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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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Supersymmetry and neutral bions: 
hints about deconfinement?
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Figure 2: The Euclidean vacuum of the small-m, L theory can be described as a plasma of monopole-
instantons (gray circles) and anti-monopole-instantons (white circles) with fermionic zero modes (un-
paired arrows). The paired events are magnetic and neutral bions. Neutral bion amplitudes generate
repulsion among the eigenvalues of the Wilson line and magnetic bions generate a mass gap for gauge
fluctuations via a generalization of the Polyakov mechanism to a locally 4d theory.

which generates the bosonic potential and the mass gap for bosonic fluctuations is due to
bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z

2h_ ! Z
2

. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
classical monopole and bion amplitudes also exist in non-supersymmetric theories, where the
bosonic potential cannot be extracted from the super-potential [2, 12–14].

1.3 Phase transition in the small m-L regime and universal aspects

There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:

1. Neutral bions always generate repulsion among the eigenvalues of the Wilson line around
S1. For theories with a ZN center symmetry, the repulsion leads to a ZN -symmetric
distribution, while for theories without a center symmetry, it leads to a non-degenerate
distribution of eigenvalues, as we show explicitly for G

2
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3 1R xS  compactifications of SYM* (with soft breaking mass) 
exhibit a semiclassically calculable phase transition which 
appears continuously connected to the thermal deconfinement 
transition in pure YM - in particular, same “universality” class for 
all gauge groups 

reveal novel topological molecules responsible for center 
stability -  “neutral bions” 
(within a theoretically controlled setting, not a model!)

possible lessons for YM deconfinement models? 
(Shuryak et al work)

summary of main claims:
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super YM = “SYM” = YM + massless quark, an adjoint Weyl “gaugino”

  SYM* = SYM + mass for the adjoint quark, i.e. with a “gaugino mass”

DEFINITIONS: 

• ZN  center symmetry, order parameter = Wilson line $

•  L> Lc:  unbroken center symmetry
                
               
             confined phase

• L < Lc:  broken center symmetry

               
              deconfined plasma phase      

�tr �n⇥ = 0

Example 1 : Yang �Mills on R3 ⇥ S1

⇥tr �n⇤ �= 0

circumference L

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)

Aperiodic gauge rotations, h ∈ ZN ‘t Hooft
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L
with periodic (supersymmetric, non-thermal)
boundary condition for gaugino 

we study SYM* on 

1

2

fields: gauge bosons + gauginos  Z_(2 N) chiral symmetry for SU(N)

there are only two parameters to vary:  L and m

m

the theory is asymptotically free with a strong scale 

supersymmetry and chiral symmetry explicitly broken by m
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Figure 1. The conjectured phase diagram of SYM⇤ in them-L plane. The calculable center-symmetry
breaking quantum phase transition, occurring at small-m,L—the left-hand corner of the diagram,
shown by a thick red line—is conjectured to be continuously connected, upon decoupling the gaugino,
to the thermal deconfinement transition in pure YM theory, shown by the thick black line on the right.
The dimensionless parameter which is varied, Eq. (3.53), is cm ⇠ m

L2⇤3 , with
m
⇤ and L⇤ small. For

all gauge groups, the calculable quantum phase transition occurs for cm of order unity. It should be
possible to study this phase diagram on the lattice, see Section 1.5.

SU(2) gauge theory. A center-symmetry-breaking quantum phase transition was shown to

occur as the dimensionless parameter cm ⇠ m
L2

⇤

3 is increased.8 In SU(2), the Z
2

-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z
2

universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or L
cr

at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m,L regime was also found to occur in SYM⇤

theories without a center. The case of G
2

SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G
2

, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of c
m

is in Eq. (3.53).
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Here P denotes path ordering and the gauge field is taken in the representation R.1 The

trace of the Polyakov loop, Tr⌦R(xµ), is gauge invariant. Its insertion in the thermal parti-

tion function corresponds to the insertion, at xµ, of an infinitely heavy color-charged probe

(“quark”) in the representation R. The correlator of two Polyakov loops

hTr⌦R(xµ)Tr⌦
†
R(0)i = e�

V (r,T )
T , (1.2)

placed a distance r = |xµ| apart plays an important role in thermal Yang-Mills theory: when

computed with the thermal partition function, it measures the potential of the two heavy

quark sources, as already indicated on the r.h.s. of (1.2) [3, 4].

At low temperature, in the confined phase, one expects a linear confining potential be-

tween the quarks, i.e. V (r, T ) = �(T )r. Thus, as r ! 1, we have hTr⌦R(xµ)Tr⌦
†
R(0)i ! 0

and thus hTr⌦Ri = 0. At high temperature, in a deconfined phase, one expects a screened

Coulomb (i.e. Yukawa) potential between the heavy quark probes, i.e. V (r, T ) = v+ b e�m

e

r

r ,

where v and b are constants and me is the electric Debye screening mass. Thus, as r ! 1,

hTr⌦R(xµ)Tr⌦
†
R(0)i 6= 0, hence hTr⌦Ri 6= 0. The conclusion is that the Polyakov loop

(say in the fundamental of SU(N)) has a qualitatively di↵erent behavior in the low- and

high-temperature phases: its two-point correlator behavior is qualitatively di↵erent and its

expectation value changes from hTr⌦Ri = 0 in the confined phase to hTr⌦Ri 6= 0 in the de-

confined phase. This behavior of the Polyakov loop (1.1) expectation value and its correlator

(1.2) have been observed in lattice simulations of pure Yang-Mills theory for many years.

The high-temperature behavior of hTr⌦Ri and of its correlator has been understood also

for many years. One expects that at T � ⇤, where ⇤ is the strong coupling scale of the

theory, perturbation theory is a good guide to the dynamics, at least as far as the behavior

of the Polyakov loop is concerned. Gross, Pisarski, and Ya↵e (GPY) [5] used this intuition

and computed the one-loop Casimir potential for the eigenvalues of ⌦R.2 As ⌦R is a unitary

operator, its eigenvalues ei� lie on the unit circle. GPY found that, at asymptotically high

T , where the perturbative calculation is valid, the Casimir potential leads to clumping of

the eigenvalues � and thus, since all eigenvalues � are the same, to hTr⌦Ri =
P

� e
i� 6= 0.

