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Quantum Interference in Electron-Hole Generation in Noncentrosymmetric Semiconductors
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We show that, when fundamental optical beams are present in a noncentrosymmetric medium
simultaneously with their sum-frequency beam, quantum interference between single- and two-photon
transitions modifies the net absorption, if the sum frequency corresponds to an energy greater than the
band gap. At a macroscopic level this effect can be related to the imaginary part of a second-order
susceptibility and can be used to coherently control carrier populations and optical absorption. We
illustrate this novel effect using phased 1550 and 775 nm, 120 fs pulses incident on GaAs at 295 K.

PACS numbers: 78.47.+p, 42.65.–k, 78.55.Cr
The field of nonlinear laser optics dates from the obser-
vation of second-harmonic generation in crystalline quartz
[1]. Although a myriad of nonlinear optical processes have
been discovered since then [2–4], second-order �x2� pro-
cesses such as sum- and difference-frequency mixing con-
tinue to capture most of the interest. Of necessity x2 is
nonzero only in noncentrosymmetric media, such as cer-
tain crystals. When such a crystal is transparent at all fre-
quencies involved, x2 is real and the crystal can act as an
optical “catalyst” to convert incident energy into new op-
tical frequencies. If, however, the crystal is absorbing for
at least one of the frequencies, the imaginary component
of x2 �Im�x2�� is nonzero. In the case of sum-frequency
generation, it is generally believed [5] that Im�x2� plays no
role in energy absorption. Here we demonstrate that when
coherent fundamental and sum-frequency beams are simul-
taneously present in a crystal, and if the sum frequency falls
in a region of band absorption, Im�x2� can contribute to the
removal of energy from all beams. This is due to the in-
terference of single- and two-photon absorption pathways.
This effect can be used in an active sense to coherently
control optical transmission and band populations through
the relative phase of the fields. We experimentally demon-
strate this new effect in bulk GaAs at 295 K, and explicitly
discriminate its origin and nature from the coherent control
of current injection in semiconductors [6].

To illustrate the underlying physics, we consider phase-
related and temporally overlapped pulses of frequency
v and 2v, with 2"v . Eg . "v, interacting with a
noncentrosymmetric crystal with direct gap Eg. The
extension to the general sum-frequency case is straight-
forward. In the presence of the electric field E�t� �
�E�v� exp�2ivt� 1 E�2v� exp�22ivt�� 1 c.c., there
are both one- and two-photon amplitudes for the exci-
tation of the crystal from its ground state j0� to a state
jcyk� in which an electron-hole pair (in conduction and
valence bands c and y, respectively) is created at crystal
momentum k. Writing the state of the crystal as

jC�t�� � c0�t� j0� 1
X
cyk

ccyk�t� jcyk� ,
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a straightforward Fermi’s Golden Rule calculation using
the minimal coupling Hamiltonian �A ? p� [6] yields a rate
�n for the generation of electron-hole pairs per unit volume,

�n �
1
V

X
cyk

d
dt

�jccyk�t�j2�

�
2p

V

X
cyk

jKcykj
2d���vcy�k� 2 2v��� . (1)

Here V is the normalization volume, the energies of the
conduction and valence bands are h̄vc�k� and h̄vy�k�,
respectively, vcy�k� � vc�k� 2 vy�k�, and

Kcyk �
ie�pcy�k� ? E�2v��

mh̄vcy�k�
1

µ
2ie

mh̄vcy�k�

∂2

3
X
n

�pcn�k� ? E�v�� �pny�k� ? E�v��
v̄cy�k� 2 vn�k�

,

is the sum of one- and two-photon amplitudes, where
pcy�k� is the momentum matrix element between the va-
lence and conduction band states, n ranges over all bands,
and v̄cy�k� � �vc�k� 1 vy�k���2. Squaring Kcyk in
Eq. (1) leads to three contributions to �n viz. �n � �n2v 1
�nv 1 �nI ; the first two contributions are purely one- and
two-photon terms, respectively, involving only the asso-
ciated amplitudes, while �nI results from interference of
the two amplitudes. The expressions for �n2v and �nv are
well known [2], and involve the imaginary parts of the
even rank tensors x1�22v; 2v� and x3�2v; 2v, v, v�,
respectively; thus they survive for any medium. On the
other hand, �nI involves a third rank tensor, and therefore
is nonzero only in a medium lacking center of inversion
symmetry; this term was neglected in Atanasov et al. [6].
Using Ei�v� � Ēi�v� exp�ifi

v� and likewise for the 2v

components, where Ēi�v� and Ēi�2v� are purely real, we
find from (1)

