2 Pi/L - v|/g 3
2

- use a large gauge transformation to make vev at infinity = v
- action does not change
- x -dependence is induced, hence called “twisted” 4



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

monopole-instanton tower; action ~ |2 k Pi/L - v|/g 3
2

......

the lowest action member of the tower can be pictured like this (as opposed to the no-twist):



0 2Pi/L 4Pi/L 6Pi/L-2Pi/L-4Pi/L-6Pi/L

A
4

gauge equivalent vevs

vv - 2Pi/L

monopole-instanton tower; action ~ |2 k Pi/L - v|/g 3
2

......

“twisted” or “Kaluza-Klein”: monopole embedded in 
4d by a twist by a “gauge transformation” periodic up 
to center - in 3d limit not there! (infinite action)

KK
the lowest action member of the tower can be pictured like this (as opposed to the no-twist):



KK

K. Lee, P.  Yi, 1997

M

KK
Euclidean
D0-brane

Euclidean
D0-brane

magnetic
 

topological
 

suppression

center-symmetric vev coupling matching

M & KK have ‘t Hooft suppression given by:
in SU(N), 1/N-th of
the ‘t Hooft suppression 
factor

M



in a purely bosonic theory, vacuum would be a dilute M-M* plasma - 
but interacting, unlike instanton gas in 4d (in say, electroweak theory) 

electric fields are screened in a charged plasma (“Debye mass for photon”)
in the monopole-antimonopole plasma, the dual photon (3d photon ~ scalar)
obtains mass from screening of magnetic field:

“(anti-)monopole operators” 

Polyakov, 1977:    dual photon mass ~ confining string tension  

aka “disorder operators” - not locally expressed in 
terms of original gauge fields  (Kadanoff-Ceva; ‘t Hooft - 1970s) 

physics is that of Debye screening 

analogy: 

dual photon mass   ~ M-M* plasma density  2

3d Euclidean space-time

also by analogy with Debye mass:

“Polyakov model” = 3d Georgi-Glashow model or compact U(1) (lattice) 

(for us, v = pi/L)



but our theory has fermions and M and KK have zero modes 

disorder operators: 

M:

M*:

KK:

KK*:

each have 2N   zero modes w
index theorem
Nye-Singer 2000,

for physicists: 
Unsal, EP 0812.2085 

topological shift symmetry is intertwined with exact chiral symmetry

U(1) anomalous, but 

chiral symmetry

...
potential (and dual photon mass) allowed, but what is it due to? 

is not

Unsal 2007: dual photon mass is induced by magnetic “bions” - the leading 
cause of confinement in SU(N) with adjoints at small L (including SYM)



3d pure gauge theory vacuum monopole plasma
Polyakov 1977

circles = M(+)/M*(-)



4d QCD(adj) fermion attraction M-KK* at small-L 
Unsal 2007, ....

circles = M(+)/M*(-)

squares = KK(-)/KK*(+)



4d QCD(adj) bion plasma at small-L 
Unsal 2007, ....

circles = M(+)/M*(-)

squares = KK(-)/KK*(+)

blobs = Bions(++)/Bions*(--)



4d QCD(adj) bion plasma at small-L 
Unsal 2007, ....

eL 4 
2  1/g (L)   

L

  L/g (L)   
4 
2 

M + KK* = B - magnetic “bions” - 

-carry 2 units of magnetic charge 
-no topological charge (non self-dual)
(locally 4d nature crucial: no KK in 4d)

  bion stability is due to fermion             
 attraction balancing Coulomb               
 repulsion - results in scales as indicated                        
- bion/antibion plasma screening 
generates mass for dual photon

“magnetic bion confinement” operates at small-L in any theory with 
massless Weyl adjoints, including N=1 SYM (& N=1 from Seiberg-Witten theory)

it is “automatic”: no need to “deform” theory other than small-L 

first time confinement analytically shown in a non-SUSY, 
continuum, locally 4d theory
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SUSY version: ISS(henker) model of SUSY [non-]breaking
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SUSY version: ISS(henker) model of SUSY [non-]breaking

how does (supersymmetric) SU(2) theory with a single I=3/2 Weyl fermion behave? 
chiral gauge theory, asymptotically free, anomaly free, decidedly low-N...

do calculable R xS  deformations have to say anything useful about the SU(2) I=3/2 SUSY or non-SUSY 
theories? 