In gauge theories with a non trivial center of the gauge group, e.g. ZN for SU(N), the

transition from the confining phase, hTr⌦Ri = 0, to the deconfined phase, hTr⌦Ri 6= 0,

is thus associated with center symmetry breaking. The trace of the Polyakov loop in a

representation R which transforms under the center serves as an order parameter [6].3

1In the Introduction, it is convenient to think of SU(N) pure Yang-Mills theory, with R taken to be in

the fundamental representation. For future use, we label the S1 direction by x3 and the rest of the Euclidean

directions by xµ.
2For explicit expressions, see Appendix A.2, Eqs. (A.15,A.17).
3Recall that in SU(N), the Z

N

center acts on the fundamental Polyakov loop Tr⌦
F

! ei
2⇡k
N Tr⌦

F

. The

centers of all Lie groups are listed in Table 1. It is somewhat counterintuitive to have symmetry break at high

temperature. In particular, analogy with usual phase transitions leads one to expect domains and domain

walls associated with Z
N

breaking and the question what physical objects at high-T they correspond to has

been discussed in the literature (e.g. [7–11]). We only note that the trace of the Polyakov loop is, indeed, seen
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2

-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z
2

universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or L
cr

at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m,L regime was also found to occur in SYM⇤

theories without a center. The case of G
2

SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G
2

, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of c
m
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Here P denotes path ordering and the gauge field is taken in the representation R.1 The

trace of the Polyakov loop, Tr⌦R(xµ), is gauge invariant. Its insertion in the thermal parti-

tion function corresponds to the insertion, at xµ, of an infinitely heavy color-charged probe

(“quark”) in the representation R. The correlator of two Polyakov loops

hTr⌦R(xµ)Tr⌦
†
R(0)i = e�

V (r,T )
T , (1.2)

placed a distance r = |xµ| apart plays an important role in thermal Yang-Mills theory: when

computed with the thermal partition function, it measures the potential of the two heavy

quark sources, as already indicated on the r.h.s. of (1.2) [3, 4].

At low temperature, in the confined phase, one expects a linear confining potential be-

tween the quarks, i.e. V (r, T ) = �(T )r. Thus, as r ! 1, we have hTr⌦R(xµ)Tr⌦
†
R(0)i ! 0

and thus hTr⌦Ri = 0. At high temperature, in a deconfined phase, one expects a screened

Coulomb (i.e. Yukawa) potential between the heavy quark probes, i.e. V (r, T ) = v+ b e�m

e

r

r ,

where v and b are constants and me is the electric Debye screening mass. Thus, as r ! 1,

hTr⌦R(xµ)Tr⌦
†
R(0)i 6= 0, hence hTr⌦Ri 6= 0. The conclusion is that the Polyakov loop

(say in the fundamental of SU(N)) has a qualitatively di↵erent behavior in the low- and

high-temperature phases: its two-point correlator behavior is qualitatively di↵erent and its

expectation value changes from hTr⌦Ri = 0 in the confined phase to hTr⌦Ri 6= 0 in the de-

confined phase. This behavior of the Polyakov loop (1.1) expectation value and its correlator

(1.2) have been observed in lattice simulations of pure Yang-Mills theory for many years.

The high-temperature behavior of hTr⌦Ri and of its correlator has been understood also

for many years. One expects that at T � ⇤, where ⇤ is the strong coupling scale of the

theory, perturbation theory is a good guide to the dynamics, at least as far as the behavior

of the Polyakov loop is concerned. Gross, Pisarski, and Ya↵e (GPY) [5] used this intuition

and computed the one-loop Casimir potential for the eigenvalues of ⌦R.2 As ⌦R is a unitary

operator, its eigenvalues ei� lie on the unit circle. GPY found that, at asymptotically high

T , where the perturbative calculation is valid, the Casimir potential leads to clumping of

the eigenvalues � and thus, since all eigenvalues � are the same, to hTr⌦Ri =
P

� e
i� 6= 0.

In gauge theories with a non trivial center of the gauge group, e.g. ZN for SU(N), the

transition from the confining phase, hTr⌦Ri = 0, to the deconfined phase, hTr⌦Ri 6= 0,

is thus associated with center symmetry breaking. The trace of the Polyakov loop in a

representation R which transforms under the center serves as an order parameter [6].3

1In the Introduction, it is convenient to think of SU(N) pure Yang-Mills theory, with R taken to be in

the fundamental representation. For future use, we label the S1 direction by x3 and the rest of the Euclidean

directions by xµ.
2For explicit expressions, see Appendix A.2, Eqs. (A.15,A.17).
3Recall that in SU(N), the Z

N

center acts on the fundamental Polyakov loop Tr⌦
F

! ei
2⇡k
N Tr⌦

F

. The

centers of all Lie groups are listed in Table 1. It is somewhat counterintuitive to have symmetry break at high

temperature. In particular, analogy with usual phase transitions leads one to expect domains and domain

walls associated with Z
N

breaking and the question what physical objects at high-T they correspond to has

been discussed in the literature (e.g. [7–11]). We only note that the trace of the Polyakov loop is, indeed, seen
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change at the transition

Semiclassical calculability is the most interesting feature of this small-m,L 
transition: not a model but under theoretical control!
A host of novel topological excitations: “magnetic bions”(Unsal 2007)
and “neutral bions” (EP Unsal  2012, Argyres Unsal 2012...) whose raison d’etre runs deep...
are responsible for confinement and potential for S^1 holonomy (& center stability, where present)
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SU(2) gauge theory. A center-symmetry-breaking quantum phase transition was shown to

occur as the dimensionless parameter cm ⇠ m
L2

⇤

3 is increased.8 In SU(2), the Z
2

-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z
2

universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or L
cr

at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m,L regime was also found to occur in SYM⇤

theories without a center. The case of G
2

SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G
2

, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of c
m

is in Eq. (3.53).
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Here P denotes path ordering and the gauge field is taken in the representation R.1 The

trace of the Polyakov loop, Tr⌦R(xµ), is gauge invariant. Its insertion in the thermal parti-

tion function corresponds to the insertion, at xµ, of an infinitely heavy color-charged probe

(“quark”) in the representation R. The correlator of two Polyakov loops

hTr⌦R(xµ)Tr⌦
†
R(0)i = e�

V (r,T )
T , (1.2)

placed a distance r = |xµ| apart plays an important role in thermal Yang-Mills theory: when

computed with the thermal partition function, it measures the potential of the two heavy

quark sources, as already indicated on the r.h.s. of (1.2) [3, 4].

At low temperature, in the confined phase, one expects a linear confining potential be-

tween the quarks, i.e. V (r, T ) = �(T )r. Thus, as r ! 1, we have hTr⌦R(xµ)Tr⌦
†
R(0)i ! 0

and thus hTr⌦Ri = 0. At high temperature, in a deconfined phase, one expects a screened

Coulomb (i.e. Yukawa) potential between the heavy quark probes, i.e. V (r, T ) = v+ b e�m

e

r

r ,

where v and b are constants and me is the electric Debye screening mass. Thus, as r ! 1,

hTr⌦R(xµ)Tr⌦
†
R(0)i 6= 0, hence hTr⌦Ri 6= 0. The conclusion is that the Polyakov loop

(say in the fundamental of SU(N)) has a qualitatively di↵erent behavior in the low- and

high-temperature phases: its two-point correlator behavior is qualitatively di↵erent and its

expectation value changes from hTr⌦Ri = 0 in the confined phase to hTr⌦Ri 6= 0 in the de-

confined phase. This behavior of the Polyakov loop (1.1) expectation value and its correlator

(1.2) have been observed in lattice simulations of pure Yang-Mills theory for many years.

