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Pseudo-Landau levels of Bogoliubov quasiparticles in strained nodal superconductors
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Motivated by theory and experiments on strain-induced pseudo-Landau levels (LLs) of Dirac fermions in
graphene and topological materials, we consider its extension for Bogoliubov quasiparticles (QPs) in a nodal
superconductor (SC). We show, using an effective low-energy description and numerical lattice calculations for
a d-wave SC, that a spatial variation of the electronic hopping amplitude or a spatially varying s-wave pairing
component can act as a pseudomagnetic field for the Bogoliubov QPs, leading to the formation of pseudo-LLs.
We propose realizations of this phenomenon in the cuprate SCs, via strain engineering in films or nanowires,
or s-wave proximity coupling in the vicinity of a nematic instability, and discuss its signatures in tunneling
experiments.
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I. INTRODUCTION

The ability to tune electronic properties with strain in a
wide range of quantum materials has led to the emerging area
of “straintronics” [1]. Strain has been shown to be an important
knob in graphene, topological materials, and oxide electronics,
allowing one to tune band dispersion and topology [2–10],
and to control magnetism [11,12] and ferroelectricity [13] in
thin films. Uniaxial strain has also been used to shed light on
fundamental questions in correlated materials, from searching
for chiral px ± ipy pairing in Sr2RuO4 [14], to understanding
nematicity in pnictide superconductors [15] and in the “hidden
order” state of URu2Si2 [16].

In graphene, a two-dimensional (2D) electronic membrane
[17], strain modifies the wave-function overlap between neigh-
boring orbitals and causes a momentum-space displacement
of the massless Dirac point in the dispersion, thus simulating
the effect of a vector potential [2,4,18]. A spatial variation of
the strain in graphene nanobubbles and “artificial graphene”
leads to colossal pseudomagnetic fields of up to ∼300 T, and
a pseudo-Landau level (pseudo-LL) spectrum [3,5,6]. Strain
also induces a deformation potential which acts as a “scalar
gauge potential”; the corresponding in-plane electric fields
can lead to a breakdown of the pseudo-LLs [18–21]. There
have been theoretical studies of Josephson coupling through
pseudo-LLs [22,23], and interaction effects which can lead
to exotic correlated states [24,25]. Strain effects have also
been generalized to three-dimensional (3D) Dirac and Weyl
semimetals [26–29], Kitaev spin liquids [30], and atoms in
optical lattices [31,32].

In light of these developments, we address in this paper
the important question of how these phenomena manifest
themselves in superconducting phases of matter. Specifically,
we consider the possibility of engineering time-reversal
invariant pseudo-gauge fields for Bogoliubov quasiparticle
(QP) excitations of nodal superconductors (SCs). Our key
observation is that the QP Dirac nodes of the SC will shift
in momentum space under the modification of the single-
particle dispersion or the form of the pairing gap. Thus,
spatial variations of the dispersion or the pairing term can
mimic a spatially varying gauge field. Using an effective
low-energy theory for 2D d-wave SCs as well as a numerical
lattice model study, we show that this induces pseudo-LLs

of Bogoliubov QPs and discuss its signatures in the spatially
resolved tunneling density of states (TDOS).

Our work highlights two key differences between strained
nodal SCs and materials such as graphene or Dirac-Weyl
semimetals. (i) Unlike electrons, Bogoliubov QPs do not
have a well-defined electrical charge and do not couple
directly to external orbital magnetic fields. Thus, strain
engineering provides a unique window to explore LL physics
of Bogoliubov QPs. (ii) We show that strain variations in
a d-wave SC with time-reversal symmetry cannot induce a
pseudo-“scalar potential” for Bogoliubov QPs. This is unlike
the impact of the deformation potential for graphene. In this
regard, pseudo-LLs of Bogoliubov QPs are more robust and
are “symmetry protected.”

We suggest two routes to realizing this physics in the
cuprate SCs: via strain engineering in thin films and nanowires,
or via edge effects or s-wave proximity coupling in the vicinity
of an isotropic to nematic SC quantum phase transition (QPT)
[33]. Our study sheds light on how inhomogeneous strain can
reorganize the low-energy spectrum of nodal SCs.

II. EFFECTIVE LOW-ENERGY THEORY

The low-energy excitations of a uniform 2D d-wave SC
on a square lattice reside near the two pairs of gap nodes
K±1 ≡±(K,K) and K±2 ≡±(K, − K) as in Fig. 1(a). We
combine the slowly varying fermion fields near the node pairs
into Nambu spinors �

†
�α(r) ≡ (ψ†

�α(r),εανψ−�ν(r)), where α,ν

are spin labels (↑ or ↓), and � = 1,2 labels the nodes K1,2. The
low-energy excitations of a nodal SC are described by the ef-
fective Dirac Hamiltonian H0 = ∑

�,α

∫
d2r �

†
�α(r)h(�)

0 ��α(r),
with

h
(�)
0 = −iσ z�v(�)

f · �∇ − iσ x �v(�)
	 · �∇, (1)

where �v(�)
f ,�v(�)

	 denote the Fermi velocity and the gap velocity
(respectively, normal and tangential to the Fermi surface),
and σx,z are Pauli matrices. Diagonalizing H0 in momentum
space leads to the massless Dirac dispersion E�(k) = (v2

f k
2
x +

v2
	k2

y)1/2 where (kx,ky) denotes the deviation in momentum
from K� [with local coordinate axes as shown in Fig. 1(a)],
and the Dirac cone anisotropy is set by vf/v	.
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FIG. 1. (a) Rotated Brillouin zone for the square lattice showing
schematic Fermi surface (solid, black) for optimal hole-doped cuprate
SCs. Quasiparticle Dirac nodes are located at ±K1 and ±K2, and we
show local coordinate axes used in our low-energy theory. (b) Strip
geometry (not to scale) used in the numerics with width W and length
L � W . Shading gradient illustrates spatial variation in the pairing
or hopping amplitude across the strip.

