

Ideal Capacitors - 2	
 <u>Capacitors act as open circuits for DC currents</u> because the insulating dielectric will not allow the current to flow. 	
 If the voltage at the capacitor terminals changes with time, so will the charge accumulated at the two capacitor plates. 	
• Charge separation caused by the polarization of the dielectric is proportional to the applied electric field and hence to the voltage	
Q = CV or $q(t) = Cv(t)$	
 C is the <u>capacitance</u> of the element and is a measure of the ability of the capacitor to store charge. 	
 The SI unit of capacitance is the farad (F): 1 F = 1 C/V. 	
 More common: microfarads (1 μF = 10⁻⁶ F) or picofarads (1 pF = 10⁻¹² F) 	
 To increase capacitance, real capacitors are often made of tightly rolled sheets of metal film with a dielectric sandwiched between. 	1
PHY305F - Electronics Laboratory I. Fall Term (K. Strong)	

PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

• The energy stored in a capacitor can be readily derived:

$$W_{c}(t) = \int P_{c} dt'$$
$$= \int v_{c}(t') i_{c}(t') dt'$$
$$= \int v_{c}(t') \frac{dv_{c}(t')}{dt'} dt'$$

$$W_{c}(t) = \frac{1}{2}C[v_{c}(t)]^{2}$$

PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