The high-temperature behavior of hTr⌦Ri and of its correlator has been understood also

for many years. One expects that at T � ⇤, where ⇤ is the strong coupling scale of the

theory, perturbation theory is a good guide to the dynamics, at least as far as the behavior

of the Polyakov loop is concerned. Gross, Pisarski, and Ya↵e (GPY) [5] used this intuition

and computed the one-loop Casimir potential for the eigenvalues of ⌦R.2 As ⌦R is a unitary

operator, its eigenvalues ei� lie on the unit circle. GPY found that, at asymptotically high

T , where the perturbative calculation is valid, the Casimir potential leads to clumping of

the eigenvalues � and thus, since all eigenvalues � are the same, to hTr⌦Ri =
P

� e
i� 6= 0.

In gauge theories with a non trivial center of the gauge group, e.g. ZN for SU(N), the

transition from the confining phase, hTr⌦Ri = 0, to the deconfined phase, hTr⌦Ri 6= 0,

is thus associated with center symmetry breaking. The trace of the Polyakov loop in a

representation R which transforms under the center serves as an order parameter [6].3

1In the Introduction, it is convenient to think of SU(N) pure Yang-Mills theory, with R taken to be in

the fundamental representation. For future use, we label the S1 direction by x3 and the rest of the Euclidean

directions by xµ.
2For explicit expressions, see Appendix A.2, Eqs. (A.15,A.17).
3Recall that in SU(N), the Z

N

center acts on the fundamental Polyakov loop Tr⌦
F

! ei
2⇡k
N Tr⌦

F

. The

centers of all Lie groups are listed in Table 1. It is somewhat counterintuitive to have symmetry break at high

temperature. In particular, analogy with usual phase transitions leads one to expect domains and domain

walls associated with Z
N

breaking and the question what physical objects at high-T they correspond to has

been discussed in the literature (e.g. [7–11]). We only note that the trace of the Polyakov loop is, indeed, seen
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SU(2) gauge theory. A center-symmetry-breaking quantum phase transition was shown to

occur as the dimensionless parameter cm ⇠ m
L2

⇤

3 is increased.8 In SU(2), the Z
2

-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z
2

universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or L
cr

at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m,L regime was also found to occur in SYM⇤

theories without a center. The case of G
2

SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G
2

, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of c
m

is in Eq. (3.53).
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Both discontinuities - of the trace of Polyakov loop or of its two point 
function - are seen also in the semiclassical SYM* quantum transition 
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Figure 3. The discontinuous change of the string tension (in units of m0R�1, see Section 3.3 for
a definition of the scales and Section 4.1 for more details) for probes in the spinor representation of
Spin(7) as a function of cm ⇠ m

L2⇤3 .

example of the change of the eigenvalue distribution for the Polyakov loop in the fundamental

of Sp(12).

The exceptional groups with center symmetry, E
6

and E
7

, are studied in Section 4.3. We

find, respectively, a discontinuous transition associated with Z
3

and Z
2

breaking at some c
cr

.

The exceptional groups without center symmetry, G
2

, F
4

and E
8

are studied in Section 4.4.

The results for F
4

and E
8

are similar to the G
2

case already studied in [2]. In each case, there

is a discontinuous behavior of the eigenvalues of ⌦, as already mentioned, seen on the lattice

for thermal G
2

YM theory [38, 39].

Finally, the ✓-angle dependence of c
cr

and of the discontinuity of the Polyakov loop,

|Tr�⌦|, is studied in a few representative cases for each gauge group.12 In each case it

is found that, for 0 < ✓ < ⇡, c
cr

(✓) < c
cr

(0) and that |Tr�⌦(✓)| > |Tr�⌦(0)|. The ✓-

dependence of c
cr

and the discontinuity of the Polyakov loop is illustrated on Fig. 4 for the

Spin(6) case.

We note that [36] gave theoretical arguments for the expected behavior of Tc as a function

of ✓ using large-N arguments, which was confirmed by their results. A somewhat di↵erent-

flavor (based on topological excitations and topological interference) argument for the behav-

ior of Tc as a function of ✓ for thermal transitions in deformed YM theory on R2 ⇥ S1L ⇥ S1�
was given in [32]; the qualitative behavior also agrees with what we find here and with lattice

observations.

Finally, we mention another quantity whose ✓-dependence can be studied on the lattice:

the string tension inferred from the Polyakov loop two-point correlator, like the one plotted

on Fig. 3. From the results of [2], it is easy to see that the string tension for SU(2) decreases

upon increase of ✓, but the dependence on the topological angle is weak, at least in the

semiclassical regime, where it is suppressed by additional powers of g2. The SU(N)-results

of [35] imply that ✓ dependence of the string tension is similarly suppressed. We have also

checked that this is the case for Sp(2N), but leave a detailed study for the future. Lattice

studies of the string tension’s topological angle dependence exist, see [52] for a study in

12Except for E7 and E8, where extracting the ✓-dependence is numerically challenging due to the high rank.
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parametrization of (4.3) with A = 2. Also recall that our e↵ective three-dimensional descrip-

tion of the dynamics is valid at scales r > O(R), the inverse lowest W-boson mass. Hence, in

the entire region of validity of the three dimensional description, the parametrization given

in (4.3) is expected to hold.

Next, we recall that the scale m�1

0

is exponentially large compared to the compactifica-

tion radius R, as m�1

0

⇠ Re
8⇡2

c2g
2 (the Debye screening length in the magnetic bion plasma,

responsible for the dual photon mass, is of order (Rm
0

)�
1
3 in units of R). At scales between R

and m�1

0

, the exponential is negligible and the behavior of the correlator is determined by the

1/r term. On the other hand, at scales larger than the screening length, the Polyakov loop

correlator is dominated by the exponential term. Thus, as in the confined phase of thermal

Yang-Mills theory, we have

hTr⌦(x)Tr⌦†(0)i
�

�

�

�

r�m�1
0

' e�
�̂m0
R

rR ⌘ e�� rR . (4.6)

The above equation defines the “string tension” in the relevant representation, � = �̂m
0

R�1.

The numbers �̂ shown for the various groups will correspondingly be called “dimensionless

string tensions”.

Above the transition, the field bbb (for all groups we study) acquires an expectation value

and the correlator (4.3) acquires the constant term D
cr+ . This term dominates the behavior

of hTr⌦(x)Tr⌦†(0)i at large distances and leads to a vanishing string tension at c > c
cr

. In

all theories we study in this paper, this vanishing is discontinuous. This behavior of the string

tension as a function of the dimensionless cm, for one representative case, SO(7), is displayed

on Fig. 3, already shown in the Introduction.