We next turn to the effect of time-reversal invariant slow
spatial variations in the hopping and pairing amplitudes of this
nodal SC, which adds to the microscopic lattice Hamiltonian
terms of the form

δH1 = −1

2

∑
R,η,α

δtη(R)(c†R,αcR+η,α+ H.c.), (2)

δH2 = 1

8

∑
R,η

δ	η(R)(c†R↑c
†
R+η,↓−c

†
R↓c

†
R+η,↑+ H.c.), (3)

where η denotes the set of neighbors of site R and H.c.
stands for Hermitian conjugate. A low-energy expansion of
the fermion fields leads to the modified Hamiltonian

h(�) =
( −ivf∂x + f�(r) −is�v	∂y + g�(r)

−is�v	∂y + g�(r) ivf∂x − f�(r)

)
, (4)

where s� = (−1)�, with

f�(r)=−
∑

η

δtη(r) cos(K� · η), (5)

g�(r)= 1

4

∑
η

δ	η(r) cos(K� · η), (6)

and we have implicitly assumed that we have rotated r into
the local coordinate axes for node �. Note that a conventional
deformation potential or spatially varying chemical potential
may also be included in f�(r) in Eq. 4. We can recast this
Hamiltonian as

h(�) =vfσ
z
[ − i∂x +A(�)

x (r)
]+s�v	σ x

[ − i∂y +A(�)
y (r)

]
, (7)

where we have defined the “vector potential” �A(�) via
vfA(�)

x (r) ≡ f�(r) and v	A(�)
y (r) ≡ s�g�(r). Thus, slow spatial

modulations of parameters in a nodal superconductor will
lead to an effective low-energy theory of Dirac quasiparticles
coupled to a spatially varying vector potential.

The issue of whether additional gauge potentials (e.g., a
“scalar gauge potential” which minimally couples to time
derivatives rather than space derivatives) can arise in a strained
SC amounts to asking if any other Pauli matrix components
are permitted in h(�). To address this, we note that terms
proportional to the identity matrix will act as a valley-odd
chemical potential, while a component proportional to σy will
correspond to complex pairing. Both terms are forbidden by

time-reversal and spin-rotation symmetries in a d-wave SC,
and thus cannot destabilize the pseudo-LLs; in this sense, the
pseudo-LLs may be regarded as “symmetry protected” (see
Appendix A for details). The key point is that slow modulations
of the parameters of a nodal superconductor will leave the
nodal quasiparticle excitations pinned to zero energy but can
displace it in momentum space. Thus, d-wave Bogoliubov
QPs, unlike electrons in graphene, do not experience an
inhomogeneous “scalar” gauge potential [18,21]. However,
breaking time-reversal symmetry, for instance with a super-
current, will lead to a Doppler shift for the QPs [34], shifting
the energy of the nodal excitations, which thus provides an
analog of a scalar potential.

III. PSEUDO-LANDAU LEVELS

We next turn to the spectrum of h(�)(r) for two illustrative
cases, with �A induced by variations in the pairing gap or
hopping amplitude, to show the emergence of pseudo-LLs. We
then supplement the continuum theory with numerical results
on a lattice realization.

A. Pseudo-LLs from gap variations

Let us impose an additional extended s-wave pairing
with a uniform gradient along the [1,1] direction, which
translates to δ	+x(r)=δ	+y(r)= (xa/a0 + xb/a0 + 1/2)	s .
Here, (xa,xb) refer to (global) coordinates corresponding to the
a and b crystal axes, and a0 is the lattice constant. Using this,
we find f�(r)=0, while, in the local coordinates at �=1,2, we
have g1(r)=βv	x and g2(r)=βv	y, with β ≡ √

2 	s

v	a0
cos K .

For node pair �=2, this leads to �A(2) = (0,βy), which yields
�B(2) =0. In this case, the energy spectrum is unaffected by the

modulation, while the wave functions are obtained by a gauge
rotation as e− i

2 βy2
�(2)(r), where �(2)(r) is the Nambu spinor

wave function of the uniform d-wave SC for node pair � = 2.
For node pair �=1, we arrive at �A(1) = (0,−βx), i.e., the

Landau gauge for a pseudomagnetic field �B(1) =−βẑ. Setting
the Nambu wave function �(1)(r)=eiky�(1)(x), we get (see
Appendix B)

[
−ivfσ

z∂x +βv	σx

(
x− k

β

)]
�(1)(x) = E�(1)(x). (8)

Defining |↑〉= 1√
2
(1,i sgnβ)T and |↓〉= 1√

2
(1, − i sgnβ)T , we

find a zero-energy eigenstate |�k0〉 = |0〉k |↓〉 and nonzero
energy eigenstates

|�kn±〉 = 1√
2

(|n − 1〉k |↑〉 ± i |n〉k |↓〉), (9)

where the subscript ± denotes states with energies
±√

2|β|v	vfn (with integer n � 1). Here, |n〉k is the nth
eigenstate of a harmonic oscillator centered at k/β, with
a mean square width 〈x2〉 = (n + 1/2) vf

|β|v	
. We confirm

these findings below within a lattice model of a d-wave
superconducting strip.
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B. Pseudo-LLs from hopping variations

Next, let us consider a uniform spatial gradient in
the hopping along the [1,1] direction, given by δt+x(r) =
δt+y(r) = −(xa/a0 + xb/a0 + 1/2)ts , where ts sets the scale
of the hopping distortion. This results in g�(r)=0 and, in
local coordinates, f1(r)=βvfx and f2(r)=βvfy, where β ≡
4
√

