Supersymmetry and neutral bions:

hints about deconfinement!
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While the LHC continues the search for variants of weak-scale supersymmetry:
“natural”, “compressed”, “(super)split” or , among others

- and may or may not find evidence for it -

| will discuss another, less direct, less mainstream, and more recent,

use of supersymmetry in particle theory... albeit one that will not seen at the LHC...

main message:

It has been realized that studies of supersymmetric gauge
theories in the Iate 1990's, when properly interpreted, lead
to insights whose relevance transcends supersymmetry.

...this is really a talk about the “inner working” of QFT, not so much about
nuclear theory, applications, or about comparison with real experimental
data...



| will illustrate this use of supersymmetry by an example that may have to do with the
microscopic desctription of the thermal deconfinement transition in pure YM.

A host of strange topological molecules will be seen to be the major players
In the dynamics.

Interesting connections emerge, between topology, “condensed-matter” gases of electric
and magnetic charges (not this talk!), and attempts to make sense of the divergent
perturbation series (also not this talk!).



Outline:

I. The “SYM*/thermal YM-continuity” conjecture
2. Evidence for conjecture: calculable SYM* vs lattice

3. Novel topological excitations and their role.
Why this seems to work the way it does?



early remarks in Unsal, Yaffe 1006.2101
[ Schaefer, Unsal, EP 1205.0290, 1212.1238
Anber 1302.2641; Sulejmanpasic, EP 1307.1317;
Anber, EP 1406.1199]

DEFINITIONS:

fields: gauge bosons + gauginos Z (2 N) chiral symmetry for SU(N)
[Z (2 c_2) chiral symmetry for arbitrary G (cover group)]

M

supersymmetry and chiral symmetry explicitly broken by m

we study SYM* on Rg X SLl with periodic (supersymmetric, non-thermal)
boundary condition for gaugino

there are only two parameters to vary: L and m

the theory is asymptotically free with a strong scale A



R3xSI compactifications of SYM*

(non-) thermal

size of
circle

SYM on R3xS1: 0
Seiberg Witten 1996
Aharony, Hanany, Intriligator, Seiberg, Strassler 1997 gaugino mass m

Davies, Hollowood, Khoze 1999 >
important relevant details of instanton calculation only
ER Schaefer; Unsal, 2012 + AnberERTeeple20 4
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(non-) thermal

size of
circle

SYM on R3xS1:
Seiberg,Witten 1996

non thermal SYM
with mass deformation

0

Aharony, Hanany, Intriligator; Seiberg, Strassler 1997

Davies, Hollowood, Khoze 1999
important relevant details of instanton calculation only

R xSI compactifications of SYM*

at small m, SYM* non-thermal

compactification on S*| of size L
at m=0, partition function=Witten index, no
phase transition

at small L, upon increase of m, a first order

phase transition for all Lie groups
[but for SU(2), second order]

for groups with center, associated with center
breaking (S*| Wilson loop is order parameter)

for groups without center, no order parameter

both ('Tr Q0 ) and (Tr Qg (z#)Tr Q%(O)}

are discontinuous at the transition

gaugino mass m

ER Schaefer; Unsal, 2012 + AnberERTeeple20 4
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R3xSI compactifications of SYM*

(non-) thermal

at small m, SYM* non-thermal

compactification on S*| of size L
at m=0, partition function=Witten index, no
phase transition

at small L, upon increase of m, a first order

phase transition for all Lie groups
[but for SU(2), second order]
size of

circle for groups with center, associated with center
I

breaking (S*| Wilson loop is order parameter)

. for groups without center, no order parameter
thermal SYM

i ok doomaton| 2Ot (Tr Q) and (Tr Qe () Tr O (0))

are discontinuous at the transition

Semiclassical calculability is the most
interesting feature of this small-m,L
transition. A host of novel topological
excitations: ‘magnetic bions”(Unsal 2007)

and “neutral bions” (EP Unsal 2012,Argyres Unsal 2012...) whose raison d’etre runs deep...

are responsible for confinement and potential for S*| holonomy (& center stability, where present)

gaugino mass m

>



R3XSI compactifications of SYM*

(non-) thermal

...these effects were already in the 1990’
papers | mentioned, but because they
relied so much on supersymmetry (V ~

