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Three color coherent generation and control of current
in low-temperature-grown GaAs
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We demonstrate coherent generation and control of electrical currents in low-temperature-grown
GaAs at 300 K using three phase-related, 150 fs pulses derived from a parametric process.
Interference between single phot¢®.8 um) and nondegenerate two phot¢h.4 and 1.8um)
absorption amplitudes generates ballistic electrical currents whose beam polarization dependence is
in agreement with a simple Fermi’s golden rule calculation. 1899 American Institute of Physics.
[S0003-695(199)01914-2

The use of phased optical beams to control atomstypically both . and 5, which are purely imaginary, have
molecules;™* and electrons in solids'! via quantum inter- the same sign. For crystalline GaAs, the only nonzero ele-
ference processes has been widely investigated in recements of they tensor arexxxx, xxyy, xyxy, xyy®and related
years. Many demonstrations involve the interference of abelements by, y, andz exchangé? The tensor is a measure
sorption pathways for harmonically related beams. For exef the polarity of the electron distribution created by the
ample, atomic populations have been controlled via interferinterference of single ;) and two photon ¢+ w,) pro-
ence of single and three photon absorpfiamd electrical cesses. Note that degenerate two photon absorption can also
currents have been controlled in GaAs and low-temperatureaccur for one or both of the, and w, beams alone ifi w4
grown (LT) GaAd "%using single and two photon interband or 7 w,>E/2. Since these processes access different initial
absorption processes. Here we illustrate the quantum inteand final states than those accessed byuth®eam they do
ference control of electrical currents in LT-GaAs using threenot contribute to the interference effect. For a particular ten-
beams that are not harmonically related but are phase relatsdr element, e.g., thexyy element, Eq.(1) explicitly be-
since they are derived from a phase-matched optical paraomes:
metric processes. Current injection occurs as a result of the
interference of single photon absorption with nondegenerate dJ*
two photon absorption pathways. The additional degree of g = 2 !Mm 7™ (w3,4)|EX(wy)]
freedom may allow for optimization of coherent control phe-
nomena in future applications, e.g., via near-resonant inter- X|EY(0,)||EY (w3)|SiN ¢p3— do— 1), 2
mediate states. Here we show that three colors allow one to
separate the different elements of the current injection tensowhere the phasesp, are defined according t&E*(w,)

We also present calculations of the dispersion of the ele=|E?(w,)|€'?«; the phase parametarp= ¢5— ¢, — ¢, can
ments in clean GaAgband gapEy=1.42eV at 300 K12 be used to control the current direction and magnitude.

The formulation of the three color problem is a simple By following Atansovet al® and assuming thai, is the
extension of the two color proce¥stor three beams the only resonant frequency withw, and# w,< Eg4 we find:
current densityd, ,, for electrons(e) and holes(h) is given

by: abed —(+)2mie* f dk

a ﬂe(h)(wsaA): 73 83 Veew)
dJe(h)_ abcd A Eb _ EC _ Ed +
dt . Teth (03,4)E°(— @) E*(—wy)E%(w3) +C.C.,
«y

whereE(---) designates the complex field amplitdémside

the sampleA=w,— w,, andw;= w,+ w,; superscripts in- _

dicate Cartesian components. Momentum relaxation of car- Wey— 0~ (A12)

riers can be included phenomenologically by adding a term

— Jewny/ Te(ny to the right hand side of Eq1), wherere) is ~ Where we,(K)=wc(k) — o, (k), we (K)=[we(K)+ w,(K)]/

the appropriate relaxation time. The total current injection2, V,c(K) denotes the matrix element of the velocity operator

tensor is given by 7Y w;,A)=73"Yw;,A)  between bands andc, the subscripts and v refer, respec-

+ 72U w5,A); generally| 72°“Y w3,A)|>| 72°°Yw3,A)|,  tively, to conduction and valence bands, amdienotes a

because of the lighter effective mass of the electrons, bupand of either type; th& dependence of these quantities in
Eq. (3) has been kept implicit. We here sum explicitly over

9 . : . bands with different spins. In the degenerate limi (

oo NG E14 2Eq Cannda, (° Fryeiaue. Lnversige Moncton. - _ g) abed 5 0)= 27205 2w), where 7is{2w) is the

