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Abstract
A review of the optical properties of two-dimensional and three-dimensional
photonic crystals based on macroporous silicon is given. As macroporous
silicon provides structures with aspect ratios exceeding 100, it can be
considered to be an ideal two-dimensional photonic crystal. Most of the
features of the photonic dispersion relation have been experimentally
determined and were compared to theoretical calculations. This includes
transmission and reflection of finite and bulk photonic crystals and their
variation with the pore radius to determine the gap map. All measurements
have been carried out for both polarizations separately since they decouple
in two-dimensional photonic crystals. Moreover, by inhibiting the growth of
selected pores, point and line defects were realized and the corresponding
high-Q microcavity resonances as well as waveguiding properties were
studied via transmission. The tunability of the bandgap was demonstrated
by changing the refractive index inside the pores caused by an infiltrated
liquid crystal undergoing a temperature-induced phase transition. Finally
different realizations of three-dimensional photonic crystals using
macroporous silicon are discussed. In all cases an excellent agreement
between experimental results and theory is observed.

Keywords: Photonic crystal, two-dimensional, three-dimensional,
macropores, macroporous silicon, birefringence, defects, tunability

From the beginning of research on photonic crystals, a major
area of investigation concerned two-dimensional photonic
crystals [1]. This was mainly caused by experimental reasons
as the fabrication of three-dimensional photonic crystals
appeared to be more difficult and cumbersome than that of two-
dimensional photonic crystals. Additionally the calculation of
bandstructures for two-dimensional photonic crystals is less
time consuming and a lot of interesting phenomena (e.g. light

localization; at least in a plane) can already be studied in two-
dimensional photonic crystals.

However, an ideal two-dimensional photonic crystal
consists of a periodic array of infinitely long pores or rods
so that the fabrication of a structure which approximates
this theoretical model has to exhibit very high aspect ratios
(ratio between pore/rod length to pore/rod diameter). Using
conventional dry etching techniques only structures with aspect
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Figure 1. SEM image of a two-dimensional triangular lattice of
macropores in silicon with a lattice constant of 1.5 µm. As the pore
depth amounts to 100 µm the aspect ratio is ∼100. The bevelled
etch in front reveals the high uniformity of the structure from the top
down to the pore tips.

ratios up to 10–20 are possible. To avoid scattering of light out
of the plane of periodicity and to reduce the corresponding loss
the so-called slab structures were developed and thoroughly
investigated [2, 3]. In such low-aspect structures, one relies
on guiding of light in the third dimension and, consequently,
deals with a full three-dimensional problem. On the other hand
Lehmann and Grüning [4, 5] as well as Lau and Parker [6]
proposed macroporous silicon as a model system for two-
dimensional photonic crystals. This system consists of a
periodic array of air pores in silicon. The pores are etched in
hydrofluoric acid applying a photo-electrochemical dissolution
process [7,8]. Using lithographic prestructuring the nucleation
spots of the pores can be defined at the surface of the n-
type silicon wafer. This also allows the pore pattern and its
lattice constant to be controlled over the range from 8 µm
down to 0.5 µm. During the etching process the back of
the wafer must be illuminated to create electronic holes in
the silicon which are consumed during the etching process.
Due to electrochemical passivation of the pore walls very high
aspect ratios of 100–500 are obtained. As the fundamental
bandgap appears in general for wavelengths which are
approximately twice the lattice constant, the pores are 50–250
times longer than the wavelengths of the corresponding two-
dimensional fundamental bandgap. Therefore, macroporous
silicon represents an excellent system to study ideal two-
dimensional photonic crystal properties.

In figure 1(a) a structure with a triangular two-dimensional
pore lattice with a lattice constant of 1.5 µm is shown. The
pore depth is 100 µm and the bevelled edge reveals the high
uniformity of the pores down to the pore tips.

In the next paragraphs optical experiments performed
with such structures are presented and compared with
calculations assuming a two-dimensional array of infinitely
long macropores. The lattice type, lattice constant and the
pore depth of the investigated structures have the same values
as the sample shown in figure 1 while the diameter of the pores
varies in order to meet the experimental requirements.