3 1

- broken supersymmetry, perhaps  Intriligator, Seiberg, Shenker, 1995

- or no supersymmetry breaking? Intriligator, 2005 

on the issue of chiral dynamics I started with: 

...another talk, at a later meeting
we are learning about some relevant properties and still 
studying aspects of the supersymmetric case

KK

BPS

cartoon of the “magnetic quintet:”
the leading cause of mass gap for 
the dual photon in non-SUSY 
chiral SU(2) with I=3/2  

+ + +

+ +



where we left out further subleading, at small �L, contributions. Recalling that �0 = (22 �
4nf )/3, we find:

M
�

⇤ (�L)
8�2nf

3 e�2�c̃(log 1
�L)

1/2

⇥ (less relevant contributions) , (4.40)

where we use the positive number c̃ = 2⇥c
�

�0/2.

We note that in the limit of asymptotically small L ⌅ 1/�, where the perturbative calcu-

lation is justified, the correction to the leading semiclassical result ⇤ (�L)
8�2nf

3 is dominated
by dependence15 of the bion action on the nonzero Higgs mass, ⇤ e�4�2c/g(L). As the size L
is increased, g(L) increases, hence the exponential decreases—and the corresponding “Higgs
contribution” to the dual photon mass increases. For nf < 4 and nf > 4 this e⇥ect does
not change the leading behavior dictated by the first factor on the r.h.s. of (4.40). However,
for the four Weyl adjoint theory, nf = 4, where the leading dependence of M on the S1 size
vanishes, we find that the next leading contribution to M

� , shown in (4.40) is an increasing
function of L. The other terms shown in (4.39) and omitted in (4.40) do not change this
conclusion; this is most easily seen from the fact that their dependence on the gauge coupling
is power-law, rather than exponential.

Thus, the dual photon mass M(nf = 4) increases with increasing L. Since the bion
plasma density is proportional to the square of the dual photon mass, this means that the
topological excitations do not dilute away in the decompactification limit—at least for su⌅-
ciently small �L, where this calculation is valid. Thus, according to the conjecture of [13],
which ties conformality on R4 to dilution vs. nondilution of the mass gap on R3 ⇥ S1 at
increasing L, QCD with N = 2, and nf = 4 Weyl fermions in the adjoint representation
should not exhibit conformal behavior in the large L limit. Taking the “estimate” of [13] at
face value means that the conformal window should be 4 < nf < 11/2, i.e., occur only for
the nf = 5 Weyl adjoints theory. There are loopholes in this argument, of course, pertaining
to the approach to R4 and we will discuss them in the next section.

5. Summary and discussion

In this paper, we studied in some detail the SU(2) gauge theory with nf massless adjoint
Weyl fermions on R3 ⇥ S1, our main focus being the bion mechanism of confinement of [2].
We described in detail the tools and approximations involved and discussed the stability of
magnetic bions. The relevant scales in the problem at L ⌅ � are shown on Figure 1. We used
methods and approximations familiar from QCD instanton calculations. We also studied the
behavior of the mass gap (or string tension) as a function of L at fixed � for nf = 5, 4, 3, 2.
Already the earlier leading-order semiclassical result [13] indicated that the nf = 5 theory is
perhaps conformal on R4, with (likely) a weakly-coupled infrared fixed point. The scenario,

15While the analytic expansion of eqn. (4.11) of the non-BPS action is only valid for asymptotically small
g ⇥ mH/mW ⇤ 10�3, see [35], the numerical results for the mH/mW ⇥ g dependence of the action show that
at weak coupling, g � 1, the action is a monotonically increasing and approximately linear function, hence our
conclusion is valid throughout the weak-coupling regime.
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An additional argument, based on e⇥ective field theory, is appropriate since we are work-
ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the
bions of smallest charge and action, i.e. the one most relevant at small L, involve only the
lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the
fields and can be e⇥ectively described by a 3D theory that only involves these lowest modes.14

The coupling in this 3D theory is given by g(L)/L (we do not distinguish between the energy
scales ⇥/L or 2⇥/L here, a di⇥erence that will only introduce an inessential correction). Since
the 3D theory is Higgsed at the scale ⇥/L, there is no further running of the 3D coupling
and all the physics should be expressed in terms of g(L), obeying the usual (unbroken) 4D
renormalization group equation.

Thus, we argue that the dependence of Zbion on g is given to two-loop order by:

Zbion (g(L)) ⌅
1

g
14�8nf

1-Loop (L)
e
� 8⇥2

g2
2-Loop

(L)
(1+cg2-Loop(L))

(4.37)

where ⌅ denotes coe⌅cients that play no role in determining the dependence of the dual-
photon mass M on the energy scale.
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and g(L) is the running coupling at the energy scale 1/L. Plugging the appropriate loop
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14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.

