PHY238Y Review II

- Threshold of pain is 120 - 130 dB
- The dynamic range of human hearing extends from zero dB to the threshold of pain.
- Example: Problem 43P, Chapter 18, Halliday/Resnick/Walker, 5th edition (the subsonic jet)

	Intensity level (dB)
Ear drum rupture	160
Pain threshold	120-130
Shotgun blast	100
Car horn (6 m distance)	90
City street	75
Typical room	40
Open country	10
Threshold of hearing	0

PHY238Y Review II

- The audible sound: a pressure wave with frequency between 20 Hz and 20,000 Hz and with an intensity above the standard threshold of hearing:
- Frequency: 20 Hz 20,000 Hz (corresponds with pitch) Wavelength (at 20°C in air): 0.0172m 17.2 m Intensity: 10 $^{\!-12}$ 10 W/m² (0 to 130 dB)

- Pressure: $(2 \times 10^{-5} 60) \text{ N/m}^2$; $(2 \times 10^{-10} 0.0006) \text{ atm}$ Sounds may be generally characterized by:
- - Pitch (frequency)
 - Loudness (is NOT simply the intensity level)
 - Quality (timbre determined by the harmonic content of the sound)

PHY238Y Review II

 Variation of sound intensity with distance: the inverse square law:

The wave form of a spherical sound wave is: $s(r,t) = \frac{b}{r}\sin(kx - \omega t)$

(see example used in Lecture 12: Problem 38P, Halliday/Resnick/Walker, 5th edition)

PHY238Y Review II

· Structure of the human ear