1. Two-dimensional photonic crystals based on
macroporous silicon

The dispersion relation for light propagation inside a photonic
crystal is calculated using the plane-wave method. Due to
the two-dimensional periodicity and the uniformity along the
third dimension the light propagating in a two-dimensional
photonic crystal splits into E-polarized (E-field parallel to
the pore axis) and H-polarized (H-field parallel to the pore-
axis) waves. The bandstructures for these polarizations differ
from each other and so do the bandgaps in width and spectral
position. This originates in the different field distributions:
typically, the electric field of the H-polarized waves is located
in the veins of the structures whereas the electric field of the
E-polarized waves concentrates in the connection points of the
veins. Figure 2(a) shows an example of a bandstructure for our
system calculated for wavevectors in the first Brillouin zone
along the path �-M-K-�. The assumed porosity or air filling
factor is p = 0.73 which corresponds to r/a = 0.45 (r = pore
radius, a = lattice constant) and the refractive index of silicon
in the infrared (IR) is 3.4. For a triangular array of pores, a
refractive-index contrast exceeding 2.7 [9] and suitable r/a

ratios the bandgaps for E- and H-polarization overlap and a
complete two-dimensional photonic bandgap exists. As the
refractive-index contrast for air pores in silicon amounts to
εSi/εAir = 3.4 in the IR, these requirements are fulfilled in
our system. The bandstructure shown in figure 2 thus exhibits
such a complete bandgap indicated by a grey bar.

In addition to the bandstructure, the density of photonic
states (DOS) is computed as well and presented in figure 2(b).
In the spectral region of the complete photonic bandgap the
DOS is zero, such that propagation of light in the plane of
periodicity with these frequencies is completely forbidden in
the photonic crystal.

To verify these theoretical calculations, transmission
measurements through bars of the macroporous silicon
photonic crystals along �-M and �-K directions were carried
out. For this purpose bars containing 13 pore rows were cut
out using a second lithographic step. The measurements were
performed using a Fourier transform infrared spectrometer
(FTIR) in the spectral range between 700 and 7000 cm−1

(14.3 and 1.43 µm). Figure 3 shows the measured spectra
for both directions and both polarizations. They are compared
to transmission calculations using the method developed by
Sakoda [10]. The spectral positions of regions with vanishing
transmission correspond well to the calculated spectrum.
For the measurements along the �-M direction they can be
attributed to the bandgaps already discussed in figure 2 for
H-polarized and E-polarized light. However, the vanishing
transmission in the range of 2200–3500 cm−1 for propagation
along the �-K direction of E-polarized light cannot entirely
be explained through a stopband. A comparison with the
bandstructure of figure 2 predicts a photonic band which covers
part of this spectral region. However, as was pointed out
earlier [11, 12] bands in which the experimentally incident
plane wave cannot couple also lead to zero transmission. These
bands correspond to Bloch modes whose field distributions are
antisymmetric with respect to the plane spanned by the pore
axis and the direction of incidence. Consequently, although
modes do exist in the photonic crystal they need not to be
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Figure 2. (a) Two-dimensional bandstructure of a triangular macroporous silicon photonic crystal (r/a = 0.45). (b) DOS, inset:
two-dimensional hexagonal Brillouin zone and appropriate oriented triangular pore lattice in real space. The grey bar indicates the
two-dimensional complete bandgap. In this spectral range neither H- nor E-polarized photonic states exist (DOS = 0).

Figure 3. Transmission measurements (solid curve) and calculation
(dashed curve) for penetration of a two-dimensional macroporous
silicon photonic crystal bar containing 13 pore rows. Transmission
for both polarizations (H- and E-polarization) along both
high-symmetry directions, �-M and �-K, are shown.

visible in transmission. Therefore, care has to be taken when
directly comparing reflection or transmission measurements
with bandstructures: although a bandgap leads always to total
reflection/zero transmission, a spectral region exhibiting total
reflection/zero transmission does not necessarily coincide with
a bandgap. A direct comparison of experiment and theory is
therefore rather based on reflection/transmission calculations
than on bandstructure calculations alone. In addition to the
applied Sakoda method, mainly transfer-matrix and finite
difference time domain (FDTD) methods can be used for the
calculation of reflection and transmission.

The complete bandgap derived from the bandstructure
calculations comprises the interval between 2900 and
3300 cm−1 (3.44 and 3.03 µm). It clearly overlaps with all
spectral regions with vanishing transmission.

The optimum bandgap cannot be understood by Bragg
scattering only. For scatterers whose spatial dimensions
are comparable to the wavelength, additional scattering
resonances (known as Mie resonances for spherical particles)
appear. They depend on the size and shape of the scatterers.
Consequently, apart from symmetry, lattice constant and
refractive index, the radius of the pores (r/a-ratio) has
an influence on the existence, position and the width of
the photonic bandgaps. A graphic representation of the
relationship between gap frequencies and filling ratio is
known as a gap map, which for our structure, has been
calculated before [1]. To verify this gap map experimentally,
transmission measurements for 17 different samples spanning
a wide range of r/a-ratios were carried out. The bandedges
were determined from these measurements and are compared
with the theoretical predictions in figure 4. The overall
correspondence is very good. For lower r/a-ratios only a
bandgap for the H-polarization exists. A complete bandgap
only appears for r/a > 0.4 as then an E-bandgap appears
which overlaps with the H-bandgap. With increasing r/a-
ratios the E-bandgap widens while the H-bandgap shrinks
for very high filling ratios. A maximum complete bandgap
of �ω/ω = 16% for r/a = 0.48 can be deduced. This
relatively large complete bandgap is a consequence of the
strong refractive-index contrast between the silicon (pore
walls) and air (inside the pores) as well as the synergetic
interplay of Mie resonance and Bragg scattering resonance.

