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We report independent coherent control of carrier population and spin in (111)-oriented GaAs arising 
through quantum interference of the transition amplitudes associated with one- and two-photon absorption 
of ~100 fs phase-locked optical pulses. We demonstrate this coherent control using various combinations 
of pulse polarizations and crystal orientations. In addition, we present a phenomenological framework for 
the spin and population control, and present predictions based on a macroscopic symmetry analysis that 
agree with our experimental observations. 

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction A number of schemes have been implemented that use optical fields to coherently 
control electron populations in semiconductors. Many of these schemes used one photon absorption of 
multiple phase-related optical pulses having a single frequency (i.e. a single color) [1–3]. Additionally, 
circularly polarized light can be used to generate spin-polarized carrier populations in direct-gap semi-
conductors [4], and in the burgeoning field of “spintronics”, optics has played a key role in the injection 
and study of electron spin [5, 6]. Some of the one-color coherent control schemes have used the polariza-
tion of the incident pulses to control carrier spin [1, 2]. There was also a report [7] of using the optical 
Stark effect to optically manipulate the direction of electron spin, although this latter technique [7] did 
not rely on the relative optical phase of the pulses. 
 In addition, two-color quantum interference control [8] techniques have been used to control carrier 
density in semiconductors. By using phase-controlled optical pulses with frequencies ω and 2ω propagat-
ing along the [111] direction in bulk GaAs, Fraser et al. showed [8, 9] that carrier population can be 
coherently controlled through quantum interference between the transition amplitudes associated with 
single photon absorption of 2ω and two photon absorption of ω connecting the same initial valence band 
and final conduction band states. However, population control was demonstrated for only one combina-
tion of 2ω and ω polarizations [9]. Moreover, in this previous study [9], no spin control was reported. 
 In this paper, by contrast, we demonstrate all-optical injection and coherent control of both the carrier 
population and the spin of the population. We use two-color quantum interference to independently con-
trol population and spin by systematically varying the phases and polarizations of the two incident pulses 
and by rotating the sample. In addition, we present a macroscopic symmetry analysis that gives quantita-
tive predictions of both spin and population control for these polarization configurations and sample 
orientations. We show that these predictions agree with our experimental observations. 
 
2 Phenomenological framework We consider a case in which two optical pulses, with center frequen-
cies ω and 2ω, propagate collinearly and are normally incident on a direct gap semiconductor with band 
gap energy Eg. The photon energies of these pulses satisfy the relation 

g
2Eω ω< <� � ; thus, a carrier 
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population (n) can be injected into this semiconductor through one-photon absorption of the 2ω beam 
(n2ω) or through two photon absorption of the ω beam (nω). In addition, carriers can be generated through 
the quantum mechanical interference between the probability transition amplitudes associated with one- 
and two-photon absorption (nI). The total population injection rate can be written [9]: 

 2 In n n n
ω ω

= + +� � � � . (1) 

Here 
2 1 2

ij i j

ij

n E E
ω ω ω

ξ ∗

2
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ijkl i j k l
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n E E E E
ω ω ω ω ω

ξ ∗ ∗

=∑� , where the electric field is written as 

2
2 c.c.( ) exp ( ) exp ( )t i t i t

ω ω
ω ω= − + − +E E E , and i, j, k, l are dummy indices representing Cartesian 

components of the fields corresponding to the crystallographic principle axes [100], [010] and [001]. 
These are variations on the well-known forms of n2ω and nω from linear and nonlinear optics, where the 
tensor ξ1 is related to χ(1) and describes one photon absorption, and ξ2 is related to χ(3) and describes two 
photon absorption. The interference, or population control, component of the total carrier density is 

 2 c.c.ijk i j k
I I

ijk

n E E E
ω ω ω

ξ ∗ ∗

= +∑� , (2) 

where the ξΙ tensor is related to the imaginary part of χ(2) [9]. It has only one independent component, 
abc
Iξ ,where a, b and c denote components along the cubic axes [100], [010] and [001] respectively. 