�nI � 2j
ijk
I �v�Ēi�22v�Ēj�v�Ēk�v�

3 cos�fj
v 1 fk

v 2 fi
2v� ,

where the superscripts indicate Cartesian components and
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are to be summed over if repeated. Here

j
ijk
I �v� �

4pie3

�mh̄�3V

X
cynk

pi
yc�k� �p

j
cn�k�pk

ny�k� 1 pk
cn�k�pj

ny�k��
v3

cy�k� �v̄cy�k� 2 vn�k��
d�vcy�k� 2 2v�
is purely real; in this expression the sum over spin degen-
eracy is to be done as part of the sum over states. By
adjusting the relative phase of the beams, �nI can be made
positive or negative; of course, for a crystal initially in the
ground state the total carrier injection rate �n must be posi-
tive for any relative phase of the two beams, as is clear
from (1).

This quantum interference process can be understood
as a manifestation of what has come to be called coher-
ence control [7]. In gases, coherence control of quantum
state populations has been demonstrated through interfer-
ence between optical transitions (e.g., single- and three-
photon absorption) associated with discrete states [8–10].
For semiconductors, researchers have also tended to fo-
cus on interference control of populations through discrete
states as well. Exciton populations have been coherently
controlled in quantum wells [11] and quantum dots [12] us-
ing linear absorption via separated but phased pulses at the
same frequency. Control of continuum state populations
by such pulses is not possible since an induced polarization
density for the inhomogeneously broadened continuum de-
cays on the time scale of the order of the pulse width.

To gain insight into how the interference term �nI fits into
the usual phenomenology of nonlinear optics and to show
how energy flow is influenced, recall that in macroscopic
electrodynamics the time rate of change of the energy den-
sity associated with the optical fields is �P�t� ? E�t�. By
writing the polarization P�t� � P�v� exp�2ivt� 1 c.c.,
the time averaged energy density change at frequency
v is given by �e�v� � 22v Im�P�v� ? E�2v��. A
similar expression holds for �e�2v�. Considering
the response of the polarization to third order in the
electric field and for 2h̄v . Eg . "v, we find that
each of these acquires two contributions, �e�v� �
22h̄v �nv 1 �eI �v� and �e�2v� � 22"v �n2v 1 �eI �2v�.
The interference terms �eI �v� and �eI �2v� are associ-
ated with x

ijk
2 �2v; 2v, 2v� and x

ijk
2 �22v; v, v�,

respectively, and their permutations. Since one of our
fields is resonant, the overall permutation symmetry
of x

abc
2 �2vb 2 vg; vb , vg� cannot be derived from

energy conservation considerations. A careful analysis of
the properties of this susceptibility tensor [13], including
interband, intraband, and mixed contributions, shows that
x

jik
2 �v; 22v; v� � �x ijk

2 �22v; v, v���. Using this,
along with the condition that the fields P�t� and E�t� are
real, we find

�eI �2v� 2 �eI �v� � 28v Re�x ijk
2 �22v; v, v��

3 Im�Ei�22v�Ej�v�Ek�v�� , (3)

�eI �2v� 1 �eI �v� � 28v Im�x ijk
2 �22v; v, v��

3 Re�Ei�22v�Ej�v�Ek�v�� . (4)
In a sense, Eq. (3) describes the energy transfer be-
tween fundamental and second-harmonic beams; it sur-
vives even if h̄v is below half the band gap, where
Im�x ijk

2 �22v; v, v�� vanishes. Equation (4) describes
the positive or negative interference contribution to the
absorption of light by the crystal. Using the expres-
sion for x

ijk
2 �22v; v, v� from [13,14], and comparing

with Fermi’s Golden Rule calculation above, we find
�eI �2v� 1 �eI �v� � 22h̄v �nI . Combining all of the ex-
pressions above, we find �e�2v� 1 �e�v� � 22h̄v �n, as
expected. The ratio �nI� �n is largest for irradiances that
balance carrier generation from one- and two-photon ab-
sorption processes. Using the calculated coefficients for
these processes in GaAs [6] and the calculated values for
x2 from [14], we find that if one could take advantage of
the full value of x2 the maximum ratio �nI� �n is 6.4% for
h̄v corresponding to 1550 nm and increases to a value of
14% as h̄v approaches Eg. These values are essentially
limited by how “noncentrosymmetric” the material is, as
revealed by Im�xxyz

2 �. Microscopically these modulation
amplitudes are limited by the k dependence of the matrix
elements in Eq. (2); for a given k vector, there is a spe-
cific ratio of irradiances and a relative phase that will give
complete destructive or constructive interference. The ra-
tio and phase are not the same for all k vectors, so it is not
possible to simultaneously balance the arms of our matter
“interferometer” for all transitions in momentum space.