2 ts
vfa0

cos K . This, in turn, leads to �A(1) = (βx,0), which

corresponds to zero pseudomagnetic field, while �A(2) = (βy,0)
yields a pseudomagnetic field �B(2) = −βẑ, which supports
pseudo-LL energies identical to the case with gap variation
for the same choice of β (see Appendix C). A similar
pseudovector potential can also be realized by a spatially
varying nematic distortion of the second-neighbor hopping,
with δt+x+y(r) = −(xa/a0 + xb/a0 + 1)ts and δt+x−y(r) =
(xa/a0 + xb/a0)ts , which yields �B(1) =0 and �B(2) = −βẑ, with
β ≡ 4

√
2 ts

vfa0
sin2 K . We note that while these examples are

“gauge equivalent” to the earlier gap variation case, their
physical realizations are distinct since we are changing the
hopping rather than the gap, thus directly controlling the
“vector potential.”

IV. LATTICE MODEL RESULTS

To check the validity of the low-energy linearized Dirac the-
ory, we numerically diagonalized the full lattice Bogoliubov–
de Gennes (BdG) Hamiltonian using a strip geometry with
(1,1) edges [see Fig. 1(b)]. The strip width is W ; the trans-
verse direction, along which periodic boundary conditions
were used, has length L � W . Analogous results for the
(1,0)-edged strip are presented in Appendix F. We pick
a nearest-neighbor hopping amplitude t =1, next-neighbor
hopping t ′ =−0.25t , electron filling n̄=0.85, and a d-
wave gap 	d =0.25t , such that vf/v	 ≈13; these parameters
are chosen so as to be representative of the hole-doped
cuprate SCs.

Figure 2(a) shows the spectrum of the (1,1)-edged strip as
a function of the momentum kL along the long direction L, in
the absence of any imposed spatial variation for W =500

√
2a0.

The spectrum exhibits d-wave Dirac nodes projected onto the
Brillouin zone of the strip; the velocity anisotropy vf/v	 �1
is evident in the dispersion slopes of the outer versus inner
nodes. In addition, we find zero-energy Andreev bound states
(ABSs) expected for a d-wave SC in this geometry [35–38].

Figure 2(b) shows the spectrum with a nonzero gradient
in the hopping amplitude across the strip width, which leads
to a pseudo-LL spectrum at the outer Dirac nodes; we have
chosen to plot the spectrum near the Dirac node indicated by
the circle in Fig. 2(a), for strip width W =500

√
2a0 and a

maximum change δt ∼0.1t at the edge. Figure 2(c) shows the
effect of an extended s-wave pairing gradient along the strip
width, which leads to pseudo-LL formation at the central Dirac
node. Here, we have chosen W =2000

√
2a0 and a maximum

s-wave gap 	s ∼0.4	d at the edge. The low-energy spectra in
Figs. 2(b) and H.c.(c) are in quantitative agreement with our
analytical results. The spectrum for the (1,0)-edged strip (see
Appendix F) displays similar strain-induced pseudo-LLs; the
key difference is in the absence of ABSs for the unstrained
d-wave SC in this geometry.

FIG. 2. (a) Spectrum of uniform d-wave SC on a (1,1)-edged
strip versus momentum kL along the L direction, showing Dirac
nodes and zero-energy ABSs. Circles indicate regions shown in the
next two panels. (b) Formation of flat pseudo-Landau levels near
the outer Dirac nodes due to uniform hopping-amplitude gradient
in the [1,1] direction; shown here is the near-node region indicated
in (a). (c) Similar to (b) but with extended s-wave pairing gradient,
which induces pseudo-LLs near the central Dirac node indicated
in (a).

V. EXPERIMENTAL SIGNATURE OF PSEUDO-LLS

As in the case of strained graphene, scanning tunneling
spectroscopy (STS) experiments which probe the TDOS may
provide the most direct route to observing the QP pseudo-LLs.
For weak pseudomagnetic fields, the peaks in density of states
due to pseudo-LLs may be visible in microwave spectroscopy.
Below, we first provide analytical expressions for the bulk
TDOS expected within our continuum low-energy theory. We
then present numerical results on the lattice model (see Fig. 3)
which goes beyond the continuum theory by incorporating the
effects of quantum confinement of the Bogoliubov QPs to the
strip, as well as the impact of ABSs at the edges.

FIG. 3. Low-energy TDOS versus energy �/	d (scaled to the
d-wave gap), from diagonalization of BdG Hamiltonian in the strip
geometry, plotted across scaled strip width 0<w/W <1. (a) Uniform
d-wave SC, showing ABSs near zero energy localized near w/W =
0,1, and QP bound-state TDOS exhibiting rapid spatial oscillations.
(b) Hopping gradient case showing extra pseudo-LL peaks.
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In tunneling experiments, the TDOS in the continuum
theory will have two contributions in the bulk. At nodes where
the vector potential acts as pure gauge, it will only induce
a phase shift for the fermion operators, leading to a TDOS
contribution identical to a uniform d-wave SC. At nodes
where the QPs sense a pseudomagnetic field, there will be
discrete pseudo-LLs. These lead to a total TDOS (details in
Appendix D)

N (�) ≈ |�|
πvfv	

+ |β|
π

∑
n

δ(� − λn), (10)

where n = 0,±1,±2, . . . and λn = √
2βvfv	|n|sgn(n).

