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Enhanced second-harmonic generation in AlGaAs
microring resonators
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Highly efficient second-harmonic generation can be achieved by harnessing resonance effects in microring
resonator structures. We propose an angular quasi-phase-matching scheme based on the position depen-
dence of polarization inside the ring resonator. © 2007 Optical Society of America

OCIS codes: 190.2620, 130.3120.
Resonance effects in artificially structured materials
can increase both the intensity of light and the light–
matter interaction time, and thus enhance the effects
of nonlinear optical interactions. Apart from interest-
ing effects that rely on the third-order ���3�� nonlin-
earities (e.g., Refs. 1–4 and references therein) effects
involving second-order ���2�� nonlinearities have also
been considered. Ilchenko et al.5 have demonstrated
enhancement of second-harmonic generation (SHG)
in a periodically poled microdisk cavity. An alterna-
tive poling scheme has also been proposed,6 but ap-
parently not yet realized, in which different ��2� ma-
terials alternate periodically with the polar angle � in
the cavity. In this Letter we present a scheme for
achieving enhanced, quasi-phase-matched SHG
without requiring any artificial variation in ��2�.

We propose using a one-channel (two-port) micro-
ring resonator structure (Fig. 1). For [100] grown
AlGaAs structures, the second-order nonlinearity of
the material is characterized by

Pi = �0��2��j,k=1,2,3
�ijkEjEk,

, where �123=1, �ijk is symmetric under all permuta-
tions of its indices and vanishes unless �ijk� are all
distinct. We consider an in-plane TE-polarized funda-
mental (FW) field at frequency �F and an out-of-
plane TM-polarized second-harmonic (SH) field at
frequency �S=2�F. We can design a structure so that
both fields are on resonance in the microring by re-
quiring

kFR = mF, kSR = mS, �1�

where mF and mS are integers, R is the ring radius,
and kF,S=�F,S�nTE,TM��F,S� /c, where nTE,TM is the
effective index of the TE, TM mode. Quasi-phase-

matching is achieved by utilizing the dependence on
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� (see Fig. 1) of the effective nonlinear susceptibility
that arises due to the variation of the local mode po-
larization with respect to the crystal axes; the condi-
tion that results is

kS − 2kF = s
2

R
, �2�

where s= ±1; note that if the first of conditions (1)
and condition (2) hold, then the second of conditions
(1) holds. We can satisfy these conditions, for s=1,
with a device where the out-of-plane confinement
would be achieved by a planar structure with three
AlxGa1−xAs layers �x=70% ,0% ,70% �, and the in-
plane confinement realized by electron-beam lithog-
raphy and dry etching of 600 nm wide, 2.9 �m deep
trench waveguides. We choose mF=100 for the funda-
mental resonance of the lowest-order TE mode; then
conditions (1) and (2) are satisfied with a ring radius
R=10.299 �m at an operating �F=2� ·163.195 THz
(vacuum 	o=1.837 �m), and the SH is generated in a
higher-order TM mode. The calculated effective
indices7 are nTE��F�=2.8388 and nTM��S�=2.8672,
with group velocities vF=78.0 �m/ps and vS
=55.0 �m/ps for the FW and SH fields, respectively.

In the ring the fields satisfy the coupled mode
equations

Fig. 1. (Color online) Schematic of a one-channel micror-

ing resonator structure.
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where 
=R� and GF,S�
 , t� is normalized such that
�GF,S�
 , t��2 gives the power in the FW, SH mode;
����=sin � cos � arises because of the variation with �
of the crystal axes determining the nonlinearity with
respect to the local polarization of the waveguide
modes. The coupling parameter �=ei /�PA, where
P�4�0n̄6vF

2vS / 	���2��2�F�S
 has units of power; a ref-
erence index n̄ has been introduced for convenience
in the discussion below, and the phase  is chosen so
that �A is real,

ei

�A
� �0

3/2n̄3� d���ijkeTE
i ����eTE

j �����eTM
k �����*,

where the two-dimensional vector �� ranges perpen-
dicular to the direction of propagation, and e�TE,TM����
is the eigenfunction of the TE (FW), TM (SH) mode
and is normalized according to

�0� d��n2��F,S,���eTE,TM
* ���� · eTE,TM���� = 1;

A plays the role of a coupling area between the
modes. Taking ��2��100 pm/V,8 we find P
=0.87 MW and A=0.71 �m2 for n̄=3.4. In the chan-
nel, where resonant and phase-matching effects are
not present, we neglect the nonlinearity and take Eq.
(3) with �=0.

Coupling between the channel and ring is taken
into account in the usual way,9

�Gj2

Gj3
� = � �j i�j

i�j �j
�� Gj1

Gj4 exp�ikjL�� , �4�

where j specifies F or S, the positions of the fields
(1)–(4) are indicated in Fig. 1, and L=2�R is the cir-
cumference of the ring. For simplicity we take the
coupling constants �j, �j to be real; energy conserva-
tion then requires that �j

2+�j
2=1 for each j. For our

calculations below we take �F,S=0.199, although in
general the constants will be different; our results do
not depend in an essential way on them being the
same. We note that, although typically �S for the
lowest-order TM (SH) mode is much smaller than �F
for the lowest-order TE (FW) mode, the higher-order
TM (SH) mode used in our design can give �S equal to
or even larger than �F for the lowest-order TE (FW)
mode, depending on the coupling gap between the
ring and the straight waveguide. The Q factors, de-
fined as QF,S=�mF,S / �1−exp�−�aF,SR��F,S�, where
aF,S is the power loss coefficient in the ring for the

4 4
FW, SH mode, are QF=1.6�10 and QS=3.2�10 for
a lossless structure and QF=8.0�103 and QS=1.6
�104 for a structure with a power loss of 26 dB/cm in
the ring.