The energy transfer between the two fields, as de-
scribed by Eq. (3), can also play a role in carrier creation,
since modification of the v and 2v beam irradiances
can change the subsequent one- and two-photon absorp-
tion rates. For physically reasonable fundamental irradi-
ances, this cascaded or “indirect” process is dominated by
changes to the one-photon absorption rate, with a phase
dependence related to sin�fj

v 1 fk
v 2 f

i
2v�; the direct

process varies as cos�fj
v 1 fk

v 2 f
i
2v�. Note that the

two processes will have a different dependence on inter-
action length; in the optically thin crystal limit, the direct
process will vary linearly with crystal length while the in-
direct process will vary as the square of this length. For
short interaction lengths, the carrier injection modulation
is therefore expected to be primarily due to the direct in-
terference process.

We have experimentally demonstrated the above phe-
nomenon in GaAs at room temperature �Eg � 1.42 eV�.
The experimental setup is shown in Fig. 1. A regener-
atively amplified Ti:sapphire laser operating at 250 kHz
pumps an optical parametric amplifier [15] configured to
produce near-bandwidth-limited 120 fs signal (1550 nm)
and idler (1650 nm) pulses, each with an average power
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FIG. 1. Schematic diagram of experimental configuration:
(ND) neutral density filter, (PZ) piezoelectric stage, (SR) short
wavelength dielectric reflector, (D1,D2,D3) silicon photodetec-
tors, and (BBO) second-harmonic generation crystal. Other
filters and dielectric reflectors are not shown for purposes of
clarity.

of �8 mW. A beta barium borate (BBO) crystal is used
to generate 775 nm pulses �2v� from the signal beam �v�.
Wavelengths are selected for experimental expediency
and do not correspond to frequencies that would gener-
ate optimal interference modulation. The harmonically re-
lated beams are separated into distinct optical paths in an
interferometer to allow the manipulation of their relative
phase by a mirror (for the v beam) driven by a piezo-
electric transducer. Isolation of the two optical paths is
accomplished using multiple dielectric surfaces (only one
of five is shown in Fig. 1). Following the interferometer,
the orthogonally polarized beams propagate collinearly be-
fore being focused onto a GaAs sample with peak incident
irradiances of 9 GW cm22 �1550 nm� and 150 MW cm22

�775 nm�. We use an undoped 650-nm-thick �111� ori-
ented bulk GaAs sample that is van der Waals bonded
to a sapphire window. For our irradiances, the rates of
carrier generation by single- and two-photon absorption
are nearly equivalent and the peak carrier concentration is
�1018 cm23. The 1550 nm beam polarization is aligned
parallel to crystal 	011� direction to maximize the x2 con-
tributions, which are determined to be

p
2�3 x

xyz
2 . The

sample thickness is approximately equal to the energy ab-
sorption depth of the 775 nm beam, but much less than
the absorption depth of the 1550 nm beam. Over the
sample thickness, the phase f

j
v 1 fk

v 2 f
i
2v � 2fv 2

f2v changes by 0.6p due to linear dispersion, but this is
calculated to reduce the net cross term by only 15% com-
pared to the ideally phase-matched case.

To probe the carrier density, 825 nm pulses (second
harmonic of the idler beam) are incident on the excitation
spot, but delayed relative to the excitation beams by
.2 ps to allow carrier cooling to be completed. The
probe beam waist is 0.6 times the size of the pump beams
4194
to preferentially monitor the peak carrier density region.
The probe photon energy of 1.5 eV permits one to use
band-filling effects to monitor carrier density changes
[16]. The 825 nm sample transmission is monitored
using differential detection (D1-D2) with background-free
signals obtained by the piezoelectric stage sinusoidally
dithering �2fv 2 f2v� over an interval of less than p