We have also computed the TDOS numerically for the lat-
tice model in the above strip geometry. Confinement to the strip
then leads to QP subbands with minima at discrete energies
∼pπv	/W and ∼pπvf/W for nodes K1, K2 respectively
(p = nonzero integer), as well as ABSs at the strip edges.
As seen from Fig. 3, the TDOS for the strip exhibits three
key features. (i) Without or with a gradient in the hopping
amplitude, we see the zero-energy peaks in the TDOS at the
top and bottom edges reflecting the presence of ABSs; the
spectral weight from these ABSs weakly leaks into the bulk.
As shown in Appendix F, the ABSs and their contribution to
the TDOS is absent for a (1,0)-edged strip. (ii) In the bulk
(i.e., away from the edges), one set of indicated peaks exhibits
rapid spatial oscillation of the TDOS across the strip width.
These peaks arise when the energy � crosses the minimum
�s

0 (at kL =0) of each subband s in the spectrum, leading to a
∼1/

√
�−�s

0 divergence in the TDOS. These QP bound states
(see Appendix E) arise due to internode scattering K1 ↔ −K1.
There are additional weaker features with longer-length-scale
spatial variations arising from intranode scattering at ±K2.
Both contributions are present even in the absence of a
gradient; see Fig. 3(a). (iii) Finally, the hopping gradient
induces an extra set of indicated pseudo-LL peaks seen in
Fig. 3(b) where the TDOS is nearly constant across the
strip. The spatial dependence of the TDOS distinguishes the
pseudo-LL peaks from QP bound states.

VI. EXPERIMENTAL REALIZATIONS

A. Strained nanowires or films

One route to tuning the spatial variation of the electron
hopping and pairing amplitudes discussed above is to strain
a cuprate thin film or nanowire. Unlike graphene, which has
a simple single-particle description of its electronic bands, it
is necessary here to include electron interactions in order to
study the microscopic impact of strain on the d-wave SC.
The cuprates may be modeled by a tJ Hamiltonian HtJ =
−gt

∑
i,j,σ tij c

†
iσ cjσ +gJ J

∑
〈ij〉 �Si · �Sj , with bare nearest-

and next-neighbor hoppings t0 and t ′0 ≈−0.3t0, respectively,
and nearest-neighbor spin exchange J =4t2

0 /U ≈ 0.3t0. We set
t0 = 450 meV which leads to J = 135 meV. The coefficients
gt ,gJ represent renormalization factors that crudely account
for strong correlation effects. Motivated by slave-boson [39]
and renormalized mean field theory calculations [40,41], we
pick gt =2p/(1+p) and gJ = 1, where p is the hole doping
(see Appendix G for details). Such a mean field approach
captures a variety of experimental observations on the d-wave

(11̄0)

(110)

FIG. 4. Trilayer heterostructure with cuprate SC thin film epitaxi-
ally sandwiched between two piezoelectric perovskite films along the
(110) surface. An inhomogeneous strain can be induced in the cuprate
layer by asymmetrically polarizing the two piezolayers. Metallic
outer gates (yellow regions) are used to apply the piezovoltages,
with the cuprate layer serving as the common inner gate. For
typical values of piezoconstant (d31 ∼50–275 pm/V) and dielectric
breakdown field (∼25 MV/m) for piezoelectric perovskites [44,45]
such as Pb(ZrxTi1−x)O3, we estimate that lattice strains ∼0.1–1% can
be induced in the cuprate layer.

cuprate SCs; we therefore view it as a useful tool to estimate
the pseudo-LL gap.

Here, we consider the effects of inhomogeneous strain
that can be induced using a piezoelectric thin-film het-
erostructure schematically depicted and discussed in Fig. 4.
Such piezoinduced strain will lead to a gradient in the
hopping δt0(r) as well as a change in the superexchange
interaction δJ (r)≈ (8t0/U )δt0(r) across the strip. This induces
a gradient in the effective hopping and pairing amplitude in
the BdG equation. Raman scattering studies of La2CuO4 under
hydrostatic pressure [42] indicate that a ∓0.5% change in the
lattice constant leads to δJ/J ≈±5%, indirectly implying a
change in the bare hopping amplitude δt0/t0 ≈±2.5% in the
underlying tJ model. A self-consistent solution to the mean
field equations in the SC state at a hole doping p=0.15 shows
that such a uniform change leads to a ≈ ± 7% change in the
d-wave pairing gap and ≈ ± 3% change in the renormalized
hopping. A gradient in the d-wave gap does not induce any
pseudo-LLs; however, the hopping gradient can in fact induce
pseudo-LLs as discussed above. For a (110)-edged film of
thickness ∼700a0, or a nanowire of similar width (≈ 270 nm)
which is experimentally realizable [43] and similar to the strip
geometry explored here, we estimate that a hopping gradient
with a realistic 0.5%–1% maximal strain across the sample
will generate a first-excited pseudo-LL at E1 ∼1 meV; this
can be probed by c-axis tunneling. A fully self-consistent
inhomogeneous BdG study of this physics is challenging due
to the large system sizes involved; we defer this to future work.

B. Proximity to nematic order

A different route to realizing pseudo-LLs is to note
that the onset of nematic order in a tetragonal d-wave SC
spontaneously breaks the C4 point-group symmetry and will
induce an extended s-wave component to the pair field [33].
There is evidence that the cuprates are proximate to such a QPT
[46–51], so that an edge-induced s-wave pairing component
will exhibit slow spatial decay, leading naturally to a gap
variation needed to form pseudo-LLs. Tuning near such a
critical point, or using proximity effect coupling to an s-wave

224516-4



PSEUDO-LANDAU LEVELS OF BOGOLIUBOV . . . PHYSICAL REVIEW B 96, 224516 (2017)

SC, can tune the decay length and amplitude of the s-wave
gap, thus controlling the pseudomagnetic field and permitting
further experimental tests.