Strictly speaking, the bandstructure calculations can only
be performed assuming an infinitely extended photonic crystal.
Therefore also the bandgap (zero DOS) causing perfect total
reflection only appears for infinite bulk photonic crystals.
For a very thin slab of the photonic crystal the incident
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Figure 4. Position of the bandgaps for H-polarized light (dotted curve) and E-polarized light (solid curve) for a two-dimensional triangular
macroporous silicon photonic crystal depending on the r/a-ratio (gap map). A complete bandgap appears as an overlap of the gaps for both
polarizations and attains its maximum size with a r/a-ratio of 0.48.

light of a frequency within the bulk bandgap is no longer
totally reflected. A certain amount can penetrate the thin
photonic crystal. To investigate this effect four samples
containing one, two, three and four crystal rows with a r/a-
ratio of 0.453 were fabricated (figure 5(a)). Transmission
measurements for H-polarized light of different wavelengths
along �-K were performed (see figure 2) [13]. A tunable laser
set-up was used which covered the spectral range between
3 < λ < 5 µm corresponding to the range of the H-
bandgap (3.1 < λ < 5.5 µm) of the corresponding bulk
photonic crystal. The experimental results were compared
with transmission calculations applying the already mentioned
Sakoda method with 4000 plane waves and revealed a very
good agreement (figure 5(b)). Plotting the transmittance versus
the penetrated crystal thickness (figure 5(c)) an exponential
decay is observed. This corresponds to the expectation that for
frequencies within the bandgap the light penetrating into the
bulk photonic crystal is exponentially damped. The slope of
the line in the logarithmic plot corresponds to a decay constant
of 10 dB per crystal row for light with a wavelength near the
centre of the bandgap. Even for a bar containing only one
pore row the bandgap is already perceptible. This originates
in the strong scattering of the single pores due to the large
refractive-index contrast between air pores and silicon walls.

In the initial investigations into photonic crystals mostly
photonic bandgap properties were studied. However, over the
last few years attention has also been drawn to other spectral
regions of the dispersion relation that exhibit remarkable
properties.

For instance, we recently investigated the birefringence
of a two-dimensional macroporous silicon photonic crystal in
the spectral region below the first bandgap. From theoretical
investigations [14, 15] it was expected that a triangular two-
dimensional photonic crystal shows uniaxial properties for
ω → 0. The optical axis coincides in this case with the
pore/rod axis. For light propagating in this direction the
effective refractive index is independent of the polarization
direction (birefringence = 0). However for light propagating
in the plane of periodicity the two-dimensional bandstructure
reveals different slopes of the E- and H-polarized bands due
to different mode distributions in the silicon matrix. This

corresponds to different effective refractive indices for these
two different polarizations and leads to birefringent behaviour
of light propagation perpendicular to the pore axis. We
investigated this effect experimentally in transmission using an
FTIR spectrometer. The sample consisted of a macroporous
silicon crystal with a lattice constant a = 1.5 µm and r/a-
ratio of 0.429. The transmission along the �-M direction
through a bar of 235 µm width containing 181 pore rows
was measured [16]. In front of the sample a polarizer
was placed and aligned with an angle of 45◦ relative to
the pore axis. This defined a certain polarization state of
the light incident on the photonic crystal and assured that
the radiation consisted of H- and E-polarized components
of comparable strengths. After penetration through the
sample the beam passes through a second polarizer which
is aligned parallel or perpendicular to the first polarizer,
respectively. The measured transmission for parallel and
crossed polarizers is shown in figure 6. A periodic variation
of the transmitted intensity is observed for both polarizer
set-ups. The maxima of the parallel polarizer orientation
corresponds to the minima of the crossed orientation. This
can be explained considering the phase difference which
builds up between E- and H-polarized light after penetration
through the photonic crystal. This phase difference is given by
�φ = 2π�neffdf/c (�neff difference of effective refractive
indices, d thickness of penetrated photonic crystal, f light
frequency). For parallel orientations of the polarizers a
maximum occurs for �φ = 2mπ while a minimum appears
for �φ = (2m + 1)π . For the crossed polarizers the opposite
is true. The light frequency and the order of the maxima
and minima are determined from the transmission curve and
with this the birefringence �neff can be calculated. It is
frequency dependent (figure 7). However, over the entire
investigated spectral range its value exceeds 0.3 and attains
its maximum at the upper limit of the investigated range (at the
lower bandedge of the first E-gap). The largest birefringence
measured amounts to 0.366 at a frequency f = 0.209c/a.
With this it is by a factor of 43 larger than the birefringence of
quartz.

