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Basic Concepts

e Alternating current (AC) circuit analysis

— deals with (sinusoidally) time-varying current and voltage signals
whose time average values are zero

— particularly important because much of our electrical power is in the
form of AC voltages and currents

e Energy-storage components
—> capacitors

— inductors
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Ideal Capacitors -1

e A capacitor is a device that can store energy in the form of a
charge separation when appropriately polarized by an electric
field (i.e., a voltage).

e Simplest capacitor = two parallel conducting plates of cross-
sectional area A separated by air or another dielectric material.

— Note: dielectric material is not an electrical conductor, but contains
a large number of electric dipoles which become polarized in the

presence of an electric field. -
o
+
+ eA
cC —— C =
Parallel-plate capacitor d
with air gap d (air is the N .
dielectrig) pd( € = permittivity of air
< =8.854 x 102 F/m
(from Rizzoni Figure 4.1) _ A
o | Circuit
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Ideal Capacitors - 2

e Capacitors act as open circuits for DC currents because the
insulating dielectric will not allow the current to flow.

e |f the voltage at the capacitor terminals changes with time, so will
the charge accumulated at the two capacitor plates.

e Charge separation caused by the polarization of the dielectric is
proportional to the applied electric field and hence to the voltage

Q=CV or q(t)=Cv(t)

e Cis the capacitance of the element and is a measure of the
ability of the capacitor to store charge.

e The Sl unit of capacitance is the farad (F): 1 F =1 C/V.

e More common: microfarads (1 uF = 106 F) or picofarads
(1 pF=10"2F)

e To increase capacitance, real capacitors are often made of tightly
rolled sheets of metal film with a dielectric sandwiched between.
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Ideal Capacitors - 3

For applied voltage v(t), the change with time of the stored charge
is analogous to a current.

Differentiate equation for q(t) to get the defining circuit law for a
capacitor (defines the i-v relationship):
i(t) = dq(t) _ Cdv(t)

dt dt
Integrate to get the voltage across a capacitor:

vC(t):é [ is(t)at :éf i(t)dt+V, for t>t,

1 0 1 [
where V, =Vo(t,)= o [is(t) o

Initial voltage V, just indicates that some charge is stored in the
capacitor at time t,.
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Combining Capacitors

Capacitors connected in series combine in the same way as

resistors connected in parallel. C‘l
C,
—
Cs
1
Cro = 1 1 1
ci T ¢ T cy
Capacitors connected in parallel add.
O l i
I ¢, I ¢, —C;

(from Rizzoni Figure 4.2) Cpp =C | +C ,+C
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Energy Storage in Capacitors

e The energy stored in a capacitor can be readily derived:

We(t)= [P, dt
= [vo(t)ig(t) dt’

= [ue(t) @Yol gr

dt'

We(t) = C [ve(t)]?
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Ideal Inductors - 1

* Aninductor is a device that can store energy in a magnetic field.
e Usually made by winding a coil of wire around an insulating core.
— As current flows through the coil, a magnetic field is set up.

¢ In an ideal inductor, the resistance of the wire is zero, so a
constant current through the inductor flows without causing a
voltage drop.

e Thus, an ideal inductor acts as a short circuit for DC currents.

Magnetic flux
lines
¥ o
T i(1) N di
LD L ve(t)=L g
S m— _
Iron core ——
inductor —— Circuit
symbol
J) (from Rizzoni Figure 4.8)
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Ideal Inductors - 2

e Application of a time-dependent voltage across the inductor will

generate a current, defined by: -
ve(t)=L dlait)

e L is the inductance of the coil.
e The Sl unit of inductance is the henry (H): 1 H=1 V-s/A.

¢ Note the duality with the i-v relationship for capacitors: i(t) = CdL(t)

— the roles of i and v are reversed between the two dt
e |Integrate to get the current across an inductor:

iL(t):ELvL(t')dt' :EJ‘ v (t)dt+l,  for t>t,

o

| T e
where | :|L(to):LLvL(t)dt
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Combining Inductors

e [nductors connected in parallel combine in the same way as
resistors connected in parallel.

e |nductors connected in series add.