(Eq. 2 defines ξΙ with a different convention than Ref. 9, although the two conventions are equivalent for 
cubic materials in the independent particle approximation.) 
 Likewise, spin can also be optically injected into this sample. In our case, spin can be injected through 
one photon absorption of the 2ω pulse (S2ω), through two photon absorption of the ω pulse (Sω), or 
through quantum interference between these two transition amplitudes (SI). The total injection rate of 
spins aligned along the i direction is: 

 2
i i i i

IS S S S
ω ω

= + +
� � � � . (3) 

In order to separate the material properties from the optical fields, we introduce pseudotensors ζ1, ζ2 
and ζI. The components of spin injected through one and two photon absorption alone are 

2 1 2 2
i ijk j k

jk

S E E
ω ω ω

ζ ∗

=∑�  and 2
i ijklm j k l m

jklm

S E E E E
ω ω ω ω ω
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=∑� , respectively. The spin control components are 

 2 c.c.i ijkl j k l
I I
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S E E E
ω ω ω

ζ ∗ ∗

= +∑� . (4) 

The spin control pseudotensor ζΙ is nonzero only in crystals that lack inversion symmetry. Since it is a 
fourth rank pseudotensor symmetric on its middle two indices, the spin control pseudotensor ζΙ is non-
zero in crystals with zincblende symmetry, having two independent components: abba

Iζ  and abab
Iζ . From 

a microscopic expression for ζΙ , one can show that it is purely imaginary in the independent particle 
approximation. We will assume this is valid in what follows, although it is a matter of convenience more 
than necessity since our experiment is not sensitive to the phase of ζΙ. 
 Population control (nI) and spin control (SI) signals will depend on the symmetry properties and the 
specific orientation of the semiconductor under study. For ω and 2ω at normal incidence on bulk (001)-
oriented GaAs, nI is zero [9] and SI is restricted to lie in the (001) plane [10]; for other orientations, nI 
can be nonzero, and SI can be oriented along the propagation direction, z. (In this paper we limit the 
discussion to net spins with components along the ±z-axis, as our measurement techniques are not sensi-
tive to spins in the transverse plane.) 
 In the geometry we consider, 2ω and ω pulses propagate along the [111] direction (the z-axis) and are 
normally incident on the (111) plane of bulk GaAs, which can be rotated about the z-axis. The relevant 
crystal directions are shown in Fig. 1. As we will demonstrate below, both population and spin can be 
controlled in such a sample. The slowly varying fields are 2 2 2 2ˆ| | exp ( )E i

ω ω ω ω
φ=E e  and 

ˆexp ( )E i
ω ω ω ω

φ=E e , where the 2ω and ω polarization unit vectors, 2ˆ ω
e  and ˆ

ω
e , lie in the (111) plane. 
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For linear polarizations, the carriers created through one- or two-photon absorption will have no net spin-
polarization along the z-direction ( 2 0z zS S

ω ω
= =

� � ) [4, 10]. Conversely, when either pulse is circularly po-
larized and acting alone, carriers are injected with a net spin along the +z-direction for a left-circularly 
(σ –) polarized 2ω or ω beam or with a net spin along the –z-direction for a right-circularly (σ +) polar-
ized 2ω or ω beam [4, 10]. 
 For a fixed linearly or circularly polarized excitation field, the population injected by 2ω or ω acting 
independently does not depend on rotations of the sample about the z-axis [11]. The same is true for the 
spin. In contrast, the population control and spin control signals we demonstrate in this paper are 
strongly dependent on sample orientation. 
 

3 Experimental technique To demonstrate population and spin control, we use the pump-probe ge-
ometry in Fig. 2. The ~100 fs fundamental pulse, with wavelength centered at 1.43 µm (the ω pulse), is 
generated in an optical parametric amplifier (OPA) that is pumped by a Ti:Sapphire-laser-seeded regen-
erative amplifier operating at 250 kHz. Second harmonic generation in BBO produces the 2ω pulse at 
0.715 µm. The two pulses are temporally overlapped, propagate collinearly, and are focused at normal 
incidence onto a (111)-oriented bulk GaAs sample at room temperature. The phase difference 
∆φ ≡ 2φω  − φ2ω is controlled with a scanning Michelson interferometer, and the polarization of each 
pulse is independently controlled with waveplates and polarizers, as shown in Fig. 2 (see Ref. 12 for 
more details). 
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Fig. 2 Experimental geometry: BBO is used for second harmonic generation of ω into 2ω; DBS is a di-
chroic beamsplitter; P, λ/2 and λ/4 represent a polarizer, a half wave plate and a quarter wave plate, re-
spectively; PEM is a photoelastic modulator used to modulate the probe polarization; L and M are a lens 
and a spherical curved mirror; τ is the time delay between pumps and probe. 

Fig. 1 Schematic of relevant crystal-
lographic directions. Sample orienta-
tion B is achieved by rotating the sam-
ple π/6 about the z-axis from sample 
orientation A. Also shown are defini-
tions of α and β referred to in Eqs. 
(5)–(6). 
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 A third pulse (at a wavelength of 0.81 µm and derived from the output of the regenerative amplifier 

after it has been used to pump the OPA) probes the population and spin of pump-injected carriers. The 

probe is spatially centered on the pump spots and arrives 0.9 ps after the pumps to allow for carrier 

thermalization. 