The uniaxial behaviour of the triangular two-dimensional
photonic crystal in the limit ω → 0 corresponds to the well
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Figure 5. (a) SEM image of the macroporous silicon bars with varying thickness. The inset shows an enlarged view of the centre square.
(b) Measured and calculated transmission for wavelengths within the H-bandgap. Solid curves, calculations for transmission through one,
two, three and four crystal rows. Points: measurements for 0.89 ± 0.04 ( ), 1.8 ± 0.1 (•), 2.9 ± 0.1 (�) and 4.2 ± 0.2 (�) crystal rows.
(c) Measured transmission as a function of slab thickness for two wavelengths within the bandgap.

Figure 6. Effect of birefringence: measured transmission in the
spectral range below the first bandgap (long wavelength regime).
Spectra were recorded for parallel (solid curves) and crossed
(dashed curves) orientations of the two polarizers which were placed
in front and behind the sample, respectively. The periodic maxima
and minima in the transmission spectrum appear due to the phase
difference between E- and H-polarized waves accumulating during
penetration of the sample.

known uniaxial birefringence of hexagonal atomic crystals
in the visible region. In atomic crystals the scatterers
(atoms) have distances in the region of Å and therefore Bragg
diffraction occurs for wavelengths in the x-ray region. For
these classic atomic crystals the visible region of the spectrum
corresponds to the long wavelength limit ω → 0. In our
case, where the lattice constant is of the order of 1 µm,
Bragg diffraction occurs in the near and mid IR (causing
the bandgaps) while the limit ω → 0 comprises the long
wavelength regions of the mid and far IR.

Figure 7. Spectral dependence of birefringence (�n).
Measurements (data points) and calculations (curves). The dashed
curves represent the calculated dependence for the upper and lower
bounds of the measured value of r/a (0.429 ± 0.002). The largest
measured birefringence (�n = 0.365) appears near the upper limit
of the investigated spectral range close to the bandedge for
E-polarization.

In the described experiment only the birefringence along
one propagation direction in the plane of periodicity was in-
vestigated. For the case of a uniaxial crystal this is sufficient,
as the birefringence is constant for all propagation directions
perpendicular to the optical axis. However, for increasing light
frequencies which approach the first bandgap this is no longer
true. In this case the value of the birefringence depends on
the direction of propagation in the �-M-K plane and the opti-
cal properties of the crystal can no longer be described by the
terms ‘uniaxial’ or ‘biaxial’ used in classic crystal optics [17].
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Figure 8. SEM image of a two-dimensional macroporous silicon
bar containing a line defect introduced by skipping a line of pore
nucleation spots defined by lithography.

2. Defects in two-dimensional macroporous silicon
photonic crystals

Since the beginning of the study of photonic crystals special
attention was paid to intentional incorporated defects in
these crystals. Point or line defects can be introduced into
macroporous two-dimensional silicon photonic crystals by
omitting the growth of a single pore or a line of pores.
This can be achieved by designing a suitable mask for the
lithography (the pattern defining process). To demonstrate
waveguiding through a linear defect we incorporated a 27 µm
line defect along the �-K direction into a triangular two-
dimensional photonic crystal with a r/a ratio of 0.43 (r =
0.64 µm) [18]. However, due to the photo-electrochemical
fabrication process the diameter of the pores in the adjacent
rows to the waveguide is increased. Figure 8 shows a picture
of a similar structure. The transmission through the line
defect was measured with a pulsed laser source having a
bandwidth of 200 nm and tunable over the whole width of
the H-stopband in the �-K direction (3.1 < λ < 5.5 µm).
The measured spectrum (figure 9) exhibits pronounced Fabry–
Perot resonances over a large spectral range which are caused
by multiple reflections at the waveguide facets. Comparing the
spectrum with a FDTD-transmission calculation reveals very
good agreement and the comparable finesse of the measured
and calculated resonances indicate small losses in the sample.
A bandstructure calculation for H-polarization along �-K
including waveguide modes is depicted in figure 10. The grey-
shaded regions represent all possible modes inside the perfect
crystal areas adjacent to the line defect. Defect modes bound
to the line defect, therefore, occur only in the range 0.27 <

f < 0.46. They split into even and odd modes with respect to
the mirror plane which is spanned by the waveguide direction
and the direction of the pore axis. As the incoming wave can be
approximated by a plane wave, the incident radiation can only
couple to the even modes of the waveguide. The odd modes do

Figure 9. (a) Measured and (b) calculated H-polarized transmission
spectrum of a 27 µm-long waveguide directed along �-K covering
the spectral range of the H-bandgap of the surrounding perfect
photonic crystal. Only the even waveguide modes contribute to the
transmission as the incoming plane wave cannot be coupled to the
odd waveguide modes. The small stopgap at a frequency of 0.45 c/a
is caused by the anticrossing of two even waveguide modes.