VII. SUMMARY

We have proposed inhomogeneously strained nodal SCs
as systems to realize pseudo-gauge fields and pseudo-LLs
for Bogoliubov QPs, and suggested experimental routes and
signatures to observe such physics in candidate materials such
as the cuprate d-wave SCs. We note that even accidental
SC Dirac nodes will show similar physics. Further research
directions include understanding the impact of such inhomoge-
neous strains on the superconducting transition temperature, its
interplay with real magnetic fields and vortices, and extensions
to materials like CeCoIn5, iron pnictides, and candidate
topological SCs like Sr2RuO4.

Note added. Recently, a closely related work appeared by
Nica and Franz [52]. Our results, where they overlap, are in
agreement.
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APPENDIX A: ABSENCE OF “SCALAR GAUGE
POTENTIAL” IN BdG EQUATION

Inhomogeneous strain effects also lead to a deformation
potential, which in graphene produces a scalar gauge potential
in addition to the pseudovector potential [2,4,18–21]. Here, we
argue that no such scalar potential, which may significantly
alter the low-energy LL structure, or even cause its collapse
[21], can arise in time-reversal symmetric spin-singlet super-
conducting systems, such as the one we consider.

The key physical idea is that the BdG Hamiltonian for
a singlet SC with time-reversal symmetry only permits two
of the four Pauli matrices: the corresponding coefficients are
in fact the two components of the vector potential identified
in the main body of this paper. Thus, any analog of the
“scalar deformation potential” here will necessarily break
time-reversal symmetry or lead to singlet-triplet mixing. Such
terms will be allowed in a more general setting, for example, if
spin-orbit coupling is present and inversion symmetry or time-
reversal symmetry is broken, but not in the cases studied here.

The Pauli matrix components that can enter the Hamiltonian
of Eq. (4) of the paper are constrained by symmetry. This is
most easily seen by considering the BdG Hamiltonian in real
space,

HBdG =
∑
i,j

ψ
†
i hijψj , (A1)

hij =
(

d0
ij + d3

ij 	ij

	∗
ji d0

ij − d3
ij

)
, (A2)

where ψ
†
i = (c†i↑,ci↓) is the Nambu spinor at site i, and

d0
ij ,d

3
ij ,	ij are complex numbers, with Hermiticity imposing

the constraint that d0
ij = (d0

ji)
∗ and d3

ij = (d3
ji)

∗:
(a) Time-reversal symmetry, which sends ci↑ → ci↓,

ci↓ → −ci↑, and complex-conjugates all complex numbers,
leads to the additional restrictions (i) d0

ij = 0 and (ii) 	ij =
	∗

ji .
(b) Spin-rotation symmetry and singlet pairing further

impose the constraints d3
ij = (d3

ij )∗ and 	ij = 	∗
ij .

With these ingredients, the Hamiltonian matrix hij =
d3

ij σ
3 + 	ijσ

1, where d3
ij and 	ij are real numbers. Thus,

time-reversal symmetry and spin-rotation symmetry, respec-
tively, require that the coefficients of σ 0 (which corresponds
to a valley-odd chemical potential) and σ 2 (which corresponds
to a complex pairing component) both vanish.

Such a Hamiltonian captures a BdG SC with arbitrary
spatial modulations in hopping and pairing amplitudes, and
an appropriate low-energy “Dirac node” expansion recovers
Eq. (4) of our paper, and only permits the two components
of the vector potential which we have shown leads to the for-
mation of pseudo-LLs. Any additional scalar potential is thus
symmetry forbidden. Breaking such symmetries, for instance
with a supercurrent that breaks time-reversal symmetry, leads
to a Doppler shift for the QPs, which is an analog of a scalar
potential.

APPENDIX B: DIRAC BdG SOLUTION: GAP VARIATIONS

Start with the Hamiltonian at node � = 1 for the case
discussed in the main text where pseudo-LLs arise from gap
variations:

H =
[
− ivfσ

z∂x +βv	σx

(
x− k

β

)]
. (B1)

Note that (sgnβσy) anticommutes with this Hamiltonian,
so that if |�〉 is an eigenstate of H with energy E, then
(sgnβσy) |�〉 is a solution with energy −E. (Here, sgnβ =
β/|β|.) This is the BdG particle-hole symmetry. Let us define

−i∂x = i

√
|β|v	

2vf
(a† − a ), (B2)

(
x − k

β

)
=

√
vf

2|β|v	

(a† + a ), (B3)

so we get

H =
√

2|β|vfv	

[
a† (σxsgnβ + iσ z)

2
+ a

(σxsgnβ − iσ z)

2

]
.

(B4)

Define spinors

|↑〉 ≡ 1√
2

(
1

i sgnβ

)
; |↓〉 ≡ 1√

2

(
1

−i sgnβ

)
. (B5)

Then, the Hamiltonian is of the Jaynes-Cummings type

H =
√

2|β|vfv	[ia†S− − iaS+], (B6)

whereS± act as raising/lowering operators on the above spin- 1
2

states. Let |n〉 denote harmonic oscillator states (with n � 0)
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centered at k/β which are generated by a,a†. Then, we have a
zero-energy eigenstate

|�0〉 = |0〉 |↓〉 (B7)

and nonzero energy solutions

|�n±〉 = |n − 1〉 |↑〉 ± i |n〉 |↓〉√
2

(B8)

with respective energies ±√
2|β|vfv	n. More explicitly, the

wave functions are given by

�k0(x) = 1√
2
ϕ0

(
x − k

β

)(
1

−i sgnβ

)
, (B9)

�kn±(x) = 1

2

(
ϕn−1

(
x − k

β

) ± iϕn

(
x − k

β

)
sgnβ

[
iϕn−1

(
x − k

β

) ± ϕn

(
x − k

β

)]
)

, (B10)

where ϕn(x) is the nth harmonic oscillator ground state. We
can then define quasiparticle operators γ for the node pair
� = ±1, so that

�1α(r) =
(

ψ1,α(r)
εανψ

†
−1,ν(r)

)
= 1√

L

∑
k

eiky

[
γ0,α(k)�k0(x)

+
∑
n>0

(
�kn+(x) �kn−(x)

)( γn,1,α(k)
εανγ

†
n,−1,ν(−k)

)]
.