0 W’A2) the generality of the physics,
which transcends supersymmetry, was
missed!

size of % kot
circle & ... similar excitations exist in non-SUSY
theories (QCD(adj)) and can even be
N identified in pure thermal YM (if a
non thermal SYM . .
with mass deformation [Nolonomy expectation value is assumed)

Semiclassical calculability is the most
interesting feature of this small-m,L
transition. A host of novel topological
excitations: ‘magnetic bions”(Unsal 2007)

and “neutral bions” (EP Unsal 2012,Argyres Unsal 2012...) whose raison d’etre runs deep...

are responsible for confinement and potential for S*| holonomy (& center stability, where present)

gaugino mass m
>




3

(non-) thermal

R xSI compactifications of SYM*

A YM
CONFINED
Thermal YM
SiZe Of "-'llllI-lllll-lllll-lllll Temperature
circle
DECONFINED
non thermal SYM
with mass deformation
\ 4

Quantum transition
[semiclassical calculations]

In what follows, we shall compare
(Tr Qg), (’
at the two transitions and find stri

Thermal transition
[from lattice]

gaugino mass m

, >
behavior of

T Qr (xf)Tr Q%(O)) (and other quantities)

King similarities...



“continuity conjecture” = this phase diagram

A YM
CONFINED
Thermal YM
Size Of ‘-'lllll-lllll-lllll-lllll Temperature
circle
DECONFINED
non thermal SYM
with mass deformation
\ 4
Quantum transition Thermal transition

[semiclassical calculations] [from lattice]

gaugino mass m

At small m,L, the transition can be studied in a theoretically controlled manner. Novel
topological excitations and perturbative contributions yield competing effects,
resulting in a transition as dimensionless parameter varies % X



End of:
I. The “SYM<%*/thermal YM-continuity” conjecture

“continuity conjecture” = this phase diagram

YM

CONFINED

Thermal YM

DECONFINED

non thermal SYM
with mass deformation

Next:
2. Evidence for conjecture: calculable SYM%* vs lattice

First, review a few facts about thermal theories...



Thermal partition function is (without fermions):

Z(B3) = tr[e "], 3 =1/T = radius of ' R® x S*
3 i : | R4
R L - size of S 1
w
high-T: A I low-T:
Quark Gluon Plasma Confined Phase

strong scale

a static quark probe —— : s
o T e
O = trPeXp[i/ Aqdzx”] / } 5 s L T
Sl / / / /_./ j ’ [_Z,»
Wilson/Polyakov loop e >
- = A42/0) L2(x) K “infinite F_quark”

i‘ at X  .{// at ©
\ / .. confined _azl /
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in SU(N) theory without fundamentals, deconfinement =
breaking of global Z N center symmetry

2 CIUN

quﬁ Zqund () = trPeXp[i/ Ayda?]

Sl

usual description: high T - “broken center”

| P | this is what lattice sees...
I

<Q> i 1 to find <..> in finite volume, usual
T— 1 stat mech tricks

notice center symmetry broken at

high-T: counterintuitive, discussion of

low T - unbroken center T 1 domains/walls-Euclidean configs,
0 o —> 1 see Smilga ‘94,98+...

/

T>>1. behavior has been understood for 30 years

[Gross, Pisarski, Yaffe, 1981]
High-T perturbation theory good, gives one-loop V(pert), favors center-broken

vacuum, e.g. 9 .1 , , =coinciding eigenvalues
Vpert.(ﬂ) — _7‘-264 Z mhrﬂ ‘ (1 T O(g )) Q- 1Tr< el 0 )
n=1 -2

0 6—2'71'1/




in SU(N) theory without fundamentals, deconfinement =
breaking of global Z N center symmetry

2 CIUN
qur? Zqund Q =trPexpli /Sl Ayda?]

usual description: high T - “broken center”
perhaps more physical:

2

- v ool - Hi quark-antiquark (probe) potential
N ."_.i..__-..:-"!""‘r.):%F ' >this. is also .whatclattice. sees...
os | I string tension dlscontlnu?usly
o Ty jumps to zero [for theories
S | with center only]
o O‘.2 0‘.4 0.6 0‘.8 1 1‘.2 r [f:nc]t

vz

(&) Q(0)) ~ e 7

both discontinuities - of the trace of Polyakov loop or of its two point
function - are seen also in the semiclassical SYM* quantum transition