L
0
Lro-_ L
O P P F L [eo=LiHLHL3E Ly
Ly I I3
0
L3

(from Rizzoni Figure 4.9)
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Energy Storage in Inductors

e The energy stored in an inductor can be derived by first
determining the instantaneous power in the inductor:

N (RS
L= v, (0 =i LY = dt{thL(t )]}

e Hence the total stored energy is:

W, (t)= [P_(t)dt
d (1, 012l e
- [ ULOF pet

W) =Ll o)
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Time-Dependent Signal Sources

Convention for indicating time-dependent signal sources:

v(©) it) v©), i)

Generalized time-dependent sources  Sinusoidal source

(from Rizzoni Figure 4.18)
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Periodic Signal Waveforms

e Periodic time-dependent

bif))

signals appear frequently in 0 T 27 37 47T  Time
. . . A Sawtooth wave
practical applications and are P
useful approximations of many =
Il T 2T Time
phenomena. A
Square wave
e A periodic signal satisfies the —_— A
. = 0
equation: = T 2T Time
Triangle wave
x(t)=x(t+nT) n=1,2,3
y _
where T = period of x(t). = E R [ |_| |_|
e Signal or waveform generators ! pussetrain | Time
can provide periodic voltages 4
(or currents) of variable period = 0 - i
and amplitude. 4 Sine wave
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Sinusoidal Waveforms

e Sinusoidal waveforms are the most important type of time-
dependent signals. General equation:  x(t) = Acos(wt+ )
where A = amplitude, o = radian frequency (=2rf), ¢ = phase.

A = ‘
%,(t) = Acos(at) £ /N ./
LB \/ \/ !

Reference cosine

A r

A ] ‘ '}
xz(t):Acos(mtﬁtq))ﬁ—?b\ — /\ e / :
¢:2n?_t(radians) 4 - \/ | \/

Arbitrary sinusoid
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Average and RMS Values

Two ways to quantify strength of a time-varying electrical signal:

(1) Time-averaged (or DC) value

e Measurement of mean voltage or current over some time period.
1 T ] 1] . . .
e Definedas (x(t))= ?L X(t')dt' where T=period of integration

e Average value of a sinusoidal signal is always zero, but average
power is not! Need another way to quantify AC signal strength.

(2) Root-mean-square (or RMS) value

e Accounts for fluctuations of the signal about its average value.

. 1 ¢
Defined = |- " gt

— square root of the average (mean) of the square of the AC signal

e RMS of a sinusoidal signal is always 0.707 times its peak value.
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Circuits with Dynamic Elements

+VRi

Consider this circuit containing a capacitor.
o Apply KVL: Vg(t)=Vg(t)+vc(t)
e Hence: vg(t)= RiC(t)+é[ ic(t)dt'

e Integrate:

dic , 1. _1dvs  Notethat d([ iC(t')dt'):iC(t)
dt RC® R dt dt\ >

vs(t)

e We could also apply KCL: i, = Vs I;VC =i,=C—C¢

dv, 1 1
— =+ Vo= Vg
dt RC RC
e Solution of either of these differential equations will determine all
voltages and currents in the circuit.
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Sinusoidal Forcing of Circuits - 1

e Consider the same circuit with a sinusoidal
voltage source: v¢(t) =V cos(mt)

e Substitute this in the previous diffl equation: 's®
d 1 1
—Ve+ V. =_—_-Vcosot
dt RC RC
e The forcing function is sinusoidal, so assume the solution is too:
Ve (t) = Asinot +Bcos wt = Ccos(wt + ¢)
e Substituting this into the equation for v (t), grouping coefficients of
like terms, and noting that the coefficients of cos & sin must = O:

VoRC — V5(t)

A= VORC b
1+ 0?(RCY? V”‘% )
Y, 1677\

.67 5
B YV VAR
1+ 0*(RC)? ‘ s\ Y e (e
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Sinusoidal Forcing of Circuits - 2

e This solution method works for simpler circuits but can require
solution of higher-order differential equations if many circuit
elements are present, particularly capacitors and inductors.

e However, it leads to the following summary of the key points in
AC circuit analysis.

In a sinusoidally forced linear circuit, all branch voltages and
currents are sinusoids at the same frequency as the forcing
signal.

The amplitudes of these voltages and currents are a scaled
version of the excitation amplitude

The voltages and currents may be shifted in phase with respect to
the forcing signal.
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Euler’s Identity

e |tis possible to represent sinusoidal functions using only the
frequency, amplitude, and phase, with help of complex numbers.