– 22 –

An additional argument, based on e⇥ective field theory, is appropriate since we are work-
ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the
bions of smallest charge and action, i.e. the one most relevant at small L, involve only the
lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the
fields and can be e⇥ectively described by a 3D theory that only involves these lowest modes.14

The coupling in this 3D theory is given by g(L)/L (we do not distinguish between the energy
scales ⇥/L or 2⇥/L here, a di⇥erence that will only introduce an inessential correction). Since
the 3D theory is Higgsed at the scale ⇥/L, there is no further running of the 3D coupling
and all the physics should be expressed in terms of g(L), obeying the usual (unbroken) 4D
renormalization group equation.

Thus, we argue that the dependence of Zbion on g is given to two-loop order by:

Zbion (g(L)) ⌅
1

g
14�8nf

1-Loop (L)
e
� 8⇥2

g2
2-Loop

(L)
(1+cg2-Loop(L))

(4.37)

where ⌅ denotes coe⌅cients that play no role in determining the dependence of the dual-
photon mass M on the energy scale.

4.4 Dual photon mass and previous small-L “estimates” of conformal window

In this subsection, we determine the dependence of the photon mass on the S1 size to two-loop
order. The dual photon mass is given by eqn. (4.6), which after substituting (4.37), reads:

M = 4⇥

↵
8Zbion(g)

g2L2
(4.38)

⌅ 1

L
exp

⇧
� 4⇥2

g22-Loop(L)
(1 + cg2-Loop) + (2nf � 4) log g21-Loop(L)

⌃
,

and g(L) is the running coupling at the energy scale 1/L. Plugging the appropriate loop
order of (2.2) into M (recall that �0 = (22� 4nf )/3,�1 = (136� 64nf )/3), we obtain:

M
�

⌅ exp

⌥

 ��0
4

�
log

1

�2L2

⇥⇤
1� �1

�2
0

log log 1
�2L2

log 1
�2L2

⌅�1

� log�L+ (4� 2nf ) log log
1

�2L2

�

⌦⇥

⇥e�2�c

⇤

log( 1
�L)

�0
2 (1+...)

⌅ (�L)
�0�2

2 e
�2�c

�
�0
2 log 1

�L

⇥1/2 �
log

1

�L

⇥4�2nf�
�1
4�0

, (4.39)

14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.

– 22 –

An additional argument, based on e⇥ective field theory, is appropriate since we are work-
ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the
bions of smallest charge and action, i.e. the one most relevant at small L, involve only the
lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the
fields and can be e⇥ectively described by a 3D theory that only involves these lowest modes.14

The coupling in this 3D theory is given by g(L)/L (we do not distinguish between the energy
scales ⇥/L or 2⇥/L here, a di⇥erence that will only introduce an inessential correction). Since
the 3D theory is Higgsed at the scale ⇥/L, there is no further running of the 3D coupling
and all the physics should be expressed in terms of g(L), obeying the usual (unbroken) 4D
renormalization group equation.

Thus, we argue that the dependence of Zbion on g is given to two-loop order by:

Zbion (g(L)) ⌅
1

g
14�8nf

1-Loop (L)
e
� 8⇥2

g2
2-Loop

(L)
(1+cg2-Loop(L))

(4.37)

where ⌅ denotes coe⌅cients that play no role in determining the dependence of the dual-
photon mass M on the energy scale.

4.4 Dual photon mass and previous small-L “estimates” of conformal window

In this subsection, we determine the dependence of the photon mass on the S1 size to two-loop
order. The dual photon mass is given by eqn. (4.6), which after substituting (4.37), reads:

M = 4⇥

↵
8Zbion(g)

g2L2
(4.38)

⌅ 1

L
exp

⇧
� 4⇥2

g22-Loop(L)
(1 + cg2-Loop) + (2nf � 4) log g21-Loop(L)

⌃
,

and g(L) is the running coupling at the energy scale 1/L. Plugging the appropriate loop
order of (2.2) into M (recall that �0 = (22� 4nf )/3,�1 = (136� 64nf )/3), we obtain:

M
�

⌅ exp

⌥

 ��0
4

�
log

1

�2L2

⇥⇤
1� �1

�2
0

log log 1
�2L2

log 1
�2L2

⌅�1

� log�L+ (4� 2nf ) log log
1

�2L2

�

⌦⇥

⇥e�2�c

⇤

log( 1
�L)

�0
2 (1+...)