4.2 The symplectic and orthogonal groups

The Sp(4) theory is one of the few non-SU(N) pure Yang-Mills theories in R4 whose thermal

physics has been studied on the lattice. Despite the fact that the Z
2

center symmetry allows

for a continuous transition in the 3d Ising universality class, it was found that the transition

is first order [47, 75]. The authors conjectured that the large change of the number of relevant

degrees of freedom below and above the transition in an Sp(2N) (as well as SO(N)) theory

may be responsible for a first order nature of the transition (there are order N0 confined

degrees of freedom while the number of gluons liberated above Tc scales as N2).34 The authors

also conjectured that the transition is first order for all gauge groups but SU(2). Indeed, we

shall see that our findings—if, indeed, our quantum phase transition continuously connects

to the corresponding deconfinement transition in pure YM—confirm this.

We note also that the deconfinement phase transition in Sp(4) and E
7

, both with a Z
2

center, was studied in the framework of the functional renormalization group, see Ref. [16],

whose results also indicated a first order transition. The small-S3 ⇥ S1� studies mentioned in

34At large N a Z
N

! U(1) center symmetry emerges in SO(N) and Sp(2N) theories and one expects a

discontinuous transition similar to the one in SU(N) theories, see [76].
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we have for c<c* = O(1)
and ~ constant at c>c* 

e.g., probes in the spinor of SO(7)
string tension discontinuously 
changes 

 Evidence? - calculable SYM* vs lattice

calculable transition is continuous only for SU(2), as known from lattice
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Figure 2. An example of the discontinuous change of the Polyakov loop eigenvalues: the Z2 center-
symmetric distribution of the eigenvalues of ⌦, in the fundamental representation of Sp(12), for cm <
ccr ⇠ 0.614 (left panel) and the center-broken distribution for cm = c+cr (right panel). The eigenvalues

on the right panel are plotted for g2

4⇡ = 0.4 to visually enhance the center-breaking e↵ect. The
discontinuous change of the eigenvalue distributions across ccr looks similar for all gauge groups.

upon increasing cm was found. This is also the behavior seen on the lattice for thermal G
2

YM theory [38, 39].9

1.4 Outline and summary

The main purpose of this paper is to continue the study initiated by [1] and complete it for

all gauge groups. We ask whether the mechanism behind the discontinuous transition in the

behavior of the eigenvalues of ⌦ is indeed universal, as anticipated in [2], and whether there

is qualitative agreement of the features of the transition with all available lattice studies of

thermal pure-YM theories.

We find that the answer is “yes” on both accounts. For all simple Lie groups, except for

SU(2), we find a discontinuous transition which occurs for cm of Eq. (3.53) of order unity. The

physical mechanism behind this transition is, in all cases, the same, and the potential for the

Polyakov loop ⌦ has the schematic form (1.4). For all groups, it turns out that for cm below

and near the critical value, c
cr

, the perturbative GPY contribution is suppressed relative to the

two nonperturbative terms in (1.4). The transition is thus driven by a competition between

the second and third terms. The second term is also present in SYM theory on R3⇥S1, and is

due to novel topological excitations: magnetic bions and neutral (or center stabilizing) bions,

discussed earlier in the literature [40–42]. The third term is due to monopole-instantons and

has a center-destabilizing e↵ect, increasing with the gaugino mass.

The explicit form of the three terms comprising V (⌦) of Eq. (1.4), for arbitrary gauge

group, is given later in this paper: the O(g2m2) GPY term in Eq. (3.50), the supersymmetric

nonperturbative O(e
� 2a

g

2 ) term due to magnetic and neutral bions in Eq. (3.35), and the

O(me
� a

g

2 ) term due to monopole-instantons in Eq. (3.46). Further, it turns out that a = 8⇡2

c2g2
,

9We revisit this theory in Section 4.4.1, correcting small omissions in [2] and giving more discussion.
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Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This
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Tr Tr
c<c* c>c*

For the trace of the Polyakov loop,  for all groups with a center, a 
discontinuous center-breaking transition, 
e.g., eigenvalues of Polyakov loop in fundamental of Sp(12) (Z_2 center)

Lattice only SU(N) and Sp(4) 

 Evidence? - calculable SYM* vs lattice

Sp(4) lattice study,  Pepe et al 2007, 
motivated by  “Z2 universality”
still discontinuous transition!

Thursday, September 4, 14



Lattice only G 
 

 For all theories without center: G , F , E , also a first order transition

SYM*: all transitions discontinuous
0 2 4 6 8 10 12 14 16 18

x 104

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3: Monte Carlo history of the Polyakov loop from a numerical simulation on
a 203 × 6 lattice at 7/g2 = 9.765.

very close to zero, i.e. the free energy of a static quark is very large (although not
infinite). As one approaches the phase transition, a second peak emerges. This
peak corresponds to the high-temperature phase and has a much larger value of
the Polyakov loop, i.e. a static quark now has a much smaller free energy. As we
further increase the temperature (by increasing 7/g2) the peak corresponding to the
low-temperature phase disappears and we are left with the deconfined peak only.
We have varied Nt to check that the critical bare coupling 7/g2

c varies accordingly,
but we have not attempted to extract the value of the critical temperature in the
continuum limit.
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Figure 4: Polyakov loop probability distributions in the region of the deconfinement
phase transition in (3+1)-d G(2) Yang-Mills theory. The temperature increases from
left to right. The simulations have been performed on a 203 × 6 lattice at the three
gauge couplings 7/g2 = 9.75, 9.765, and 9.775 (left to right).

In the high-temperature phase we have observed tunneling events between differ-
ent minima of the effective potential for the Polyakov loop. In SU(3) gauge theory
these would simply represent the three different ZZ(3) copies of the deconfined phase.

11

[Pepe, Wiese 2006; 
 Cossu, Pica et al. 2007] 
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g2
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. (4.7)

To obtain the second number above, we substituted the expectation value of h~�i, Eq. (4.2)
with the vevs of ~b0 as given in the previous paragraph, into Eq. (4.1). It is interesting to
compare Eq. (4.7) to the results obtained in the lattice simulations of pure Yang Mills G

2

theory [32, 34]. Fig. 4 of Pepe et al. [32] shows histograms of htr⌦i in the low and high
temperature phase. The results show that htr⌦i changes from slightly negative values below
Tc to large positive values above Tc, in agreement with Eq. (4.7).

5. Weak vs. strong coupling non-trivial Wilson line holonomy

We would like to conclude with a general discussion of the relation between semi-classical
theories of confinement, discussed in this work, and strong coupling confinement, studied on
the lattice. For simplicity we consider SU(Nc) gauge theory. A question that is not well
understood is whether the expectation value of the trace of the Wilson line vanishes in the
confined phase because

a) the Wilson line is dominated by gauge configurations in which its eigenvalues are located
at the Nc roots of unity with small fluctuations around them. This is the adjoint Higgs
regime, see Fig. 3b.

b) fluctuations randomize the eigenvalues over the unit circle, and there is no preferred
background, as in Fig. 3c.