 The ~0.65 µm thick GaAs epilayer was grown on a (111)-oriented GaAs substrate, the substrate was 

removed with selective etching, and the epilayer was van der Waals bonded on a sapphire substrate to 

allow transmission measurements. This is the same sample used for the measurements in Ref. 9. The 

irradiances of the 2ω and ω pulses are ~160 MW/cm2 and ~7.6 GW/cm2, respectively. The pump photon 

energies are chosen to excite carriers out of the heavy hole and light hole valence bands, but not out of 

the split-off band. Carrier densities produced by the 2ω and ω pulses acting independently are approxi-

mately equal (n2ω  ≅ nω  ≅ 6 × 1017 cm–3); in a sense, balancing the two arms of our “matter interferome-

ter”. Although the two photon absorption coefficient differs for linearly and circularly polarized ω [11], 

we do not attempt to keep nω constant by adjusting the ω power, since the quantities we measure in this 

experiment are insensitive to the exact balance of n2ω and nω. 

 To monitor the phase-dependent population change ( ( ) 0n n nφ∆ = ∆ − , where n0 = n2ω + nω), we meas-
ure the differential transmission as a function of ∆φ (∆T(∆φ)) using a linearly polarized probe. A linearly 
polarized probe is equally sensitive to carriers with spins along +z and –z; in this case, ∆T(∆φ) is propor-
tional to the phase-dependent change in total carrier density. This signal is normalized by the differential 
transmission induced by the average background carrier density, n0 ≅ 1.2 × 1018 cm–3. 
 Alternatively, we use circular probe polarizations to monitor the spin control signal, since a σ – (σ +) 
polarized probe is more sensitive to the saturation of carriers with spins along +z (–z) [4]. Because the 
probe propagates at a very small internal angle (~3°) with respect to normal incidence, the change in 
probe transmission is only sensitive to spins along ±z. To measure the phase-dependent change in net 
spin along the z-axis ( 2( ) ( )z z zS S S S

ω ω
φ∆ = ∆ − + ), we monitor ∆T(∆φ) as the probe polarization is periodi-

cally modulated between σ + and σ – polarizations with a photoelastic modulator (PEM). This measures 
the difference between ∆T(∆φ) with a σ + probe and ∆T(∆φ) with a σ – probe, which is proportional to ∆S. 
This quantity is normalized by the differential transmission induced by the total spin injected when both 
2ω and ω pulses are σ – polarized, 0 2

z zS S S
ω σ ω σ

− −( ) ( )
= + . 

 

4 Demonstration of population and spin control Figure 3a–b shows the results of measuring the 
phase-dependent change in population and spin at sample orientation A (see Fig. 1a). In Fig. 3a–b, both 
2ω and ω beams are linearly polarized, and the ω polarization is along the [011]  direction (α = π/2). In 
Fig. 3a, the 2ω beam is also along [011]  (β = π/2); in this case we see a strong spin control signal but 
little or no modulation of the population. By contrast, in Fig. 3b the 2ω beam is polarized orthogonal to 
the ω beam and lies along the [211]  direction (β = 0), allowing control of the population, but no dis-
cernable control of the spin. (The configuration of Fig. 3b repeats the sample orientation and polarization 
combination reported in Ref. 9, with similar results – both qualitatively and quantitatively – for ∆n.) 
Therefore, at orientation A, parallel linear pump polarizations allow spin control without population 
control, whereas orthogonal polarizations allow population control without spin control. 
 Next we rotate the sample π/6 about the z-axis to sample orientation B (see Fig. 1b) so ω is polarized 
along [112]  (α = π/3) and repeat the parallel and orthogonal linear polarization configurations. The 
results are shown in Fig. 3c-d. In contrast to the results at sample orientation A, for parallel linear excita-
tion polarizations (now along [112]  (α = β = π/3)), we observe population control but no discernable 
spin control. With orthogonal linear polarizations – ω along [112]  (α = π/3), 2ω along [110]  (β = –π/6) 
– we observe spin control but little or no population control. Therefore at sample orientation B, the de-
pendences of the spin control and of the population control on the linear polarization combinations are 
reversed from the results at sample orientation A. 
 Thus for fixed parallel (or orthogonal) linear pump polarizations, the sample can first be oriented so 
that the phase ∆φ can be used to control the spin, but not the population. The sample can then be rotated 
so that ∆φ controls the population, but not the spin. 
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Fig. 3 Measured fractional change in spin (solid circles) and population (open squares) as a function of relative 
phase ∆φ for various polarization combinations and sample orientations: (a) sample orientation A, parallel linear 
polarizations (along [01 1]), (b) orientation A, orthogonal linear polarizations (ω along [01 1], 2ω along [2 1 1]), (c) 
orientation B, parallel linear polarizations (along [112]), (d) orientation B, orthogonal linear polarizations (ω along 
[112], 2ω along [1 10]), (e) opposite circular polarizations, and (f) same circular polarizations. Also shown are 
theoretical simulations of population control 0/In n (solid lines) and spin control 0/z

IS S  (dashed lines). 
 