YElectronic mail: vandriel@physics.utoronto.ca result of Atanaso\et al;® this is as it should b&
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0 05 1 15 FIG. 2. Experimental setup. For the purposes of clarity, focusing optics are
’ ’ omitted and overlapped beams are shown spatially separated. Beams re-
ho, [eV] flected from gold mirrors are directed slightly downward to be intercepted

by a pick-off mirror and sent to the sample.
FIG. 1. Dispersion in the current injection tensor elements associated with
GaAs. For comparison with experimental results we chodse;
=1.55 eV, the abscissa fsw;, With w;+ w,= ;. produce orthogonally polarized 150 fs pulses with 1.8Q)(

and 1.44um (w,) and average power of 1 to 2 mW. A
phase-locked beam at 0.8dm (w3) is produced by sum-
frequency mixing in a 1.5-mm-thick KTiPQcrystal, how-
N - ; o ever the beam from the Ti:sapphire laser can also be used.
tribution .from the intermediate conductidwirtual elestron The three colors are separated into independent delay lines
states with respect to the degenerate cdseQ), but “sup- ¢4 jndividual control of pulse delay to maximize temporal
presses” the virtual hole contribution. The roles of virtual overlap. One delay lineds) is mounted on a piezoelectric
electron and hole terms are reversed in the second term W ,ator to allow fine control ak .
square brackets in E3). The divergences as— * wg are The semiconductor is a &m epilayer of annealed, low-
associated with either the; or w, beam becoming resonant temperature-grown GaAGesistivity ~ 107 Q cm) on a sub-
with the band gap, and thatrabandmotion of the injected  girate 0f(001) GaAs. The three beams are focused to provide
electrons and holes is also resonantly driven. For non&ero peam waists ranging from 60 to 90, yielding peak irra-
the expressioni3) indicates a difference ip*¥{(w3,A) and  gignces of 0.6, 1.4, and 15 MW/énfor w;, w,, and ws,
7Y w3,4) but with 7N w3,A) = 7N w3, 4). respectively. Peak carrier density is on the order of 1
Figure 1 shows the calculated four nonzero tensor elesc107¢m3. To observe the ultrafast signals, we integrate
ments for GaAs as a function a@é, over the rangd%A|  the current by collecting charges on unbiased gold electrodes
<2E4—fw3, With iw3=1.55eV(0.8 um). To calculate the  separated by a 1@m gap® The crystal/electrodes are con-
wave functions and eigenenergies we employed a pseudopfigured so as to make thd00) crystal direction across the
tential plane wave approach, a modification of a mOIeCUIabap with the(OlO) direction a|ong the gap a_||owing us to
dynamics program® The nonlocal pseudopotential of make use of the™Y tensor. The fast trapping time of the
Hamanri”*® forms the basis of the electronic structure cal-| T-GaAs causes the sample to return to high resistivity on a
culation; we used the local density approximati&tDA)  picosecond time scale thus minimizing carrier discharge
exchange-correlation potential as parameterized by Perderough the sampl¥. The electrodes are connected directly
and Zunger? To correct for the LDA band gap, self-energy to a lock-in amplifier(100 MQ input impedance The mea-
corrections were included at the level of the “scissors™ ap-sured steady-state voltage signal corresponds to the inte-
proximation, modifying the velocity matrix elements as pro-grated current, i.e., total collected charge, discharging
posed by Levinet al?° Spin-orbit effects are neglected. The through the lock-in amplifier. Phase mismatch of the three
irreducible Brillouin zone was sampled with a hybrid beams due to material disperst8iis not an important con-
tetrahedron-random sampling metfbaith >1300 points.  sideration in this experiment due to the relatively short at-
Note that in the %xxX’ geometry the minimum current tenuation depth(1.5 um)?® of the w5 electric field. Back-
injection occurs under conditions of degeneraey € w,), ground free measurements are performed by ditheArg
as does the minimum two photon absorptfébut the mini-  about a given value at 80 Hz while using lock-in amplifica-
mum here is much shallower than in two photon absorptiontion.
Under conditions of nondegeneracy tkyxy and xxyy com- The inset to Fig. 3 shows that the steady-state voltage
ponents are distinguishable. This can be understood qualit@as the expected dependenceaf The variation of current
tively since the larger component occurs when the nonresdnjection with the w4 irradiance, | (w3), was determined
nant beam with frequency closer t; is also polarized in  from 60 kW cm 2 to 15 MW cmi 2 while both thew; andw,
the same direction. beam peak irradiances were held constant. Results are shown
The experimental setup to observe three-color cohererih the main part of Fig. 3. A best fit indicates that the current
control is shown in Fig. 2. High intensity ultrashort light varies ad (w3)%** %% close to thd (w3)%° dependence ex-
pulses are used to maximize the nonlinear current generatigrected theoreticallyalbeit, for the current injection rateBy
while minimizing thermal effects. A regenerative amplified rotating the sample 90° along with the polarization of éhe
Ti:sapphire lasef0.8 um) operating at a repetition rate of beam, we can access thg¥*¥ tensor element. The magni-
250 kHz is used to pump an optical parametric amplifier totude of the injected current then decreases+30% in ap-

Returning to the nondegenerate case, wen0 the
first term in square brackets in E@) “enhances” the con-
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