This question is a source of confusion especially when one considers the phase transition
in pure YM theory. There, the transition occurs at the strong scale, hence there is no
parametric separation of scales to justify an e↵ective field theory in the transition regime.9

This regime is often modelled by a potential which breaks the center symmetry in the high
temperature deconfined phase and restores it in the low temperature confined phase. In the
limit of asymptotically high T the potential can be justified via a perturbative calculation [3],
but at low T the coupling is strong and one cannot systematically derive a potential. Ref. [37]
discusses this issue and proposes that option a) is operative in the low T confined regime of
Yang-Mills theory.

First, we emphasize that both a) and b) take place in the confined phase of a large class
of gauge theories on R3 ⇥ S1

L, where S1

L is a spatial circle. Examples include N = 1 SYM and

9An exception is the second order transition of pure SU(2) gauge theory. In this case universality arguments

imply the existence of a 3d e↵ective theory for the Wilson line [38]. We also note that one can always define

an e↵ective potential for the Wilson line. This potential simply determines the free energy as a function of the

average Wilson line — it is not the potential in a local e↵ective field theory.
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The g2 dependence gets contributions from both tree-level and one-loop corrections. The

trace of the Polyakov loop in the fundamental representation at the supersymmetric minimum
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By studying the total potential, we find that the G
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group experiences a first order phase

transition at the critical value c
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= 3.174. The trace of the Polyakov loop in the fundamental

representation at the broken minimum is
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Polyakov loop correlator hTr⌦(x)Tr⌦(y)†i is now, instead of (4.3),
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Naturally, as expected in a theory without center symmetry, the above correlators show that

there is no linear confinement of fundamental charges, but rather “string breaking” (in the

lattice strong-coupling expansion, this can be seen in the study of the fundamental Wilson

loop for G
2

: a transition from area to perimeter law takes place for quark separations of the

order of 8 lattice spacings, to leading order in the strong-coupling expansion [77]). Within

the regime of validity of our semiclassical abelian description, however, there is no range of r

where the decaying exponential in (4.30) is dominant over the rest.36

35This corrects the result of [2] which did not take into account the contribution of the one-loop determinants

(which are now part of ���(1)
0 ) to the expectation value of the Polyakov loop; we notice that this does not a↵ect

the value of the discontinuity.
36As opposed to the study of SQCD [57] in a setup similar to the one of the present paper where the quark

mass provided a parameter controlling the smallness of the constant term.
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Naturally, as expected in a theory without center symmetry, the above correlators show that

there is no linear confinement of fundamental charges, but rather “string breaking” (in the

lattice strong-coupling expansion, this can be seen in the study of the fundamental Wilson

loop for G
2

: a transition from area to perimeter law takes place for quark separations of the

order of 8 lattice spacings, to leading order in the strong-coupling expansion [77]). Within

the regime of validity of our semiclassical abelian description, however, there is no range of r

where the decaying exponential in (4.30) is dominant over the rest.36
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(which are now part of ���(1)
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mass provided a parameter controlling the smallness of the constant term.
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Naturally, as expected in a theory without center symmetry, the above correlators show that

there is no linear confinement of fundamental charges, but rather “string breaking” (in the

lattice strong-coupling expansion, this can be seen in the study of the fundamental Wilson

loop for G
2

: a transition from area to perimeter law takes place for quark separations of the

order of 8 lattice spacings, to leading order in the strong-coupling expansion [77]). Within

the regime of validity of our semiclassical abelian description, however, there is no range of r

where the decaying exponential in (4.30) is dominant over the rest.36

35This corrects the result of [2] which did not take into account the contribution of the one-loop determinants

(which are now part of ���(1)
0 ) to the expectation value of the Polyakov loop; we notice that this does not a↵ect

the value of the discontinuity.
36As opposed to the study of SQCD [57] in a setup similar to the one of the present paper where the quark

mass provided a parameter controlling the smallness of the constant term.

– 44 –

below transition
above transition

c=0 value (SYM)

lattice jump of Polyakov loop trace: 

numbers from Anber, EP,  Teeple 1406.1199 

[it does not make sense to compare numerical values - very different regimes]

careful study of FSS, 1st order!

 Evidence? - calculable SYM* vs lattice
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-critical temperature  

-discontinuty of Polyakov loop [lattice prompted by Anber SYM* 2013]

-string tension [decreases with theta increase]

each qualitatively agrees with lattice (recent progress in tools).  

... a weak-coupling controlled semiclassical description of non-abelian 
chiral symmetry breaking has not been achieved (no surprise!) 

... but if one adds massive quarks to SYM* you can see two things that agree 
with what lattice with massive quarks sees - Polyakov loop crossover and 
string breaking at distances ~ 2/mass  [Tin Sulejmanpasic EP 1307.1317] 

 Evidence? - calculable SYM* vs lattice

string tension: Del Debbio et al 2006
Tc and gap: D’Elia et al 2012/3 

- predictions!

Curious about quarks?
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Figure 4. An illustration, for Spin(6) gauge group, of the ✓-dependence of the normalized critical
transition mass, cm, ccr(✓)

ccr(✓=0) , and the normalized Polyakov loop discontinuity |Trh�⌦(✓)i|
|Trh�⌦(0)i| for 0 < ✓ <

10
12⇡. The right panel is for the spinor-representation Polyakov loop. The behavior is qualitatively
similar for all gauge groups. It has been recently observed in lattice simulations for SU(N) [36, 37].

SU(N), N = 3, 4, 6 pure-YM theory. They have shown that it decreases upon increase of ✓

and that the dependence is rather weak in all cases studies (and getting weaker upon increase

of N)—a behavior qualitatively similar to what we find.

1.5 Outlook: similarity between the SYM⇤ transition and deconfinement—is it

just a curiosity?

A possible answer to the question is: “It may be.” However, we believe, but can not prove, that

there is more. The finding of this and earlier papers that the behavior of various quantities

(the trace of the Polyakov loop and its correlator, as illustrated on Figs. 2,3,4) is quite similar

to their behavior in the thermal deconfinement transition studied on the lattice is only part of

the story. The most interesting aspect of the calculable transition in SYM⇤ on R3⇥S1 is that

it clearly elucidates the nature and role of the topological excitations contributing to V (⌦):

the neutral bions, which stabilize center symmetry, and the monopole-instantons, leading to

its destabilization. The setup used in this paper has the advantage that these excitations are

unambiguously identified, due to the weakly-coupled nature of the small-m,L dynamics (in

particular, it requires no gauge fixing procedures or model assumptions). The price to pay

is the fact that this is a quantum and not a thermal transition and that there is an extra

parameter, the gaugino mass, not present in thermal YM. The relation between the SYM⇤

and thermal YM transitions, while perhaps continuous, as on Fig. 1, involves decoupling the

gaugino, which entails a loss of theoretical control.

Nonetheless, we think that the description of the R3 ⇥ S1 calculable transition in SYM⇤

comes closer, in many aspects, to the thermal YM transition—compared to previous analytic

weak-coupling studies on S3 ⇥ S1� or R2 ⇥ S1L ⇥ S1� . The small-S3 ⇥ S1� transition [12] is

a finite-volume large-N transition. The physics of confinement (the uniform spreading of

eigenvalues of the Polyakov loop at low T ) is purely kinematical in origin, see Footnote 5,

while the center-symmetry destabilization at high T is due to the perturbative GPY potential.