Figure 10. Computed H-polarized bandstructure of the waveguide
oriented along �-K. Solid and dotted curves correspond to even and
odd modes, respectively. The two bands which are labelled with
arrows appear due to the overetched pores on either side of the
waveguide. The shaded areas correspond to the modes available in
the adjacent perfect crystal regions.

not contribute to the transmission through the waveguide and,
therefore, in this experiment transmission is solely connected
with the even modes. The small stopband between the even
modes around a frequency of 0.45 is reproduced as a region
of vanishing transmission in figure 9 due to anticrossing of the
waveguide modes [19]. Furthermore, from the bandstructure
it can be concluded that for 0.37 < f < 0.41 c/a only a single
even mode exists. Its bandwidth amounts to 10%.
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Figure 11. Top view of the photonic crystal region containing the
waveguide–microresonator–waveguide structure. The r/a-ratio of
the pores amounts to 0.433. The waveguides on the left and right
serve to couple the light into the point defect (microresonator).

In addition to line defects point defects consisting of
just one missing pore are also of special interest. Such
a micro resonator-type defect also causes photonic states
whose spectral positions lie in the range of the bandgap
of the surrounding perfect photonic crystal. The lightfields
belonging to these defect states are therefore confined to
the very small volume of the point defect resulting in very
high energy densities inside the defect volume. As the
point defect can be considered as a microcavity surrounded
by perfect reflecting walls, resonance peaks with very high
Q-values are expected in the transmission spectra. To
study this experimentally we fabricated a sample including
a point defect which was placed between two line defects
serving as waveguides for coupling light in and out [20].
Figure 11 shows a SEM image of the described sample
with r/a = 0.433. Measuring transmission through this
waveguide–microresonator–waveguide structure demands an
optical source with a very narrow linewidth. Therefore, a
continuous wave optical parametric oscillator (OPO) has been
used which is tunable between 3.6 and 4 µm and delivers
a laser beam of 100 kHz linewidth. For spatially resolved
detection an uncoated tapered fluoride glass fibre mounted
to a scanning nearfield optical microscope-head was applied
and positioned precisely to the exit facet of the outcoupling
photonic crystal waveguide. In the transmission spectrum
two-point defect resonances at 3.616 and 3.843 µm could
be observed (figure 12). Their spectral positions are in
excellent agreement with the calculated values of 3.625 and
3.834 µm predicted by FDTD calculations taking into account
the slightly widened pores surrounding the point defect. The
measured point defect resonances exhibited Q values of 640
and 190, respectively. The differences to the theoretical
predicted values of 1700, 750 could be caused by very small
pore diameter variations (of the order of 1%) with the depth. A
slight variation of the resonance frequency with pore depth and
a scattering of light out of the plane of periodicity can be the

Figure 12. Measured monopole (Q = 640) and decapole
resonances (Q = 190) of the point defect at wavelengths of 3.616
and 3.843 µm.

consequences leading to a broadened averaged resonance peak.
However, the reported high Q-values of this two-dimensional
microresonator might already be sufficient for studying the
modification of radiation properties of an emitter placed in
such a point defect. Microcavities with even higher Q-values
might be possible by increasing the number of pores to three
or four which separate the point defect from the waveguides.

3. Technologically relevant structures

In the preceding paragraphs experiments were reported
which demonstrate the properties of macroporous silicon
for two-dimensional photonic crystals with bandgaps in
the mid IR. Their high accuracy makes them a perfect
model system to explore the concept of photonic crystals
in the IR region. In addition to their physically interesting
properties photonic crystals bear considerable potential for
optical telecommunications (for instance, application of line
defects for routing of light beams). For these applications
photonic crystal waveguides have to work in a wavelength
range between 1.3 and 1.5 µm so that they are compatible
with the existing glass-fibre network. This fact requires
photonic crystals with bandgaps in the corresponding spectral
range. As is known from Maxwell’s equations the spectral
position of the bandgap scales linearly with the lattice constant
of the photonic crystals. Therefore, structures with sub-
micrometer dimensions are necessary. Although they should
not show a novel physical behaviour, their fabrication is
still an experimental challenge. We fabricated a triangular
lattice with a pitch a = 0.5 µm and a r/a-ratio of
0.425. To check the spectral position of the first-order
bandgap, reflection measurements were performed using an IR
microscope connected to a FTIR spectrometer. The reflection
for H- and E-polarized light incident in the �-M direction
was measured separately. A gold mirror was used as a
reference. Figure 13 shows a comparison of the measured
reflection spectra with the bandstructure and with reflection
calculations using a programme based on a transfer-matrix
approach [21]6. The grey-shaded spectral ranges represent the
6 The program ‘Translight’ can be downloaded from
http://www.elec.gla.ac.uk/∼areynolds/software.html. It is based on the
paper by Bell et al [21].
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Figure 13. Reflectivity along �-M for a two-dimensional triangular macroporous silicon photonic crystal with a lattice constant of 0.5 µm
for E-polarization (upper part) and H-polarization (lower part). Left, calculated reflectivity assuming a finite photonic crystal containing
eight pores rows. The periodic Fabry–Perot resonances are caused by multiple reflections at the facets of the assumed thin bar. Middle,
measured reflectivity of a semi-infinite photonic crystal. No resonances appear, as the second facet lies at infinity. Right, comparison with
bandstructure. Thick bands contribute to transmission while for the thin bands the incident plane waves cannot couple. In addition to the
bandgaps they also cause total reflection (grey-shaded regions). The dark-shaded range shows the complete bandgap around 8000 cm−1