(B11)

In terms of these, the Hamiltonian is given by

H =
∑

k,α,n>0

√
2|β|vfv	n(γ †

n1α(k)γn1α(k) + γ
†
n2α(k)γn2α(k)).

(B12)

APPENDIX C: DIRAC BdG SOLUTION:
HOPPING VARIATIONS

Start with the Hamiltonian at node � = 2 for the case
discussed in the main text where pseudo-LLs arise from
hopping variations. Assume plane waves along the x direction.
Then,

H = βvfσ
z

(
y + k

β

)
−iv	σ x∂y. (C1)

Let us define

−i∂y = i

√
|β|vf

2v	

(a† − a ), (C2)

(
y + k

β

)
=

√
v	

2|β|vf
(a† + a ), (C3)

so we get

H =
√

2|β|vfv	

[
a† (σ zsgnβ+iσ x)

2
+a

(σ zsgnβ−iσ x)

2

]
.

(C4)

Define spinors

|↑〉 ≡ 1√
2

(
1

−i sgnβ

)
; |↓〉 ≡ 1√

2

(
1

i sgnβ

)
. (C5)

Then, the Hamiltonian is of the Jaynes-Cummings type

H =
√

2|β|vfv	[ia†S− − iaS+], (C6)

whereS± act as raising/lowering operators on the above spin- 1
2

states. Let |n〉 denote harmonic oscillator states (with n � 0)
centered at y = −k/β which are generated by a,a†. Then, we
have a zero-energy eigenstate

|�0〉 = |0〉 |↓〉 (C7)

and nonzero energy solutions

|�n±〉 = |n − 1〉 |↑〉 ± i |n〉 |↓〉√
2

(C8)

with respective energies ±√
2|β|vfv	n. More explicitly, the

wave functions are given by

�k0(y) = 1√
2
ϕ0

(
y + k

β

)(
1

i sgnβ

)
, (C9)

�kn±(y) = 1

2

(
ϕn−1

(
y + k

β

) ± iϕn

(
y + k

β

)
−sgnβ

[
iϕn−1

(
y + k

β

) ± ϕn

(
y + k

β

)]
)

,

(C10)

where ϕn(y) is the nth harmonic oscillator ground state.

APPENDIX D: TUNNELING DENSITY OF STATES (TDOS)

1. Uniform case

The superconducting local TDOS for spin α for a uniform
d-wave SC is given by

Nα(r,�) =
∫

d2k
(2π )2

[
u2

kδ(� − Ek) + v2
kδ(� + Ek)

]
, (D1)

where u2
k = 1

2 (1 + ξk/Ek), v2
k = 1

2 (1 − ξk/Ek), and Ek =√
ξ 2

k + 	2
k. We can linearize the dispersion around the four

nodes (labeled � = ±1,±2), which leads to

Nα(r,�) =
∑

�

∫ � d2q

(2π )2

1

2

[(
1 + �v(�)

f · �q
Eq

)
δ(� − Eq)

+
(

1 − �v(�)
f · �q
Eq

)
δ(� + Eq)

]
, (D2)

where Eq =
√
v2

f q
2
⊥ + v2

	q2
‖ and the momentum cutoff �

ensures the same total number of momentum states. Doing
the integral, we find

Nα(r,�) = 2
∫ � dq‖dq⊥

(2π )2

[
δ
(
� −

√
v2

f q
2
⊥ + v2

	q2
‖
)

+ δ
(
� +

√
v2

f q
2
⊥ + v2

	q2
‖
)]

. (D3)

Rescaling vfq‖ = Q1 and v	q⊥ = Q2, with Q =√
Q2

1+Q2
2, we

find

Nα(r,�) = 2
∫ � dQ

2πvfv	

Q[δ(� − Q) + δ(� + Q)] (D4)

with an appropriate choice � = √
πvfv	. Of course, this

linearized description will break down at a lower energy
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scale ∼v	/a0, where a0 is the lattice spacing. This yields,
for |�| � v	/a0 � �,

N (r,�) =
∑

α

Nα(r,�) = 2|�|
πvfv	

. (D5)

2. Pseudo-Landau level case: Gap variations

Consider the gap variation example discussed in the main
text. Then, fermions at two of the Dirac points only see a
phase change from the vector potential, which does not change
the density of states, leading to a contribution from � = ±2
given by

N2(r,�) = |�|
πvfv	

. (D6)

This is half the total density of states in the uniform case. The
contribution from the other node pair N1(r,�) is expected to
reflect the formation of pseudo-LLs. The Green function for
node pair � = ±1 reduces to

G(�=1)
α (r,i�m) = 1

2L

∑
k

{
ϕ2

0

(
x − k

β

)
i�m − E0

+ 1

2

∑
n>0

[
ϕ2

n

(
x − k

β

)

+ϕ2
n−1

(
x− k

β

)](
1

i�m−En

+ 1

i�m+En

)}
,

(D7)

where E0 = 0. Summing over spins and � = ±1, this leads to

N1(r,�) = 2

L

∑
k

{
ϕ2

0

(
x − k

β

)
δ(�) + 1

2

∑
n>0

[
ϕ2

n

(
x − k

β

)

+ϕ2
n−1

(
x − k

β

)]
[δ(� − En) + δ(� + En)]

}
.