In contrast, the cm < c
cr

phase of SYM⇤ on R3 ⇥ S1 is a genuine (albeit abelian) confining

phase, where confinement is due to magnetic Debye screening [53] in the magnetic bion plasma
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I will now tell you how this part 
of the phase diagram comes about.

=1/Tc

m

L

∞
SYM YM

Thermal YM

non thermal SYM
with mass deformation

center broken

center symmetric

∞

Lc

Figure 1. The conjectured phase diagram of SYM⇤ in them-L plane. The calculable center-symmetry
breaking quantum phase transition, occurring at small-m,L—the left-hand corner of the diagram,
shown by a thick red line—is conjectured to be continuously connected, upon decoupling the gaugino,
to the thermal deconfinement transition in pure YM theory, shown by the thick black line on the right.
The dimensionless parameter which is varied, Eq. (3.53), is cm ⇠ m

L2⇤3 , with
m
⇤ and L⇤ small. For

all gauge groups, the calculable quantum phase transition occurs for cm of order unity. It should be
possible to study this phase diagram on the lattice, see Section 1.5.

SU(2) gauge theory. A center-symmetry-breaking quantum phase transition was shown to

occur as the dimensionless parameter cm ⇠ m
L2

⇤

3 is increased.8 In SU(2), the Z
2

-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z
2

universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or L
cr

at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m,L regime was also found to occur in SYM⇤

theories without a center. The case of G
2

SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G
2

, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of c
m

is in Eq. (3.53).
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Figure 2: The Euclidean vacuum of the small-m, L theory can be described as a plasma of monopole-
instantons (gray circles) and anti-monopole-instantons (white circles) with fermionic zero modes (un-
paired arrows). The paired events are magnetic and neutral bions. Neutral bion amplitudes generate
repulsion among the eigenvalues of the Wilson line and magnetic bions generate a mass gap for gauge
fluctuations via a generalization of the Polyakov mechanism to a locally 4d theory.

which generates the bosonic potential and the mass gap for bosonic fluctuations is due to
bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z

2h_ ! Z
2

. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
classical monopole and bion amplitudes also exist in non-supersymmetric theories, where the
bosonic potential cannot be extracted from the super-potential [2, 12–14].

1.3 Phase transition in the small m-L regime and universal aspects

There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:

1. Neutral bions always generate repulsion among the eigenvalues of the Wilson line around
S1. For theories with a ZN center symmetry, the repulsion leads to a ZN -symmetric
distribution, while for theories without a center symmetry, it leads to a non-degenerate
distribution of eigenvalues, as we show explicitly for G

2

.
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(dual) photon, scalar modulus, and fermion zero-mode hopping
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bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z
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. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
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bosonic potential cannot be extracted from the super-potential [2, 12–14].
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There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:
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m>0 case: breaks chiral symmetry, yields:

1. extra nonperturbative contributions 
from monopole-instantons (no fermion zero modes)

2. extra perturbative Gross-Pisarski-Yaffe-like contribution
(small since m is small)

small SUSY breaking “m” allows us to have perturbative and nonperturbative 
contributions compete while under theoretical control, resulting in a center-
breaking transition as             becomes O(1) (2nd order for SU(2); 1st for SU(N)...)

Y ⇠ e

i�+� Tr⌦ = 0
cosh 2�� cos 2�
m

L

2⇤3

We start with the action dual Sine-Gordon model in the continuous space S =R
d

2
xL, where

L =
1

2
(@

x

�)2 +
1

2
(@

x

�)2 � i@

x

�@

⌧

�+ J

�

�+ J

�

� , (1)

and J

�

and J

�

are external currents. The discrete version of the above Lagrangian
can be obtained by putting it on a lattice. Since the fields � and � are the dual of
each other, i.e. @

i

� = ✏

ij

@

j

� where ✏

x⌧

= 1, it is natural to put one of the fields, say
�, on the lattice, and the other on the dual lattice. We define the forward derivatives
as @

x

� = �

x+1̂ ��

x

, and @

⌧

� = �

x

⇤ ��

x

⇤�2̂, where x and x

⇤ are points on the lattice

and its dual, and 1̂, 2̂ are unit vectors in the direction of the two axis. Now, let
us consider the discretization of the di↵erent terms. We start with

R
d

2
x (@

x

�)2 /2
which takes the discrete form

Z
d

2
x

1

2
(@

x

�)2 ! 1

2

X

x

�
�

x+1̂ � �

x

�2
=

1

2

X

x

⇣
�

2
x+1̂ + �

2
x

� 2�
x

�

x+1̂

⌘
. (2)

However,
P

x

�

2
x+1 =

P
x

�

2
x

and hence we find

Z
d

2
x

1

2
(@

x

�)2 ! 1

2

X

x

�
2�2

x

� 2�
x

�

x+1̂

�
. (3)

Taking the functional derivative w.r.t. �
y

we find

�

��

y

"
1

2

X

x

�
2�2

x

� 2�
x

�

x+1̂

�
#

= 2�
x,y

�

x

� �

x,y

�

x+1̂ � �

x+1̂,y�x

= 2�
y

� �

y+1̂ � �

y�1̂ . (4)

Now, we turn to the term
R
d

2
x� i@

x

�@

⌧

� which takes the discrete form

�i

Z
d

2
x@

x

�@

⌧

� ! �i

X

x

�
�

x+1̂ � �

x

� �
�

x

⇤ � �

x

⇤�2̂

�

= �i

X

x

�

x

�
�

x

⇤�2̂ � �

x

⇤
�
� i

X

x

�

x+1̂

�
�

x

⇤ � �

x

⇤�2̂

�
. (5)

1

=8, so if at m>5   decoupled, as quarks in QCD, 

Homework 4, PHY 2407S
Special Topics: Particle Physics Below 10 TeV, Winter 2007

T indicates that a problem is required for theorists!

1/Lc = ⇤
p

8⇤/m

⌦ =
1

2
Tr

✓
e

i⇡⌫ 0
0 e

�i⇡⌫

◆

e

i⇡⌫

e

�i⇡⌫

1. Longitudinal W -boson scattering and unitarity.

1. Consider the Goldstone boson scattering amplitude. By carefully expanding the Goldstone lagrangian show
that the longitudinal W -boson scattering amplitude at s � m

2
W is

M�+��!�+�� = � u

4v2
,

where v is as normalized in the notes (⇠ 126 GeV ).

2. Consider now adding the Higgs boson interactions, p. 184 in notes. Show that the sum of the Goldstone
amplitude plus the amplitudes with Higgs exchange combine to:
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3. Consider now the zero angular momentum partial wave amplitude corresponding to M�+��!�+��(s, t). Show
that:

M0(s) = � m

2
h

64⇡v2


2 +

m

2
h

s�m

2
h

� m

2
h

s

ln

✓
1 +

s

m

2
h

◆�
,

and use it deduce the unitarity bound on the Higgs mass stated in class.