(for theories with nontrivial center)



calculable SYM* vs lattice

Both discontinuities - of the trace of Polyakov loop or of its two point
function - are seen also in the semiclassical SYM* quantum transition

for all theories with nontrivial center: SU(N), Sp(2N), Spin(N), E_6,E_7

we have for m<m_c
(Tr Q(z)Tr Q7(0))

~ e R = €
r>>m51
Spin(7)

~ string tension
150

For the trace of the Polyakov loop,
we have, for all groups with center:

Lattice only SU(N) and Sp(4)

[latter case motivated by “Z2 universality”]

90 R —orR

(and a constant at m>m_c)

«—— e.g., probes in the spinor of SO(7)

€.g., eigenvalues of Polyakov loop in
fundamental of Sp(12) (Z_2 center)
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calculable SYM* vs lattice

for all theories without center: G 2,F 4,E 8

Lattice only G_2 «— SYM™*: all transitions discontinuous

:q

00056( ) ——m=0 value (SYM)

(Tr Q) Tr () = ¢ 0.0056 ( 2 <«——below transition
T above transition
113 ( g )

numbers from Anber, EP, Teeple 1406.1199

correct omission of quantum-corrected monopole-
instanton vertex in 1212.1238 Schaefer, EP, Unsal

72 2
SYM* jump of Polyakov loop trace: (Tr{2) 4_0 0746 1—3,437
0 T
|
lattice jump of Polyakov loop trace: lattice /Ztud), of G,
0:03 0:03 ¢~TC / ] 0:03 ““““
[Pepe, Wiese 2006; ool ool | |

Cossu et al. 2007] ool
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Figure 4: Polyakov loop probability distributions in the region of the deconfinement

001

careful study of FSS, Ist order!

it does not make sense to compare numerical values - very different regimes -



calculable SYM* vs lattice

1. Both discontinuities - of the trace of Polyakov loop or of its two

point function - are seen also in the semiclassical SYM* quantum
transition

2. For all theories, with or without center, discontinuous
transition seen on lattice as well as in SYM* (su(2) continuous in both)

3. Theta dependence of:
-critical temperature
-discontinuty of Polyakov |OOP [lattice prompted by Anber SYM* 2013!]

-string tension (not shown, decreases with theta increase; lattice Del Debbio et al 2006)
in each case qualitatively agrees with lattice.

4. In case you wonder about quarks (as there are in the real world), a weak-coupling
semiclassical description of non-abelian chiral symmetry breaking has not been achieved (no surprise).

But if you add massive quarks to SYM* you can see two things that agree with
what lattice with massive quarks sees - Polyakov loop crossover and string
breaking at distances ~ 2/mass [EP Tin Sulejmanpasic 1307.1317]

End of: 2. Evidence ... calculable SYM* vs lattice



3. Novel topological excitations and their role.
Why this seems to work the way it does?

SYM YM

I will now tell you how this part CONFINED
of the phase diagram comes about.

Thermal YM

L

=1/Te
DECONFINED
thermal SYM
mass deformation
What is the role of SUSY? - -
theory is weakly coupled at small L - abelian!, not just asymptotic freedom
thus o)
allows us to have calculable non-perturbative effects roughly ~e  ¢°
and
calculable perturbative effects - also suppressed by m - roughly ~g*m

so the two can compete and result in a calculable transition
major players: monopole-instanton “BPS” and twisted “KK”[Piljin Yi, Kimeyong Lee, 1997]

and various "‘topological molecules made thereof”

{ )
[Unsal 2007, Unsal EP 201 |, Argyres Unsal 2012...] k,,,/
D2



| will attempt to describe the physics for SU(2)

(for a general group see paper, it is fun)

- small-L theory is abelian: SU(2) breaks to U(I):
|.SYM on S7| has perturbatively exact flat direction: holonomy
2. assume that it has a vev that breaks SU(2) to U(I)

3.assume that the vev is large, >> strong scale, so coupling is weak
(at the end, verify self-consistency: L x (strong scale) << | is required)

- no light charged states, since breaking SU(2) to U(I) by adjoint,
so coupling frozen at small value

relevant bosonic fields:A4- gauge field in compact direction -
and A - 3d gauge field - in the unbroken U(1) of SU(2), equivalent to:

O - 3d dual to Ai = “dual photon” (potential for magnetic charge)
¢ - deviation of A4 from center symmetric value Tr{2 =0

...without taking into account nonpertubative physics, these are FREE...