 

 For opposite circular excitation, Fig. 3e shows that both the spin and the population are controlled 
simultaneously. Since the ω and 2ω circular polarizations have opposite handedness, the carriers injected 
by these two pulses have opposite net spin: the σ + polarized 2ω pulse injects carriers with a net spin 
along the –z-axis, while the σ 

– polarized ω pulse injects carriers with net spin along the +z-axis. The 
magnitudes of the net spin injected per electron for one- and two-photon absorption are expected to be 
nearly equal [10], so that 2 0z zS S

ω ω
+ ≅

� � , which we have verified experimentally by measuring the average 
background (non-phase-dependent) spin. Consequently, in the absence of spin control, there is approxi-
mately zero net spin along the z-direction, and the spin control signal causes the direction of the total zS�  
to oscillate between +z and –z. By contrast, Fig. 3f shows that for same circular excitation, there is es-
sentially no phase dependence to either population or spin injection, even though a highly spin-polarized 
background population is produced because 2

zS
ω

�  and zS
ω

�  both point along +z. In addition, we verified 
that the magnitudes of the ∆n/n0 and ∆S/S0 signals for same and opposite circular excitation do not de-
pend on which sample orientation we choose, as expected from the theory (not shown). 
 Note that the relative phase of any two experimental curves cannot be deduced from the data in Fig. 3, 
since we did not verify whether there was interferometer drift between measurements taken under different 
experimental conditions such as different polarizations or sample orientations. We did, however, monitor 
the relative phase of differential transmission of the probe and 2ω beams as was done in Ref. 9; we found 
results consistent with the measurements reported in Ref. 9, which were performed in the same sample. 

 

5 Macroscopic symmetry analysis We compare these experimental results with the macroscopic sym-
metry theory by deriving expressions for population and spin control signals appropriate to the polariza-
tion combinations and sample orientations used in Fig. 3. For the general case of ω and 2ω both linearly 
polarized at angles α and β with respect to the [211]  direction as shown in Fig. 1, Eq. (2) reduces to 

 ( ) ( )
2

2

2 2
cos 2 cos

3
abc

I In E E
ω ω

ξ α β φ= + ∆� , (5) 
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where 22
ω ω

φ φ φ∆ ≡ − , and we have assumed abc
Iξ  is real, as it is in the independent particle approximation 

[9]. For these same polarizations, the z-component of the spin control, from Eq. (4), is 

 ( ) ( ) ( )
2

2

1
Im 2 Im sin 2 sin

3
z abba abab
I I IS E Eζ ζ α β φ

ω ω
= − + + ∆� . (6) 

Therefore, for the sample and polarization angles that yield a (negative or positive) maximum in the 
population control signal ( 2 0, ,α β  π+ = … ), the spin control along z will be zero. Likewise, when z

IS�  
is maximum (2 / 2, 3 / 2,α β π π+ = …), nI is zero. Indeed, this agrees with what we observe in Fig. 3a–d. 
When the angle between 2ˆ ω

e  and ˆ
ω

e  is fixed and the sample is rotated about the z-axis, the magnitudes of 
In� and z

IS�  have 6-fold rotational symmetry. As a result, when 2ω and ω have parallel linear polarizations 
(α = β), cos (3 )In α∝�  and nI is maximized at 0, / 3, 2 / 3, etc.α π π=  Thus the population control signal 
with parallel linear polarizations is maximum if 2

ˆ
ω

e  and ˆ
ω

e  lie along any of the 211〈 〉  family of direc-
tions, whereas it is zero if 2ˆ ω

e  and ˆ
ω

e  are parallel along any of the 110〈 〉  directions. 
 If ω and 2ω are both circularly polarized, the prediction is quite different. When the beams have oppo-

site circular polarizations (2ω is σ 
+ and ω is σ 

–), Eqs. (2) and (4) simplify to give the population control 

 ( )
2

2

4
cos

3
abc

I In E E
ω ω

ξ φ= ∆�  (7) 

and the z-component of spin control 

 ( ) ( )
2

2

2
Im 2 Im cos

3
z abba abab
I I IS E E

ω ω
ζ ζ φ= + ∆� . (8) 

