Resistive Network Analysis

The analysis of an electrical network consists of determining each of the unknown branch currents and node voltages.

A number of methods for network analysis have been developed, based on Ohm's Law and Kirchoff's Law - we will look at several of these.

General approach:

- Define all relevant variables in a systematic way.
- Identify the known and unknown variables.
- Construct a set of equations relating these variables.
- Solve the equations, using the smallest set of equations needed to solve for all the unknown variables.

The Mesh Current Method - 4

Example continued:

- Mesh 2
 - $\rightarrow\,$ Voltages $v_2,v_3,$ and v_4 around the mesh have been assigned according the clockwise direction of mesh current $i_2.$
 - → Note: mesh current i_2 is the branch current for R_3 and R_4 , but not for R_2 . This is i_2 - i_1 . So v_2 =(i_2 - i_1) R_2 . This is the opposite to mesh 1 because the mesh currents flow through R_2 in opposing directions.
 - \rightarrow Apply KVL for mesh 2: $(i_2 i_1)R_2 + i_2R_3 + i_2R_4 = 0$
- Combine the equations for the two meshes to get:

$$(R_1 + R_2)i_1 - R_2i_2 = v_s$$

- R_2i_1 + (R_2 + R_3 + R_4)i_2 = 0
• Solve for mesh currents i_1 and i_2.
• Derive other currents and voltages.
PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

Dependent Sources		
 <u>Dependent</u> or <u>controlled sources</u> are sources whose current or voltage output is a function of some other voltage or current in a circuit (unlike ideal sources which are independent of any other element in a circuit) 		
example: transistor amplifiers	,	vs (+)
Source type	<u>Relationship</u>	
voltage-controlled voltage source (VCVS)	v _s =Av _x	Ŷ
current-controlled voltage source (CCVS)	v _s =Ai _x	
voltage-controlled current source (VCCS)	i _s =Av _x	is
current-controlled current source (CCCS)	I _s =Ai _x	0
PHY305F - Electronics Laboratory I, Fall Term (K. Strong)		

Principle of Superposition - 1

In a linear circuit containing N sources, each branch voltage and current is the sum of N voltages and currents, each of which may be computed by setting all but one source equal to zero and solving the circuit containing the single source.

- This is a conceptual aid rather than a precise analysis technique like the mesh current and node voltage methods.
- Useful in visualizing the behaviour of a circuit containing multiple sources.
- Applies to any linear system.
- While it can easily and sometimes effectively be applied to circuits with multiple sources, other methods are often more efficient.

Calculating Equivalent Resistance

Methodology for calculating equivalent resistance of a one-port network (Thevenin or Norton):

- (1) Remove the load.
- (2) Zero all independent voltage and current sources.
- (3) Compute the total resistance between load terminals, with the load removed.
- \rightarrow This resistance is equivalent to that which would be encountered by a current source connected to the circuit in place of the load.

Note that this procedure gives a result that is independent of the load. This is what we want, because once the equivalent resistance has been calculated for a source circuit, the equivalent circuit is unchanged if a different load is connected.

Determining the Thevenin Voltage - 2 Methodology: (1) Remove the load, leaving the load terminals open-circuited. (2) Define the open-circuit voltage v_{oc} across the open load terminals. (3) Apply any preferred method (e.g., nodal analysis) to solve for v_{oc}. (4) The Thevenin voltage is v_T = v_{oc}.

Finding Thevenin & Norton Equivalents Experimentally 3

- These measurements require care because the measuring instruments are nonideal.
- In the presence of finite meter resistance r_m, this quantity must be taken into account when determining the open-circuit voltage and the short-circuit current.
- Quantities "v_{OC}" and "i_{SC}" have quotation marks to indicate that the measured values are affected by r_m and are not the true values.
- The true values can be calculated using (prove this to yourself!):

$$i_{N} = i_{SC} \left(1 + \frac{r_{m}}{R_{T}}\right) \quad v_{T} = v_{OC} \left(1 + \frac{R_{T}}{r_{m}}\right)$$

where i_N = ideal Norton current, v_T = ideal Thevenin voltage, and R_T = true Thevenin resistance.

Finding Thevenin & Norton Equivalents Experimentally 4

$$i_{N} = "i_{SC}" \left(1 + \frac{r_{m}}{R_{T}} \right) \quad v_{T} = "v_{OC}" \left(1 + \frac{R_{T}}{r_{m}} \right)$$

- Recall
 - \rightarrow For an ideal ammeter, r_m should approach zero (short circuit).
 - \rightarrow For an ideal voltmeter, r_m should approach infinity (open circuit).
- So these two equations can be used to find the true Thevenin and Norton equivalent sources from an imperfect measurement of the open-circuit voltage and the short-circuit current, provided that the internal meter resistance r_m is known.
- In practice, the internal resistance of voltmeters is high enough to be considered infinite relative to the equivalent resistance of most circuits.
- However, it is impossible to build an ammeter with zero internal resistance: need to know r_m to determine the short circuit current.

PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

<text><equation-block><text><text><text><equation-block><equation-block>