— Allows complex algebra to replace solution of differential equations.

e Euler’s Identity is the basis for this notation: Im |
It defines the complex exponential '
el® as a point in the complex plane
that can be represented by real Gin 0 5 RS

. . - 0
and imaginary components: -
- -1 cos © '/ 1 Re
JQ _ . .
e —cose+JS|n9|
— this identity is just a trig. relation
in the complex plane (equates polar _J | o= cosO+sin®

and rectangular forms of a complex number)
— vector of magnitude |e|=+/cos”6+sin’6 =1
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Phasors

e Apply Euler’s Identity to a generalized sinusoid:
Acos(ot+¢) = Re|Ae ) | = Re|Ae*'e® |
e This follows from:
Re|Ae/“*? |= Re[A cos(mt + ¢) + jA sin(ot + ¢)] = Acos(ot + 0)

e So we can express a generalized sinusoid as the real part of a
complex number whose argument or angle is given by (ot+¢$) and
whose length or magnitude is the peak amplitude of the sinusoid.

e The complex phasor that corresponds to sinusoidal signal
Acos(wt+ ¢) is defined as the complex number Ael’:

Ae' = complex phasor notation for Acos(wt +¢)= AL

e This definition is a simplification, as it removes the operator “Re”
and the term el®t from the full expression above.
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Phasor Methodology

(1) Any sinusoidal signal may be mathematically represented in one
of two ways:
— atime-domain form: V(t) = Acos(ot+¢)
— a frequency-domain or phasor form:  V(jm) = Ael® = AZd
Note the jo in the notation V(jw), which indicates the el

dependence of the phasor. Bold uppercase indicates phasor
voltages or currents.

(2) A phasor is a complex number, expressed in polar form,
consisting of a magnitude equal to the peak amplitude of the
sinusoidal signal and a phase angle equal to the phase shift of
the sinusoidal signal referenced to a cosine signal.

(3) When using phasor notation, it is important to note the frequency

o of the sinusoidal signal, as this is not explicit in the phasor eqgn.
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Superposition of AC Signals - 1

Example: superposition of two sinusoidal sources of
different phase and amplitude but of the same frequency.

Given: v,(t)= A, cos(ot+¢,) =15cos(377t+ %)
V,(t)=A,cos(wt+¢,)=15cos(377t+ %)

Write the voltages in phasor form:
V,(jo)=A.e" = ALy, =154 V
V,(jo)=A,e" =AsLp, = 1545 V

Convert to rectangular form: V,(jo)=10.61+j10.61 V

V,(jo)=14.49+j3.88 V
Add: . - V()
V,(jo)=25.10+14.49 = 28.98¢"/° =28.98 /% V

Vg(t)=28.98cos(377t+%) V
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Superposition of AC Signals - 2

e The previous approach cannot be used in the case of two
sinusoidal signals that are not at the same frequency.

e Consider a load forced by two current 0
sources in parallel, with

i (t)=A,cos(ot) i,(t)=A,cos(m,t) * _ _
e Load current: i4(t) i,(t) load
i (t)=i,(t)+i(t) or I =L+,

e Here we cannot use addition of phasors 0
because the term e/®t is implicitly present. This is clear from the full
expresssions for the phasor currents 1, =Ae”°,1, = A,e”

|, = RelA1ejOej°’1tJ, l, = RelAzejOejmth
e The equation for i (t) is the only unambiguous eqn. for load current.

e To analyse a circuit with multiple sinusoidal sources at different
frequencies using phasors, the circuit must be solved separately

for each signal. Then the results for each source are added.
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Impedance

e Impedance is a parameter defined for h () =,
resistors, capacitors, and inductors that
can be regarded as a complex resistance.

e |t allows theorems for DC circuits to be vi(n D ,()9 S
extended to AC circuits. <

e The concept of impedance is equivalent to

. . . vs i(1) C
stating that capacitors and inductors act
as frequency-dependent resistors, i.e., as AC circuits
resistors whose resistance is a function of i

the frequency of the sinusoidal excitation. < s the

e Generalizing Ohm’s Law to AC circuits cicui
gives: \7(0),’[) = Z((J))|(0)’t) AC cireuits in

. . . phasor/impedance form
where Z is the impedance (unit = Ohms).
(from Rizzoni Figure 4.33)
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