2. Other uses of the equivalence theorem.

1. Top quark decay intoW and b. Treat theW as a stable asymptotic state (why’s that? hint: recall relation between

decay rates and the imaginary part of the self-energy of Ch. 7 of P&S). This can be performed by explicitly summing
over the polarizations of the W , but it is quicker to realize that since mt > mW , the branching to a longitudinal
polarization W -boson is likely to be enhanced. Naively, the top width would be ⇠ g

2
2mt/(4⇡), but as you will

show, there is an extra m

2
t/m

2
W enhancement factor. Consider the coupling of the top to the �

± Goldstone
bosons (recalling your Homework 1, where you worked it out!) and calculate �(t ! �

+
b). To convince yourself

that this is the right expression of the width in the mt � mW limit, calculate also �(t ! W

+
b), now summing

over the three polarizations of the W and compare to the equivalence theorem result. (Needless to say, treat the

b quark as massless and let Vtb = 1.)

2. Higgs decay into vector bosons: If the Higgs is heavier than twice the W and Z, it can decay to pairs of gauge
bosons. In the limit mh � MW (say), compute �(h ! �

+
�

�) and show that the result agrees with the x ! 0
limit of the formula for �(h ! W

+
W

�) of p. 192 of notes.

3. T A heavy fourth generation of fermions. Suppose that there is another SU(2) doublet of (quarks and leptons)
FL = (T 0

L, B
0
L) and singlets T

0
R(B

0
R) (also with sequential quark or lepton quantum numbers), whose (e.g.)

bottom component has mass from the familiar gauge invariant coupling:

�mB0
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0
R + h.c..

We assume mB0
> mt > mW . Consider all graphs that contribute to the scattering process W

+
L W

�
L ! B

0
B̄

0

and single out the ones that are most relevant at s � m

2
W for the given parameters of the model. Calculate

the scattering amplitude, for given spin states of the final state fermions. Study—estimate, derive, conjecture, ...

e.g. make as much progress as you can!—the possible violation of unitarity as a function of
p
s/v and m

0
B/v.
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Figure 2: The Euclidean vacuum of the small-m, L theory can be described as a plasma of monopole-
instantons (gray circles) and anti-monopole-instantons (white circles) with fermionic zero modes (un-
paired arrows). The paired events are magnetic and neutral bions. Neutral bion amplitudes generate
repulsion among the eigenvalues of the Wilson line and magnetic bions generate a mass gap for gauge
fluctuations via a generalization of the Polyakov mechanism to a locally 4d theory.

which generates the bosonic potential and the mass gap for bosonic fluctuations is due to
bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z

2h_ ! Z
2

. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
classical monopole and bion amplitudes also exist in non-supersymmetric theories, where the
bosonic potential cannot be extracted from the super-potential [2, 12–14].

1.3 Phase transition in the small m-L regime and universal aspects

There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:

1. Neutral bions always generate repulsion among the eigenvalues of the Wilson line around
S1. For theories with a ZN center symmetry, the repulsion leads to a ZN -symmetric
distribution, while for theories without a center symmetry, it leads to a non-degenerate
distribution of eigenvalues, as we show explicitly for G
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m>0 case: breaks chiral symmetry, yields:

1. extra nonperturbative contributions 
from monopole-instantons (no fermion zero modes)

2. extra perturbative Gross-Pisarski-Yaffe-like contribution
(small since m is small)

vertex (3.5); the constant 0 di↵ers from  in the superpotential (3.5) by a numerical factor
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For a general gauge group, holonomy potential looks like this (using co-roots and dual Katz labels): 
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contributions compete while under theoretical control, resulting in a center-
breaking transition as             becomes O(1) (2nd order for SU(2); 1st for SU(N)...)
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1. Longitudinal W -boson scattering and unitarity.

1. Consider the Goldstone boson scattering amplitude. By carefully expanding the Goldstone lagrangian show
that the longitudinal W -boson scattering amplitude at s � m

2
W is

M�+��!�+�� = � u

4v2
,

where v is as normalized in the notes (⇠ 126 GeV ).

2. Consider now adding the Higgs boson interactions, p. 184 in notes. Show that the sum of the Goldstone
amplitude plus the amplitudes with Higgs exchange combine to:
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and use it deduce the unitarity bound on the Higgs mass stated in class.

2. Other uses of the equivalence theorem.

1. Top quark decay intoW and b. Treat theW as a stable asymptotic state (why’s that? hint: recall relation between

decay rates and the imaginary part of the self-energy of Ch. 7 of P&S). This can be performed by explicitly summing
over the polarizations of the W , but it is quicker to realize that since mt > mW , the branching to a longitudinal
polarization W -boson is likely to be enhanced. Naively, the top width would be ⇠ g

2
2mt/(4⇡), but as you will

show, there is an extra m
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W enhancement factor. Consider the coupling of the top to the �

± Goldstone
bosons (recalling your Homework 1, where you worked it out!) and calculate �(t ! �

+
b). To convince yourself

that this is the right expression of the width in the mt � mW limit, calculate also �(t ! W

+
b), now summing

over the three polarizations of the W and compare to the equivalence theorem result. (Needless to say, treat the

b quark as massless and let Vtb = 1.)

2. Higgs decay into vector bosons: If the Higgs is heavier than twice the W and Z, it can decay to pairs of gauge
bosons. In the limit mh � MW (say), compute �(h ! �

+
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�) and show that the result agrees with the x ! 0
limit of the formula for �(h ! W

+
W

�) of p. 192 of notes.

3. T A heavy fourth generation of fermions. Suppose that there is another SU(2) doublet of (quarks and leptons)
FL = (T 0

L, B
0
L) and singlets T

0
R(B
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R) (also with sequential quark or lepton quantum numbers), whose (e.g.)

bottom component has mass from the familiar gauge invariant coupling:
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We assume mB0
> mt > mW . Consider all graphs that contribute to the scattering process W
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L ! B
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and single out the ones that are most relevant at s � m

2
W for the given parameters of the model. Calculate

the scattering amplitude, for given spin states of the final state fermions. Study—estimate, derive, conjecture, ...

e.g. make as much progress as you can!—the possible violation of unitarity as a function of
p
s/v and m

0
B/v.
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Figure 4: Contour plots of the bion- and monopole-instanton-induced potential, as a function of the
two holonomies, showing the first order phase transition for SU(3) (darker shades represent smaller
values of the potential). Left panel: Contour plot for c

m

< c⇤⇤
m

< ccr
m

(c
m

= 2.20, ccr
m

= 2.446) as
a function of b1, b2. The Z3-symmetric (confining) minimum is at the origin. Right panel: Contour
plot for ccr

m

< c
m

< c⇤
m

(c
m

= 2.5) as a function of b1, b2. The Z3-breaking global minima are clearly
visible, and the Z3-symmetric confining minimum is meta-stable.

not a global minimum, see the right panel of Figure 4. In this regime the confining phase is
meta-stable. Finally, for cm > c⇤

m, the center-symmetric point ceases to be a local minimum,
and this correspond to the other limit of metastability. This case is not shown in Figure 4,
but shown in Figure 5.