⌅ (�L)
�0�2

2 e
�2�c

�
�0
2 log 1

�L

⇥1/2 �
log

1

�L

⇥4�2nf�
�1
4�0

, (4.39)

14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.

– 22 –



where we left out further subleading, at small �L, contributions. Recalling that �0 = (22 �
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We note that in the limit of asymptotically small L ⌅ 1/�, where the perturbative calcu-

lation is justified, the correction to the leading semiclassical result ⇤ (�L)
8�2nf

3 is dominated
by dependence15 of the bion action on the nonzero Higgs mass, ⇤ e�4�2c/g(L). As the size L
is increased, g(L) increases, hence the exponential decreases—and the corresponding “Higgs
contribution” to the dual photon mass increases. For nf < 4 and nf > 4 this e⇥ect does
not change the leading behavior dictated by the first factor on the r.h.s. of (4.40). However,
for the four Weyl adjoint theory, nf = 4, where the leading dependence of M on the S1 size
vanishes, we find that the next leading contribution to M

� , shown in (4.40) is an increasing
function of L. The other terms shown in (4.39) and omitted in (4.40) do not change this
conclusion; this is most easily seen from the fact that their dependence on the gauge coupling
is power-law, rather than exponential.

Thus, the dual photon mass M(nf = 4) increases with increasing L. Since the bion
plasma density is proportional to the square of the dual photon mass, this means that the
topological excitations do not dilute away in the decompactification limit—at least for su⌅-
ciently small �L, where this calculation is valid. Thus, according to the conjecture of [13],
which ties conformality on R4 to dilution vs. nondilution of the mass gap on R3 ⇥ S1 at
increasing L, QCD with N = 2, and nf = 4 Weyl fermions in the adjoint representation
should not exhibit conformal behavior in the large L limit. Taking the “estimate” of [13] at
face value means that the conformal window should be 4 < nf < 11/2, i.e., occur only for
the nf = 5 Weyl adjoints theory. There are loopholes in this argument, of course, pertaining
to the approach to R4 and we will discuss them in the next section.

5. Summary and discussion

In this paper, we studied in some detail the SU(2) gauge theory with nf massless adjoint
Weyl fermions on R3 ⇥ S1, our main focus being the bion mechanism of confinement of [2].
We described in detail the tools and approximations involved and discussed the stability of
magnetic bions. The relevant scales in the problem at L ⌅ � are shown on Figure 1. We used
methods and approximations familiar from QCD instanton calculations. We also studied the
behavior of the mass gap (or string tension) as a function of L at fixed � for nf = 5, 4, 3, 2.
Already the earlier leading-order semiclassical result [13] indicated that the nf = 5 theory is
perhaps conformal on R4, with (likely) a weakly-coupled infrared fixed point. The scenario,

15While the analytic expansion of eqn. (4.11) of the non-BPS action is only valid for asymptotically small
g ⇥ mH/mW ⇤ 10�3, see [35], the numerical results for the mH/mW ⇥ g dependence of the action show that
at weak coupling, g � 1, the action is a monotonically increasing and approximately linear function, hence our
conclusion is valid throughout the weak-coupling regime.
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An additional argument, based on e⇥ective field theory, is appropriate since we are work-
ing at small L. The BPS and leading twisted (KK) monopole solutions that constitute the
bions of smallest charge and action, i.e. the one most relevant at small L, involve only the
lowest Kaluza-Klein modes (with KK numbers 0,±1, see the explicit solutions (3.25)) of the
fields and can be e⇥ectively described by a 3D theory that only involves these lowest modes.14
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scales ⇥/L or 2⇥/L here, a di⇥erence that will only introduce an inessential correction). Since
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14Such a theory would be relatively straightforward to obtain via “deconstruction”—see [41] for a construc-
tion of the tower of twisted monopole solutions in such a framework. Since deconstruction approximates
the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
monopoles is also finite.
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the “extra” dimension only by a finite number of Kaluza-Klein modes, the corresponding tower of twisted
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QUICK REVIEW: 
What other insights has the semiclassically calculable volume-dependent 
regime given us?                                         - A FEW RECENT EXAMPLES - 



1.) let’s go back to SUSY: 

We argued that “magnetic bions” are responsible for 
confinement in N=1 SYM at small L - a particular case of our 
Weyl adjoint theory - a “Polyakov like” confinement.  
This remains true if N=1 obtained from N=2 by soft breaking.