Conversely, when ω and 2ω have the same circular polarization, both z
IS�  and nI should be zero. The 

magnitudes of population and spin control signals for same and opposite circular excitation should be 
independent of sample orientation; this is intuitively satisfying, because circularly polarized light does 
not have a preferred direction in the transverse plane (as linearly or elliptically polarized light does). 
Note that although the spin control tensor has two independent components, our experiment can only 
measure the sum (Im 2 Im )abba abab

I Iξ ξ+ ; it is not sensitive to their relative magnitudes. These relative 
magnitudes could be measured with normal incidence on a (110)-oriented surface. 
 At the electric field strengths that balance one- and two-photon absorption rates, for linear polarizations 

 
( )

( ) ( )
2 1 2

2
cos 2 cos

3 1 / 2

abc
I I

aa aaaa

n

n n
ω ω

ξ
α β φ

ξ ξ σ
= + ∆

+ −

�

� �
, (9) 

where σ is the two photon absorption anisotropy parameter [11], and for opposite circular polarizations 

 
( )

( )
2 1 2

2
cos

3 1 /6 /2

abc
I I

aa aaaa

n

n n
ω ω

ξ
φ

ξ ξ σ δ
= ∆

+ − −

�

� �
, (10) 

where δ is the two photon absorption circular dichroism parameter [13]. 
 The solid lines in Fig. 3 are plots of 2/( )In n n

ω ω
+� � �  using Eq. (9) for (a–d) and using Eq. (10) for (e). 

These simulations have been shifted along the ∆φ-axis to line up with the data, to show that the magni-
tudes of the simulations are in good quantitative agreement with the data. The single value of 3.2% was 

chosen for 1 2
abc aa aaaa
Iξ ξ ξ  to give the best fit to all population control data, while values of σ and δ were 

taken from a 14-band model calculation [13]. 
 The dashed lines in Fig. 3 are plots of ( ) ( )2/( )z z z

IS S S
ω σ ω σ− −

+
� � �  using Eq. (6) for (a–d), and Eq. (8) for (e). 

The simulations were again shifted along the ∆φ-axis, and the single value of 2.6% for 

( ) ( )
2

2 2(Im 2 Im ) | | | | /( )abba abab z z
I I E E S S

ω ω ω σ ω σ
ζ ζ

− −

+ +
� �  was chosen to give the best fit to all the data; again, 

there is good quantitative agreement between data and theory. 
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 Our measured value of the population control ratio with a 715 nm 2ω pulse is close to the value meas-
ured by Fraser et al. with a 775 nm 2ω pulse in this same sample [9]. A population control ratio of a few 
percent is expected, since the effect only exists as a result of the lack of inversion symmetry; indeed, ab 

initio calculations indicate that 1 2
abc aa aaaa
Iξ ξ ξ  is 6.4% at these wavelengths [9]. Our experimental fit 

value is smaller by a factor of two, similar to the result in Ref. 9; much of the difference between data 
and theory can be attributed to the use of a relatively thick sample [9]. Similar arguments could be made 
for the magnitude of the spin control ratio: it too relies on the lack of inversion symmetry. One can take 
the population control ratio as a rough upper bound on the spin control ratio; from this point of view, the 
spin control ratio we have measured is in line with our expectations. 
 In contrast to the work reported in this paper, we recently demonstrated two-color quantum interfer-
ence control of ballistic spin currents in (001)-oriented GaAs [12]. Due to the symmetry of (001)-GaAs, 
we did not expect to observe coherent control of the overall carrier population [8, 9] or spin [10]. The 
measurements performed in Ref. 12 – electrical detection of currents through charge collection with 
electrodes – were not sensitive to overall carrier population or spin.  
 
6 Conclusion We have demonstrated that quantum interference allows the use of the phase together 
with the polarization of the light and the crystallographic symmetry to independently control either the 
spin or the carrier population or both. Specifically, we have shown: (i) For a selected fixed sample 
orientation and linearly polarized ω and 2ω pulses, parallel polarizations allow the control of the 
population without modulating the spin; conversely, orthogonal linear polarizations allow the control of 
the spin, but not the population. (ii) When the sample is rotated π/6 about the z-axis, the dependences of 
the spin control and of the population control on these polarizations are reversed. (iii) For opposite 
circular polarizations, both the spin and the population can be simultaneously controlled, regardless of 
sample orientation. (iv) When ω and 2ω have the same circular polarization, ∆φ controls neither the spin 
nor the population. We have also shown that all results agree qualitatively with a theory based on 
macroscopic symmetry analysis. 
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