SU(Nc),Nc > 3: The general structure that emerges for SU(Nc), Nc > 3 is similar to
the SU(3) case shown in Figure 5. We have four characteristic domains for the bion and
monopole-instanton induced potential:

• cm < c⇤⇤
m or L > L⇤⇤: There is a unique center-symmetric (confined) minimum.

• c⇤⇤
m < cm < ccrm or L⇤⇤ > L > Lcr : A global center-symmetric (confined) minimum and

Nc meta-stable ZNc breaking (deconfined) minima.

• ccrm < cm < c⇤
m or Lcr > L > L⇤: A metastable center-symmetric (confined) minimum

and Nc global ZNc breaking (deconfined) minima.

• c⇤
m < cm or L⇤ > L: Nc center-breaking global (deconfined) minima.

A lattice study of the endpoint of the regime of metastability in pure Yang-Mills theory
was reported in [20]. This study was motivated by the old idea that in large-Nc QCD the
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also instead of formulae, plot of potential due to “neutral bions” for SU(3): 
Z3-symmetric vs Z3-breaking as  
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Taking the functional derivative w.r.t. �
y

we find
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Now, we turn to the term
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T indicates that a problem is required for theorists!
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1. Longitudinal W -boson scattering and unitarity.

1. Consider the Goldstone boson scattering amplitude. By carefully expanding the Goldstone lagrangian show
that the longitudinal W -boson scattering amplitude at s � m

2
W is

M�+��!�+�� = � u

4v2
,

where v is as normalized in the notes (⇠ 126 GeV ).

2. Consider now adding the Higgs boson interactions, p. 184 in notes. Show that the sum of the Goldstone
amplitude plus the amplitudes with Higgs exchange combine to:

M�+��!�+��(s, t) = � 1

4v2

✓
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2
h s

s�m

2
h

+
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t�m

2
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.

3. Consider now the zero angular momentum partial wave amplitude corresponding to M�+��!�+��(s, t). Show
that:

M0(s) = � m

2
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64⇡v2
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and use it deduce the unitarity bound on the Higgs mass stated in class.

2. Other uses of the equivalence theorem.

1. Top quark decay intoW and b. Treat theW as a stable asymptotic state (why’s that? hint: recall relation between

decay rates and the imaginary part of the self-energy of Ch. 7 of P&S). This can be performed by explicitly summing
over the polarizations of the W , but it is quicker to realize that since mt > mW , the branching to a longitudinal
polarization W -boson is likely to be enhanced. Naively, the top width would be ⇠ g

2
2mt/(4⇡), but as you will

show, there is an extra m

2
t/m

2
W enhancement factor. Consider the coupling of the top to the �

± Goldstone
bosons (recalling your Homework 1, where you worked it out!) and calculate �(t ! �

+
b). To convince yourself

that this is the right expression of the width in the mt � mW limit, calculate also �(t ! W

+
b), now summing

over the three polarizations of the W and compare to the equivalence theorem result. (Needless to say, treat the

b quark as massless and let Vtb = 1.)

2. Higgs decay into vector bosons: If the Higgs is heavier than twice the W and Z, it can decay to pairs of gauge
bosons. In the limit mh � MW (say), compute �(h ! �

+
�

�) and show that the result agrees with the x ! 0
limit of the formula for �(h ! W

+
W

�) of p. 192 of notes.

3. T A heavy fourth generation of fermions. Suppose that there is another SU(2) doublet of (quarks and leptons)
FL = (T 0

L, B
0
L) and singlets T

0
R(B

0
R) (also with sequential quark or lepton quantum numbers), whose (e.g.)

bottom component has mass from the familiar gauge invariant coupling:

�mB0
F̄L⌃

✓
0
1

◆
B

0
R + h.c..

We assume mB0
> mt > mW . Consider all graphs that contribute to the scattering process W

+
L W

�
L ! B

0
B̄

0

and single out the ones that are most relevant at s � m

2
W for the given parameters of the model. Calculate

the scattering amplitude, for given spin states of the final state fermions. Study—estimate, derive, conjecture, ...

e.g. make as much progress as you can!—the possible violation of unitarity as a function of
p
s/v and m

0
B/v.

Now, the big question: 
 Why this seems to work the way it does? 

Honestly, I do not know for sure.  

c<c* c>c*

c=

a calculable (quantum) 
phase transition in SYM* 
appears continuously 
connected to thermal 
deconfinement in YM
novel topological 
molecules relevant for 
center stability 

-

-

Summary: 

-due to calculability these are unambiguously identified:
  no gauge dependence, no model dependence 
-topology clearly relevant, as seen in, e.g. theta-dependence... how in FRG? 
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Same objects that were identified in SYM also exist in pure thermal YM. 
What is lost is the theoretical control - but not all are bothered ...  the(ir) logic: 

1. Lattice data show that the Tr(Polyakov loop) is not =1 immediately after the 
transition, but is quite a bit smaller (and nonzero, of course).

2. Assuming semiclassics applies, this would mean that <A_4> is nonzero, 
eigenvalues are not on top of each other, so theory can still be thought as 
abelianized. 

3. Then all the monopoles, KK monopoles pictured above exist. These 
nonperturbative fluctuations are important for the dynamics, hence model the 
vacuum as a liquid thereof (not dilute gas). 

4. Use some lattice measurements (caloron densities) to fix the density of the BPS 
and KK monopole-instantons (now a model parameter). Try to compute something 
to compare with other data. 
 

Why this seems to work the way it does? 
Honestly, I do not know for sure.  Some thoughts: 

Shuryak, Sulejmanpasic 2013:  
instanton-liquid type model of the pure YM deconfinement 
transition, incorporating “molecular” contributions (neutral bions! - use “excluded volume” not 
SUSY or BZJ prescription... from old instanton-liquid model of T=0 QCD vacuum). The model gives 
order-of-magnitude agreement with lattice measurements of electric and magnetic masses. 
EP: OK, it is a model; but the lattice data is poor (and gauge dependent)
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Same objects that were identified in SYM also exist in pure thermal 
YM, assuming ...     see comments on previous page  
  - perhaps these models/data can be improved?    [steps in Shuryak et al 1408.]

 Why this seems to work the way it does? 

Honestly, I do not know for sure.  

For the future: 

Lattice can test the entire phase diagram, using present-day technology, at least 
sufficiently far from semiclassical regime (that’s hard on the lattice). 
Since m is nonzero, no need to take chiral limit for gaugino, so easier than SYM. 

Find something that blatantly contradicts continuity. 

Finally, is this “Resurgence in action”?         

               - wild (but fascinating!) dreams of Unsal et al 
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