(D8)

Deep in the bulk, N1(r,�) will be independent of r, and we
can approximate it as

N1(r,�) ≈ |β|
π

[
δ(�) +

∑
n>0

[δ(� − En) + δ(� + En)]

]

(D9)

which can be recast in the more compact form

N1(r,�) ≈ |β|
π

∑
n

δ(� − λn), (D10)

where n = 0,±1,±2, . . . , with λn = √
2βvfv	|n|sgn(n).

Thus, the total density of states N1(r,�) + N2(r,�) will reflect
a combination of the pseudo-LL spectrum as well as the Dirac
density of states of the uniform d-wave SC.

APPENDIX E: d-WAVE SC IN A NARROW STRIP

In this appendix we study singular contributions to the
TDOS which come from quantization of the quasiparticle
momentum transverse to the strip. Just in this appendix, we find
it convenient to retain the full BdG equation, and linearize
around the Dirac nodes only at the end. We begin with the

BdG Hamiltonian

Ĥ (kL) =
(

ξ (kL,−i∂w) 	(kL,−i∂w)
	(kL,−i∂w) −ξ (kL,−i∂w)

)
, (E1)

where 0 < w < W is the transverse coordinate, and kL,kW

will denote momenta along the strip length and strip width (L,
W directions), respectively. For a (110) edge, we have ξ (kL, −
kW ) = ξ (kL,kW ) and 	(kL, − kW ) = −	(kL,kW ). We are
looking for states which obey the strip boundary conditions,
i.e., eigenfunctions ψ(w) of Ĥ which have a vanishing charge
density at the strip edges ψ†(0)τ zψ(0) = ψ†(W )τ zψ(W ) =
0. A plane-wave eigenfunction with positive eigenvalue
ε(kL,kW ) =

√
ξ 2(kL,kW ) + 	2(kL,kW ) is given by

φ+(kL,kW ; w) =
(

u(kL,kW )
v(kL,kW )

)
eikW w, (E2)

where

|u(kL,kW )|2 = 1

2

(
1 + ξ (kL,kW )

ε(kL,kW )

)
(E3)

and

|v(kL,kW )|2 = 1

2

(
1 − ξ (kL,kW )

ε(kL,kW )

)
. (E4)

Since 	(kL,kW ) is a real function for the d-wave SC
we are considering, it is sufficient to take u(kL,kW ) > 0
and (signv(kL,kW )) = (sign	(kL,kW )), thus, u(kL,−kW ) =
u(kL,kW ) and v(kL,−kW ) = −v(kL,kW ). A plane-wave eigen-
function with negative energy −ε(kL,kW ) is given by

φ−(kL,kW ; w) =
(

v(kL,kW )
−u(kL,kW )

)
eikW w. (E5)

To construct a state which obeys the boundary conditions, we
consider a superposition of states with opposite kW :

ψ+(kL,kW > 0,w)

= φ+(kL,kW ,w) + r(kL,kW )φ+(kL,−kW )

=
(

u(kL,kW )

v(kL,kW )

)
eikW w + r(kL,kW )

(
u(kL,kW )

−v(kL,kW )

)
e−ikW w.

(E6)

The charge density for this state is given by (dependence on
kL and kW implicit)

ρ+(w) = ψ+†(w)τ zψ+(w).

= u2[1 + |r|2 + 2 Re(re−i2kW w)]

− v2[1 + |r|2 − 2 Re(re−i2kwW )]

= (u2 − v2)(1 + |r|2) + 2 Re(re−i2kW w), (E7)

where Re(z) denotes the real part of z. Finite-size quantiza-
tion sets as usual kW = πn/W , where n = 0,1,2 . . . , while
demanding that ρ+ vanish at the strip edges results in

(u2 − v2)(1 + |r|2) + 2 Re(r) = 0. (E8)
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Since −1 � u2 − v2 � 1, r is always real. Thus, the eigen-
states are given by

ψ+
n (kL; w) =

(
un(kL)
vn(kL)

)
eiπnw/W

+ rn(kL)

(
un(kL)

−vn(kL)

)
e−iπnw/W . (E9)

Similar states with negative energy are given by

ψ−
n (kL; w) =

(
vn(kL)

−un(kL)

)
eiπnw/W

+ rn(kL)

(−vn(kL)
−un(kL)

)
e−iπnw/W . (E10)

The TDOS is given by

N (�,w) = 1

2

∫
dkL

2π

∞∑
n=0

∑
s=±

ψs†
n (kL,w)(τ 0+sτ z)ψs

n(kL,w)δ

× [� − sεn(kL)]. (E11)

Focusing on positive energies,

N (� > 0,w) = 2
∫

dkL

2π

∑
n

u2
n(kL)

(
1 + r2

n(kL)

+ 2rn(kL) cos
πnw

W

)
δ[� − εn(kL)]. (E12)

The main low-energy contributions to the TDOS in a
d-wave SC come from the vicinity of the nodes. We are
further focusing on the nodes at kL = 0 and kW = ±KF ,
thus, for kW > 0, ξ � vf(nπ/W − KF ), 	 � v	kL, and ε �√
v2

f (nπ/W − KF )2 + v2
	k2

L. Changing integration variables
we have

N (� > 0,w)

= 2
∫ ∞

vf |nπ/W−KF |

ε dε

2π

∑
n

1

v	kn(ε)
u2

n(ε)

×
(

1 + r2
n + 2rn cos

πnw

W

)
δ(� − ε)

=
∑

n

�(� − vf|nπ/W − KF |)�
π

1

v	kn(�)
u2

n(�)

×
(

1 + r2
n + 2rn cos

πnw

W

)
, (E13)

where kn(�) =
√

�2 − (vfnπ/w − K)2/v	 and u2
n(�) =

[1 + vf(nπ/w − KF )/�]/2. Since there are always values of
w for which the term in the above parentheses is finite, we find
that there are contributions at � = vf|nπ/W − KF | which
diverge as 1/

√
�2 − (vfnπ/W − KF )2.