(1.25 µm).

theoretically expected regions of high reflectivity stemming
from the bandgaps. They correspond very well to the
experimental results. The thick printed bands are transmission
bands while the thin printed bands are bands in which a
plane wave cannot couple into the photonic crystal slab. The
reflection calculations were carried out assuming a finite bar
of the photonic crystal containing eight layers. This finite
thickness causes the Fabry–Perot interferences in the spectrum
by multiple reflections at the front and back surface of the bar.
However, in the experiment we investigated a semi-infinite
photonic crystal. In this case the Fabry–Perot resonances are
absent. Apart from this difference the calculated reflection
curves agree very well with the measured ones and the
spectral ranges of very high reflectivity caused by the bandgaps
(ideal total reflection) coincide. Although the reflected light
contained contributions from beams with an incidence angle of
up to 30◦ (due to the focussing conditions of the microscope)
this off-normal incidence has only a negligible effect. The
incident light is bent by refraction towards the normal
propagating with a much smaller angular deviation inside the
photonic crystal. Additionally, the width and position of this
first-order bandgap is not very sensitive for small angular
deviations [22]. This is the reason why good agreement
with the bandstructure along �-M and the calculation can
be observed. From the calculated bandstructure a complete
bandgap in the range 1.22–1.3 µm can be derived.

Together with the results of Rowson et al [23] who
showed bandgaps at 1.5 µm this experiment proves that

macroporous silicon structures can be fabricated and used
as two-dimensional photonic crystals for the technologically
interesting telecommunication wavelengths between 1.3 and
1.5 µm.

As was pointed out earlier the attenuation for light
frequencies within the bandgap amounts to 10 dB per pore
row. As Maxwell’s equations scale with the structure size this
relative property also remains unchanged for the downscaled
structure. This enables a close packing of waveguides, as the
separation of six to eight pore rows should be sufficient to avoid
any cross-talk between neighbouring waveguides.

4. Tunability of photonic bandgaps

Small deviations of the fabricated experimental structures from
the designed ones have a serious influence on their optical
properties. In particular, the design of a microresonator
(point defect) with a well defined resonance frequency in
the near IR only allows fabrication tolerances in the sub-
nanometre regime, a demand which currently cannot be
fulfilled reproducibly. Additionally, for many applications,
optical switches for example, one would like to shift the
bandgap during operation. Therefore, tuning the optical
properties during operation is a major point of interest.

One way to achieve this is to change the refractive index
of at least one material inside the photonic crystal. This can be
obtained by controlling the orientation of the optical anisotropy
of one material incorporated in the photonic crystal [24].
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Figure 14. Shift in a bandedge caused by the thermally induced
reorientation of an infiltrated liquid crystal: H-polarized
transmission along �-K after infiltration of the liquid crystal E7.
Solid curve, liquid crystal in its nematic phase (35 ◦C); dotted curve,
liquid crystal in its isotropic phase (62 ◦C).

Figure 15. Temperature dependence of the bandedge shift caused
by the temperature-induced phase transition of the infiltrated liquid
crystal. Solid curve, fit to experimental data points; dashed curve,
calculation assuming a simple axial alignment of the liquid crystal
in the pores.

As proof of the latter we infiltrated a liquid crystal (E7
from EM Industries Inc.) into a two-dimensional triangular
pore array with a pitch of 1.58 µm and observed the shift of
a bandedge depending on the temperature. The liquid crystal
E7 is in its nematic phase at room temperature but becomes
isotropic at T > 59◦C. The refractive index for light polarized
along the director axis is ne = 1.69 while it is only n0 = 1.49
for perpendicular polarization exhibiting strong anisotropy.