all (almost) dynamics is due to nonperturbative objects: vacuum of the theory is a
dilute 3d “gas” of “molecules” interacting via long-range forces due to
, scalar modulus,

O - 3d dual to Ai = “dual PhOtOI’l” (potential for magnetic charge)

¢ - deviation of A4 from center symmetric value Tr{2 =0

...without taking into account nonpertubative physics, these are FREE...

major players: monopole-instanton “BPS” and twisted “KK”

it i "o
L K Mmoo pole - usfottius s e d dwo pole - stecddon ’
[Piljin Yi, Kimeyong Lee, 1997] (JHWS..,) bﬂﬁ(éﬁf‘ ‘“”;J’L sl
(ke

o -ll}‘_:,\.\ /7 < (

BPS (2 ( XL A c2 KK
Cf“/j*‘?
BPS* = 5 EE KK+

¢ m D
these main “players’’, as they interact, can form “molecules’ - “correlated tunneling events”
g



BPS BPS+*

B: (@GP N (@

BPS KK* |
: BPS (GI3 _ _ = KK
BPS* CE = KK

all (almost) dynamics is due to nonperturbative objects: vacuum of the theory is a
dilute 3d “gas” of “molecules” interacting via long-range forces due to
(dual) photon, scalar modulus,

Tp

"m

= S eC monopole-instantons (M,KK+%)

H Ot /
:

L

N\
C==@ o 91:.

magnetic bion “molecules”
/

_— neutral bion “molecules”

m=0 case




BPS BPS+*

B: (@D

N: (GO
BPS KK* |
. BPS (= = KK
6—25() e—I—ZQO' Cr3 6_2SO 6_2¢
BPS* C& = KK

all (almost) dynamics is due to nonperturbative objects: vacuum of the theory is a
dilute 3d “gas” of “molecules” interacting via long-range forces due to
, scalar modulus,

O<=@ P monopole-instantons (M,KK+%)

the ones with arrows: fermion zero modes
carry magnetic charge |

=9

_~ magnetic bion “molecules”
carry magnetic charge 2
[mass gap; breaking discrete chiral symmetry]

O==@

_— neutral bion “molecules”
carry scalar (modulus) charge 2

[Z2 center symmetry stabilization]

m=0 case [aside: BB*~renormalons? ...“resurgence”]




(BPS-KK* “molecules”) “magnetic bions” - confinement!

B: (&P B (D

BPS KK* KK BPS*

B : —2850 ,—120
e QSoe—I—ZQO‘ € e

m=0 case - physics is that of 3d Debye screening - mass gap and confinement:

if nonperturbative saddle points are not summed over...

magnetic bion gas: classical
3d Coulomb plasma

@ @ A
© @ @ “ % -
> = : .
@ e
Copt <
(8 9 R _
_ A
O RT

\/ o~ jj' .@og R - 2d Coulomb potential



(BPS-KK* “molecules”) “magnetic bions” - confinement!

B: (&P B (D

BPS KK* KK BPS*

B : —2850 ,—120
e QSoe—I—ZQO‘ € e

m=0 case - physics is that of 3d Debye screening - mass gap and confinement:

... in reality, B-B* plasma screens magnetic field of external probes

magnetic bion gas: classical §—
3d Coulomb plasma T
I - Ce—(®
- 1IN <= o . “string worldsheet”:
) @ @D T % ;?;' _ U 1\ © B-B* dipole layer
>, < - b Y 9 A VAN
@ A k OC 1\

[Polyakov 1977]
“monopole condensation” is due to composite

“molecular” objects - this theory does not confine in 3d limit \/ﬁ VP @09 % *"""‘7 >~ R
[Unsal 2007] ULC’ j



(BPS-KK* “molecules”) “magnetic bions” - confinement!

B: (&P o —250 ,+i20 B: (1D ), —280,—i20

BPS KK*%

(BPS-BPS*,KK-KK* “molecules”) “neutral bions”

in pure-SYM: center-stabilizing

BPS BPS*

N (@ID) e 250020 nw (CIID) o—250,+2¢

magnetic bion gas: classical
3d Coulomb plasma

>
< =

KK BPS* A

\

magnetic bions: break chiral Z_2, mass gap for dua\ photon

neutral bions: stabilize center Z_2, mass gap for modulus
(phi=0 - center stable)

Our interest is in the center Z_2 (as chiral Z_2 broken at m>0)

Recall it is the center Z _2 which becomes the thermal
center symmetry of pure YM when m goes to infinity.