at 1 kHz and using lock-in amplification. Figure 2 (top)
indicates a sinusoidal modulation of the carrier density as
a function of v 2 2v pulse delay, as determined by the
825 nm transmission. The envelope width is determined
by pulse temporal overlap. Figure 2 (bottom) shows a
detail of carrier density near zero delay as a function of
relative phase �2fv 2 f2v� and illustrates the expected
periodicity. The density modulation amplitude is approxi-
mately 2%. Also shown is the transmission modulation
of the 775 nm pump beam (as monitored by D3). The
phase offset between the two curves provides a measure
of the phase of the complex x

xyz
2 , as discussed below. To

estimate the error associated with alignment and random
noise sources, the experiment is repeated 10 times. The
phase offset has a value of 0.35p with a standard
deviation of 0.05p . The amplitude of both modulation
signals as a function of 2v beam irradiance, for fixed
v beam irradiance, gives an approximately square root
dependence, consistent with the theory outlined above.
Rotation of the sample around its normal yields a sixfold
symmetry in the modulation amplitude as expected from
the 43 m symmetry of GaAs.

For an optically thin sample with no linear dispersion,
carrier density modulation would be due solely to the di-
rect process and would peak at �2fv 2 f2v� � 0. The
2v transmission would be offset from this modulation

FIG. 2. (top) Phase-dependent modulated carrier density as
probed by a 825 nm beam as a function of v 2 2v delay.
Data gaps are due to limitations of experimental procedure.
(bottom) Detail of modulated carrier density (crosses) and
transmitted 2v power (circles) as a function of 2fv 2 f2v .
Note that the zero of phase is arbitrarily chosen since it is not
determined experimentally. Solid curves are best fits to the
data assuming a sinusoidal shape.
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trace by an amount directly related to the phase of x2.
However, for our sample, propagation effects, includ-
ing the cascaded process described above, must also be
taken into account. This we have done numerically using
relevant optical parameters taken from various sources
[6,14,17]. The analysis uses a Green function formal-
ism [18] to find a self-consistent solution to the electri-
cal fields and polarization densities within the sample.
Phase mismatch and Fabry-Perot effects are also included.
The simulation assumes monochromatic plane waves with
pulse duration much longer than the transit time of
the thin film (10 fs) but shorter than the electron-hole
recombination time (typically larger than 1 ns). The
transmitted v and 2v beam irradiances, along with the
generated carrier density, are determined as a function of
�2fv 2 f2v�. The experimentally obtained phase off-
set of 11.1 rad between the carrier density modulation
and 775 nm transmission curves corresponds to a ratio of
Im�xxyz

2 ��Re�xxyz
2 � � 0.32 6 0.06 which is in agreement

with the theoretically predicted value of 0.37 [14]. Cal-
culations also show that, for our sample thickness, the
2% modulation is dominated by the direct interference
process. Phase mismatch, pump depletion, extraneous re-
flections, and the use of a (111) surface account for the
modulation amplitude being smaller than the theoretical
value (6.4%). With suitable optimization, e.g., through
the use of higher frequencies or other materials includ-
ing nanostructured solids, �nI� �n may be increased making
unique devices or optoelectronic processes possible, in-
cluding optical modulation of gain in lasers or new ultra-
fast switching processes.

One can distinguish control of carrier population
(a scalar) from coherent control of electrical current
(a vector) [19] in a semiconductor in several ways.
Microscopically, current control relies on the differ-
ence of interference terms at k and 2k, while popu-
lation control originates from the sum of the interfering
transition amplitudes at k and 2k. The former provides
a means to inject carriers into momentum space with po-
lar distributions, corresponding to a macroscopic net flow
of charge, while the latter provides a phase-dependent
total carrier population. Phenomenologically, population
control is related to x2�22v; v, v� while current control
arises from the most divergent part of x3�0; 22v, v, v�
[20], resulting in very different dependencies on crystal
symmetry, crystal cut, and beam polarizations. Current
control can be observed in a medium with or without cen-
ter of inversion and with near-unity efficacy of directed
charge motion. However, even if present, it does not
affect the transmission of the optical beams.

In conclusion, we proposed and confirmed experi-
mentally that, when fundamental and sum-frequency
beams are simultaneously present in a noncentrosym-
metric medium, quantum interference effects between
single- and two-photon transition amplitudes can lead
to an increase or decrease of energy removal from all
beams. Such an effect can be used actively to permit
phase control of carrier generation and optical absorption.
At a macroscopic level, these effects can be related to
Im�x2�, a quantity which has largely been overlooked in
the past. This process represents the lowest order effect
which can be used to control continuum state populations.
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