The transmission of H-polarized light was measured along
the �-K direction through a 200 µm-thick bar of the infiltrated
photonic crystal. Figure 14 shows the transmission spectra
obtained. At room temperature the first stopband of the H-
polarization is observable in the range between 4.4 and 6 µm.
Although a large bandgap for the H-polarization still exists,
the complete bandgap, which is characteristic of the unfilled
structure, is lost due to the lowered refractive-index contrast
within the infiltrated crystal. Therefore the investigations were
only carried out for H-polarization. When the structure is

Figure 16. Alignment of the liquid crystal within a cylindrical pore
in the case of ER configuration with a weak molecular anchoring
strength of W� = 1 × 10−5 J m−2. Bottom, radial dependence of the
director angle �. Top, orientation of the director at discrete radial
positions.

heated up, the upper band edge at 4.4µm is red shifted while the
lower bandedge exhibits no noticeable shift. At a temperature
of 62◦C the red shift saturates and the total shift amounts to
�λ = 70 nm as shown in figure 15. This corresponds to 3%
of the bandgap width. The shift is caused by the change in
orientation of the liquid-crystal molecules inside the pores. In
a simplified model one can assume that all the liquid-crystal
molecule directors line up parallel to the pore axis when the
liquid crystal is in its nematic phase at room temperature.
Then the H-polarized light sees the lower refractive index
n0 inside the pores. If the temperature is increased above
59◦C a phase transition occurs and the liquid-crystal molecule
directors are randomly oriented. The H-polarized light now
reaches a refractive index inside the pores which is an average
over all these orientations. According to this model a red shift
of �λ = 113 nm is expected which is considerable larger
than that measured. However, the assumption of perfect axial
alignment of all the directors is questionable. From free energy
considerations the escaped-radial (ER) alignment (figure 16)
is expected to be the thermodynamical stable configuration
of the liquid-crystal molecules within the pores. In this case
only the directors in the centre of the pore are axially aligned.
The directors near the pore walls are inclined. The refractive-
index change from this configuration to the isotropic phase is
smaller and explains the smaller bandedge shift. Moreover, the
lightfields of the modes at the higher bandedge (λ = 4.4 µm)
are concentrated in the centre of the pores. They experience a
strong refractive-index change caused by the phase transition
as the initially axially-aligned directors in the pore centre
switch to total random orientations. The field distribution of
the modes at the lower bandedge are mainly concentrated in the
silicon walls and, therefore, do not experience such a change
in the refractive index so that the lower bandedge does not
shift. Although the shifting or switching of a bandgap via
temperature is not very practical, the present study confirms the
possible tunability of photonic bandgaps using liquid crystals.
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Figure 17. (a) SEM image showing a longitudinal section of the modulated pore structure. The variation in the pore diameter with depth
can be modelled by a sinusoidal modulation r = r0 + �r sin(2πz/lz) with r0 = 0.63 µm, �r = 0.08 µm and lz = 1.69 µm. (b) Hexagonal
Brillouin zone showing the high-symmetry directions.

5. Three-dimensional photonic crystals based on
macroporous silicon

Thus far, the main work based on macroporous silicon
and photonic crystals concerned two-dimensional photonic
crystals. Recently, however, attempts have been undertaken
to use macroporous silicon for three-dimensional photonic
crystals.

One approach for introducing a refractive-index variation
in the third dimension is the modulation of the pore diameter
with pore depth [25]. As described in the first paragraph of this
review, the pore diameter of the macropores can be controlled
during the fabrication process (photo-electrochemical etch
process) by the intensity of the back illumination of the
wafer. Strong illumination leads to high-etching currents
and, therefore, wide pores while the opposite is valid for low
illumination.

We now varied the illumination intensity periodically
during the etch process applying a zig-zag profile. Figure 17(a)
shows a SEM image of a longitudinal section of the sample.
The pore diameter modulation can be well approximated by
a sinusoidal dependence on the pore depth. The modulation
period amounts to 1.69 µm and the porosity varies between
81 and 49% between the planes of wide- and narrow-pore
diameters. The lattice constant a of the two-dimensional
pore pattern is again 1.5 µm. The resulting three-dimensional
photonic crystal has a hexagonal lattice and the corresponding
Brillouin zone is also hexagonal (figure 17(b)). Note, that this
is the first three-dimensional photonic crystal in the IR region
which perfectly extends over more than 10 lattice periods. To
investigate the optical properties of the structure introduced
by the pore diameter modulation we performed transmission
measurements along the pore axis which correspond to the�-A
direction. The spectrum is shown in figure 18 and compared to
a three-dimensional bandstructure calculation using the plane-
wave method. For comparison with the experiment, the left

side of the bandstructure shows the relevant dispersion relation
along�-A. The stopgap in this direction caused by the periodic
pore diameter modulation is indicated by a grey bar. This
coincides well with the range of zero transmission between
1350 (λ = 7.41 µm) and 1680 cm−1 (λ = 5.95 µm) measured
along the pores. Although the structure does not show a
complete three-dimensional bandgap it has another distinct
property: as it is not based on building blocks of a fixed shape
(e.g. spheres or ellipsoids) the periodicity can be different for
all directions. The modulation period along the pore axis (z-
axis) can be independently controlled from the periodicity in
the x–y-plane. Consequently, the dispersion relation along the
pores can be adjusted nearly independently from the dispersion
relation perpendicular to them.