We first neglect any loss. Insight into the physics of
SHG enhancement can be gleaned from looking at
Eqs. (3) and (4) in the CW limit. With � /�t=0, and un-
der the assumption that GS1=0 (no incident light at
�S), we find

GS2 = �S�
3

4

�S�
�d
,

GF3 = �FGF1 +
�F exp�ikFL�

1 − �F exp�ikFL��3

4

�F�
�d
, �5�

where the �j= i�j / �1−�j exp�ikjL�� are enhancement
factors; at a resonance �exp�ikjL�=1�, for our device,
we have ��j�2�100. We first consider the undepleted
pump approximation, in which we can neglect �F�
�;
GF�
� is then independent of 
 in the ring, and from
the second of Eqs. (5) is GF3=�FGF1. Writing ����=
−i�exp�2i
 /R�−exp�−2i
 /R�� /4 and keeping the term
that contributes near quasi-phase-matching (Eq. (2)
with s=1), we find

�
3

4

�S�
�d
 
�

4
e−iqL/2L��qL�GF3

2 , �6�

where q=kS−2kF−2/R and ��2x�=sin�x� / �x�. Writing
the input fundamental power �GF1�2�PF and the out-
put SH power �GS2�2�PS, Eqs. (5) then leads to the
result that PS= fPF

2L2P−1A−1, where f
= ��S�2��F�4�2�qL� /16. Recall that in a simple one-
dimensional analysis of SHG, using the undepleted
pump approximation and assuming the ��2� can be
fully accessed, propagation over a length L in a non-
dispersive medium (where phase matching automati-
cally follows) leads to the generation of SH power
through an area A given by PS but with f=1, if the
parameters in P are set appropriately10; hence our f
plays the role of an enhancement factor. For our de-
vice we find a value f=6�104.

The enhancement is so large that complete conver-
sion is possible at reasonable input powers. To esti-
mate the condition for this, note first that from Eq.
(4) we find, taking GF2=0, that GF3= iGF1 /�F. Assum-
ing quasi-phase-matching and neglecting the varia-
tion in GF�
� over the ring, from Eq. (6) we derive an
equation similar to PS, but with f= ��S�2�F

−4 /16; we
use this and the fact that, at complete conversion, we
must have PS=PF, to estimate the value P̄F
=16P�F

4A��S�−2L−2 of the input power at which com-
plete conversion can be achieved. For our device we
find P̄F=38 mW.

To confirm the validity of these approximations
and demonstrate that our results hold qualitatively
even for pulse propagation, we present numerical
simulations11 of Eqs. (3) and (4). We first consider
“turning on” a CW incident field with PF=38 mW, us-
ing a half-Gaussian rising edge with a FWHM

=150 ps, as shown in Fig. 2(a). It is clear that, once
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the fields are established, essentially all the incident
fundamental is indeed converted to SH. Our CW
analysis above assumes a single input frequency and
predicts complete conversion only for a particular in-
put power. Nonetheless, if the frequency spectrum of
the pulse is sufficiently narrow, highly efficient con-
version is still possible. In Fig. 2(b) we show a simu-
lation of a 150 ps incident Gaussian pulse. Defining a
“conversion efficiency” as the ratio of output SH en-
ergy to the total output energy, we find that the con-
version efficiency is 92%. The additional 40 ps delay
in the output SH indicates the long cavity lifetime.

In the analysis so far, we have idealized the situa-
tion by neglecting any loss. For our device the pri-
mary loss will be due to scattering from fabrication
imperfections. In the simulation shown in Fig. 2(c)
we introduce a power loss of 26 dB/cm at both �F and
�S inside the ring in our simulations.12 Since the
SHG enhancement involves a long time spent by the
light in the ring, the effect of loss on the total amount
of SH produced is significant. Nonetheless, in the
output the SH field still dominates, and the conver-
sion efficiency as defined above is here 81%. Even if
we take into account the fact that the loss at �S can
be larger than that at �F, e.g., a power loss of
52 dB/cm at �S, we still get a conversion efficiency of
70% in our simulation, although the total amount of
output is less than that in Fig. 2(c).

In realistic devices, there are also fabrication er-
rors in the ring radius R and the effective indices

Fig. 2. Time evolution of the output fields with incidence
of (a) a CW fundamental wave with a half-Gaussian
�FWHM=150 ps� rising edge, (b) a 150 ps Gaussian pulse,
(c) same as (b) but with a power loss of 26 dB/cm (i.e.,
6 /cm) inside the ring.
nS,F. In an experiment, two independent conditions
[the first of Eqs. (1) and (2)] must be satisfied despite
these errors. We can do this by adjusting the fre-
quency of the input field, and the temperature using
a thermal controller. For our design, using standard
parameters, we estimate a temperature adjustment
of ±10 °C would compensate for a 10−3 relative error
in R, and the temperature must be held within
±0.1 °C to obtain a conversion efficiency larger than
50%. This should be experimentally feasible.

In summary, it is possible to use the periodic spa-
tial variations of the fundamental TE mode polariza-
tion inside an AlGaAs microring resonator to obtain
the quasi-phase-matching required for SHG pro-
cesses. The resonances in the ring can dramatically
enhance the SHG. More general designs can lead to
the enhancement of SHG and other nonlinear pro-
cesses over a range of frequencies; we plan to turn to
these in future communications.
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