On the other hand, we know monopole and dyon condensation 
is responsible for confinement in N=2 softly broken to N=1 at 
large L (Seiberg, Witten `94)

So, in different regimes we have different pictures of confinement 
in softly broken N=2 SYM. Both regimes are Abelian and 
quantitatively understood.  Turns out they connect via Poisson 
resummation. [EP, Unsal 2011]

small-L physics well described by a few 
twisted monopole-instantons (as we’d 
already done)  - or an infinite sum over 
charged 4d dyons

large-L physics well described by a few 
dyons - or an infinite sum over twisted 
monopole instantons

 (some wall-crossing results useful)



2.) SUSY w/ gaugino mass and deconfinement in pure YM: 

[EP, Schaefer, Unsal 2012]

pure SYM with gaugino mass on a (non-)thermal S  is a theory lab
allowing study of deconfinement transition in a controlled setting
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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calculable center-breaking
transition: 2nd order SU(2), 1st 
order SU(Nc>2),
correct theta dependence of Tc

various topological 
molecules and 
Bogomolny-Zinn-Justin 
prescription...



3.) Thermodynamics of deformed YM and QCD(adj) at small L:

R xS xS compactifications  2 1 1

thermal
non-thermal

[Simic, Unsal 2010 & Anber, EP, Unsal, 2011]

abelian (de-) confinement only-nonetheless, (I think) fascinating systems: 
2d “gases” of el. and m. charged particles, with Aharonov-Bohm 
interactions, inheriting the symmetries of their respective 4d gauge 
theories and showing a deconfinement transition 

at small S , map 4d thermal gauge theory to a 2d spin system - “affine” 
XY spin models related to cond. mat. systems studying, e.g., 2d triangular 
lattice crystal melting for SU(3)(adj)

1

“deformed” pure-YM “QCD(adj)”= YM +             
 Nf massless adjoint fermions  

4.) Bogomolny-Zinn-Justin, resurgent series, and semiclassical QFT... 
     [Unsal, Argyres...2012.xxx]

5+.) omitted older stuff - chiral gauge theories and the like... 



- two regimes in finite volume studies:

the volume-dependent regime yields semiclassically calculable 
nonperturbative dynamics of 4d gauge theories
- confinement, deconfinement, chiral symmetry breaking - a host of difficult      
  phenomena can be described semiclassically - non-gravitationally... - with a      
  clear connection to the well-defined microscopic theory

SUMMARY

 - it appears that there are working examples of large-N volume
   independence now

studying gauge dynamics at finite L can yield exact results for infinite L theory 
at large-N if EK can be “made to work”

 - analytic approaches await developments/new ideas 
   - from AdS/CFT example, problem appears equally hard (in my uneducated opinion)

 - numerical efforts just beginning, appear promising...

So, I am still puzzled by Scott’s statement that he couldn’t see symmetry
breaking in the low-T data as I have no experience with that, I would ask you
to see if you can detect that in the Ising model simulations.

Btw, see Figures 3a and 3b in the attached paper (Kosterlitz is one of the
authors, btw). They study a more complicated system where a fourth- and eight-
order symmetry breaking fields compete with each other (describing “hydrogen-
induced reconstruction of the W(100) surface”, whatever this means! - and
also shows, again, how di↵erent physical systems can be described by the same
e↵ective model). They are able to see a Z

2

symmetry breaking transition (from
a Z

4

to a Z
8

-breaking phase) in a histogram. However, note that the peaks of
the two-peak distributions in Fig. 3b are small at small volume and may require
more statistics. I wonder whether this is the problem why Scott wasn’t able to
observe this in the low-T pure Z

4

case? However, note that there are peaks on
8, 12, 16 size lattices.

In other words, I think one of the morals (not new!) is that we need to learn
how to control the error bars.

Feel free to ask questions, I will be surely online until/including Tuesday.
Sorry about getting confused about my own paper (this will probably not

be the last time).
All for now, cheers,
Erich

Nc⇤L� 1

Nc⇤L⌧ 1
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- the dynamics is very rich on its own, and offers fascinating connections    
  to, e.g., condensed matter systems - “melting”-deconfinement in QCD(adj)

the hope is that, apart from being fun, there is a continuous connection to the 4d 
“real thing”   -  in some cases seems to appear, e.g., large-nf conformality, deconfinement...  

(non-holographic)

(can be holographic)