Another approach to fabricating three-dimensional
photonic crystals on the basis of macroporous silicon includes
a two-step process [26]. In the first step a conventional two-
dimensional array of straight pores is photo-electrochemically
etched. Afterwards additional pores are drilled under oblique
angles from the top using a focused ion beam (FIB). In this way
a set of three different pore directions is established which cross
each other depthwise. The fabricated structure is very similar
to the well known Yablonovite structure for the microwave
region. However, a complete three-dimensional bandgap is
not yet shown since the angles between the three different pore
sets have not been properly aligned. Although the depth of the
structure is limited due to the FIB process, this method has the
potential for the fabrication of a three-dimensional photonic
crystal with a complete three-dimensional bandgap.

Another fabrication technique which should give a very
similar result uses the photo-electrochemical etching of
macropores on a (111)Si surface [27]. In contrast to the
pore growth on a (100)Si surface in the case of a (111)Si
surface the pores grow into 〈113〉 directions. As there are
three equivalent 〈113〉 directions available from the (111)
surface, three pores start to grow from each nucleation point
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Figure 18. Transmission measured in the �-A direction (along the
pore axis) and comparison with the calculated three-dimensional
bandstructure. The grey bar indicates the stopgap for light
propagation in this direction causing zero transmission.

at the surface. Bandstructure calculations for a corresponding
structure show that the pores along the three 〈113〉 directions
grow at suitable angles such that the structure should exhibit
a three-dimensional complete photonic bandgap. Figure 19
shows an image of such a structure where the nucleation spots
of the pores at the (111) surface are still randomly distributed.
Therefore, this structure does not yet have the described long-
range periodicity of crossing pores and exhibits no photonic
bandgap. However, the crossing pores are clearly visible and
the intended structure can be imagined.

6. Summary

In summary we have shown that macroporous silicon is a
suitable material to fabricate ideal two-dimensional photonic
crystals for the IR region. Due to the high-refractive-index
contrast between silicon and air the bandgaps are large and for
a triangular array of pores a complete bandgap for the light
propagating in the plane of periodicity appears. Experimental
investigations of such a structure for different porosities (r/a-
values) confirms the calculated gap map and the maximum
width of the complete bandgap of 16% for r/a = 0.475. The
wide bandgap of the H-polarization causes a strong attenuation
for light with frequencies within the gap. The corresponding
field is exponentially damped and a damping constant of
10 dB per pore row could be experimentally determined. In
addition to the bandgaps the long wavelength regime below
the first bandgap was also investigated. Large birefringence
was experimentally and theoretically studied and a maximum
value of �neff = 0.366 (difference between H- and E-
polarization) was obtained which is by a factor of 43 larger
than the birefringence of quartz. Due to the photolithographic
prestructuring of the macroporous silicon, defects could
intentionally be introduced. The transmission through a
straight waveguide was investigated. After comparison of the
experimental features with bandstructure calculations a single
mode transmission in a spectral range with a bandwidth of 10%
could be identified. Additionally, transmission measurements
at a point defect have been performed. Two resonances with
Q-values of 647 and 191 were found and comparison with
theory reveals that they can be attributed to the monopol and
decapol mode of the microresonator. To obtain bandgaps
in the technologically interesting near-IR spectral region
macroporous silicon two-dimensional photonic crystals with
structure sizes of a = 0.5 µm were fabricated. They exhibit

Figure 19. Crossing pores caused by the photo-electrochemical
etching of a (111) n-type silicon surface. The nucleation spots of the
pores at the (111) surface are random so that a strict periodic
arrangement cannot yet be obtained.

bandgaps in the optical telecommunication window around
λ = 1.3µm which was confirmed by reflection measurements.

Another issue, closely related to applications, is the
tunability of photonic bandgaps. We demonstrated a red shift
of an upper bandedge by 70 nm based on the refractive-index
change due to the reorientation of liquid crystals infiltrated into
the pores. The reorientation was initiated by the temperature
change and corresponds to the phase transition of nematic →
isotropic of the liquid crystal.

Finally, perfect extended three-dimensional photonic
crystals based on macroporous silicon were presented.
Transmission measurements on these three-dimensional
photonic crystals with modulated pores showed good
agreement with the full three-dimensional bandstructure
calculations. Although these photonic crystals do not exhibit
a complete three-dimensional bandgap the dispersion relation
along the pores can almost independently be tuned compared
to the dispersion relation perpendicular to it. In particular,
one can imagine utilizing the mode structure of these photonic
crystals to realize novel atom traps [28].

All these experiments show that macroporous silicon is
an ideal material to study the properties of photonic crystals in
the IR regime as well as for possible technological applications
operating in this spectral range.
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