1 will now tell you how this part
of the phase diagram comes about.

\ SYM YM

r @xa) :?O CO N FI N E D Thermal YM
. “-llllll-llIII-IIIII-IIIII#LC
& Q\\ =1/Tc
" p DECONFINED
O—@ .:>X \\\\_ tgzrsrgec‘jlesf‘c\)(rl\rgation
X@ @ : .
ﬁ i monopole-instantons (BPS,KK+%*)
o O
=@ L
O ﬁ magnetic bion “molecules”
m>0 case: breaks chiral symmetry, yields: )

[breaking of discrete chiral symmetry]

I. extra nonperturbative contributions _
from monopole-instantons (no fermion zero modes) neutral bion “molecules”

. . . ] o [stability of Z2 center symmetry [non-thermal]]
2. extra perturbative Gross-Pisarski-Yaffe-like contribution

(small since m is small)

small SUSY breaking “m” allows us to have perturbative and nonperturbative

contributions compete while under theoretical control, resulting in a center-

breaking transition as LZ/L\3 becomes O(l) (2nd order for SU(2); Ist for SU(N)...)
— =8,so if at m>5A decoupled, as quarks in QCD, 1/L. = A\/8A/m =» T.~A




main result:

(Quantum phase transition, second order for SU(2), first order in all

other gauge groups, with causes that are well understood and under
theoretical control - “fight” between topological molecules and
perturbative contribution to holonomy potential - appears continuously
connected to thermal deconfinement transition.

“fight” of nonperturbative vs. perturbative in SYM¥, e.g. in SU(2):

—e 9°(1) (cosh2¢ — cos20) + —e 9°() (coshpcoso) — —¢

7.3 L2 L
center-stabilizing center-breaking (sigma=Pi is min) center-breaking
“bions” - Il and | “monopole-instantons” GPY potential shown before,

Mo ft expanded for small phi

72A3 dimensionless parameter controlling the transition

For a general gauge group, potential looks like this (will not explain notation):

T T
N Kkal - ape@te)beos (af —af) - 0!) —em Y ke %P cos (a;; o+

0 -+ 27Tu>
a=0,b=0 a=0

C2



instead of formulae, plot of potential due to “neutral bions”> for SU(3):

Z3-symmetric vs Z3-breaking as ng’\g increases (deviation of () EVs from Z3)

I2I2.I2?3‘8‘

End of: Novel topological excitations and their role.
Why this seems to work the way it does?

Honestly, | do not know.

Some indications:



Why this seems to work the way it does?

Honestly, | do not know for sure. Some thoughts:

Same objects that were identified in SYM also exist in pure thermal YM.
What is lost is the theoretical control - but not all are bothered ... the(ir) logic:

I. Lattice data show that the Tr(Polyakov loop) is not =1 immediately after the
transition, but is quite a bit smaller (and nonzero, of course).

2. Assuming a semiclassical situation with small fluctuations, this would mean that

A_4 is nonzero, eigenvalues are not on top of each other, so theory can still be
thought as abelianized.

3. Then all the monopoles, KK monopoles pictured above exist. Nonperturbative

fluctuations should be important for the dynamics, hence let us model the vacuum
as a liquid thereof - not dilute gas.

4. Use some Ilattice measurements (caloron densities) to fix the density of the BPS
and KK monopole-instantons (how a model parameter). Try to compute something
to compare with other data.

Shuryak, Sulejmanpasic 2013: instanton-liquid type model of the pure YM deconfinement
transition, incorporating “molecular® contributions (neutral bions! - use “excluded volume” not
SUSY or BZJ prescription... from old instanton-liquid model of T=0 QCD vacuum). The model gives
order-of-magnitude agreement with lattice measurements of electric and magnetic masses.

EP: OK,it is a model; but the lattice data is poor (and gauge dependent) perhaps can improve!



Why this seems to work the way it does?

Honestly, | do not know for sure.

Some thoughts:

Same objects that were identified in SYM also exist in pure thermal YM,
assuming...see comments on previous page...

Experiment (lattice) can test the entire phase diagram, using present-day technology, at least
sufficiently far from semiclassical regime (that's hard on the lattice). Since m is nonzero, no
need to take chiral limit for gaugino, so easier than SYM.

Find something that blatantly contradicts continuity assumption.

Is this “Resurgence in action™?