APPENDIX F: PSEUDO-LANDAU LEVELS OF STRAINED
d-WAVE SC IN THE (1,0)-EDGED STRIP GEOMETRY

Numerical diagonalization of the lattice BdG Hamiltonian
was also performed for a (1,0)-edged strip. Again, the
strip’s width is W , and the transverse direction, along which
periodic boundary conditions were used, has length L � W .

FIG. 5. (a) Spectrum of uniform d-wave SC on a (1,0)-edged strip
versus momentum kL along the L direction showing Dirac nodes.
Note that there are no zero-energy ABSs in this geometry. Circle
indicates region shown in the next two panels. (b) Formation of
flat pseudo-Landau levels in the low-energy regime due to uniform
hopping-amplitude gradient in the [1,0] direction; shown here is the
near-node region indicated in (a). (c) Similar to (b) but with extended
s-wave pairing gradient.

Parameters t , t ′, n̄, and 	d are taken to be the same as in the
(1,1)-edged case considered in the main text.

Figure 5(a) shows the spectrum of the strip as a function of
the momentum kL along the long direction L in the absence
of any imposed spatial variation. The spectrum exhibits the d-
wave Dirac nodes projected onto the Brillouin zone of the strip.
As expected with (1,0) edges, zero-energy ABSs are absent
from the spectrum. A circle indicates the near-node region in
which we have chosen to plot the spectra of Figs. 5(b) and 5(c).

Figure 5(b) shows the spectrum in the presence of a nonzero
gradient in the hopping amplitude across the strip width (in the
[1,0] direction), which leads to a pseudo-LL spectrum at both
Dirac nodes; we have chosen W =3000a0 and a maximum
change δt ∼0.25t at the edge. Figure 5(c) shows the effect of
an extended s-wave pairing gradient across the strip width, also
leading to pseudo-LL formation at both Dirac nodes. Here, we
have chosen W =3000a0 and a maximum s-wave gap 	s ∼
0.25	d at the edge. The low-energy spectra in Figs. 5(b) and
5(c) are in quantitative agreement with our analytical results.

APPENDIX G: MEAN FIELD EQUATIONS FOR
CORRELATED d-WAVE SC WITH STRAIN

We start from the usual tJ model in the main text

HtJ = −gt

∑
i,j,α

t0,ij c
†
iαcjα + gJ J

∑
〈ij〉

�Si · �Sj , (G1)

where the bare nearest-neighbor and next-neighbor hoppings
are t0 = 1 and t ′0 = −0.3t0, respectively, the antiferromagnetic
exchange coupling J = 4t2

0 /U = 0.3t0, and the renormal-
ization factors gt = 2p/(1 + p), gJ = 1 account for strong
correlation effects in a mean field manner. Note that gt is
chosen in line with renormalized mean field theory, while we
have set gJ = 1 similar to what one expects from slave-boson
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mean field theory. At any rate, we should only view this as an
effective model to obtain a variational d-wave superconducting
ground state, with results which approximately reproduce
experimental data. Doing a full Hartree-Fock-Bogoliubov
mean field theory of the superexchange term, we arrive at
the mean field Hamiltonian

HMFT =
∑
kα

ξkc
†
kαckα −

∑
k

	k(c†k↑c
†
−k↓ + c−k↓ck↑), (G2)

where ξk = −2(gt t0 + 3
4gJ Jχ )(cos kx + cos ky) −

4gt t
′
0 cos kx cos ky is set by the effectively renormalized

hoppings (which appear in our BdG calculations in the paper)
t = (gt t0 + 3

4gJ Jχ ) and t ′ = gt t
′
0, while the pairing gap

	k = 3
2gJ J	0(cos kx − cos ky). The mean field equations

determining χ,	0 and the mean electron density n̄ ≡ 1 − p

are given by

	0 = 1

2N

∑
k

	k

2Ek
(cos kx − cos ky), (G3)

χ = 1

4N

∑
k

(
1 − ξk

Ek

)
(cos kx + cos ky), (G4)

n̄ = 1

N

∑
k

(
1 − ξk

Ek

)
≡ 1 − p, (G5)

where Ek =
√
ξ 2

k + 	2
k. We solve these equations self-

consistently assuming t0 → t0(1 + ε) and J → J (1 + 2ε),
where the (small) fractional change ε in the hopping and
exchange interaction is determined by the strain which affects
the lattice constant; see main text. (The factor of 2ε in J reflects
its dependence on hopping as ∼t2

0 .)
We pick the bare hopping t0 = 450 meV, which leads to

J = 135 meV (corresponding to U/t0 ≈13). For hole doping
p = 0.15, and for the unstrained case ε = 0, we find that the
renormalized hoppings satisfy t ′ = −0.25t , and an antinodal
gap 3gJ J	0 ≈ 24 meV at (π,0). In addition, with the
lattice constant a0 = 3.85 Å, we find a nodal Fermi velocity
vf ≈ 1.3 eV Å, and a ratio of Fermi velocity to gap velocity
vf/v	 ≈ 20. These are in reasonable agreement with results
for the optimally doped cuprates. Incorporating ε, and solving
the mean field equations, we find the results for the strain
dependence of the hopping and pairing quoted in the main
text.
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