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Basic Concepts
• Alternating current (AC) circuit analysis

→ deals with (sinusoidally) time-varying current and voltage signals
whose time average values are zero

→ particularly important because much of our electrical power is in the
form of AC voltages and currents

• Energy-storage components
→ capacitors

→ inductors



2

PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

Ideal Capacitors - 1
• A capacitor is a device that can store energy in the form of a

charge separation when appropriately polarized by an electric
field (i.e., a voltage).

• Simplest capacitor = two parallel conducting plates of cross-
sectional area A separated by air or another dielectric material.
→ Note: dielectric material is not an electrical conductor, but contains

a large number of electric dipoles which become polarized in the
presence of an electric field.
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Parallel-plate capacitor 
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AC ε=

ε = permittivity of air
   = 8.854 x 10-12 F/m

(from Rizzoni Figure 4.1)
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Ideal Capacitors - 2
• Capacitors act as open circuits for DC currents because the

insulating dielectric will not allow the current to flow.
• If the voltage at the capacitor terminals changes with time, so will

the charge accumulated at the two capacitor plates.
• Charge separation caused by the polarization of the dielectric is

proportional to the applied electric field and hence to the voltage

• C is the capacitance of the element and is a measure of the
ability of the capacitor to store charge.

• The SI unit of capacitance is the farad (F): 1 F = 1 C/V.
• More common: microfarads (1 µF = 10-6 F) or picofarads

(1 pF = 10-12 F)
• To increase capacitance, real capacitors are often made of tightly

rolled sheets of metal film with a dielectric sandwiched between.

)t(Cv)t(qorCVQ ==
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Ideal Capacitors - 3
• For applied voltage v(t), the change with time of the stored charge

is analogous to a current.
• Differentiate equation for q(t) to get the defining circuit law for a

capacitor (defines the i-v relationship):

• Integrate to get the voltage across a capacitor:

• Initial voltage Vo just indicates that some charge is stored in the
capacitor at time to.
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Combining Capacitors
• Capacitors connected in series combine in the same way as

resistors connected in parallel.

• Capacitors connected in parallel add.

C 1 C 2 C 3

C EQ  = C 1  + C 2  + C 3

C 3

C 2

C 1

C EQ  = 1
C 1

+
1

C 2
+

1
C 3

1

(from Rizzoni Figure 4.2)
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Energy Storage in Capacitors
• The energy stored in a capacitor can be readily derived:
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Ideal Inductors - 1
• An inductor is a device that can store energy in a magnetic field.
• Usually made by winding a coil of wire around an insulating core.

→ As current flows through the coil, a magnetic field is set up.
• In an ideal inductor, the resistance of the wire is zero, so a

constant current through the inductor flows without causing a
voltage drop.

• Thus, an ideal inductor acts as a short circuit for DC currents.
Magnetic flux

 lines

Iron core
inductor

i ( t )
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(from Rizzoni Figure 4.8)
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Ideal Inductors - 2
• Application of a time-dependent voltage across the inductor will

generate a current, defined by:

• L is the inductance of the coil.
• The SI unit of inductance is the henry (H): 1 H = 1 V-s/A.

• Note the duality with the i-v relationship for capacitors:
→ the roles of i and v are reversed between the two

• Integrate to get the current across an inductor:
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Combining Inductors
• Inductors connected in parallel combine in the same way as

resistors connected in parallel.

• Inductors connected in series add.

L1 L2 L3
LEQ =

1
1
L1

+ 1
L2

+ 1
L3

LEQ = L1 + L2 + L3

L3

L1

L2

(from Rizzoni Figure 4.9)
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Energy Storage in Inductors
• The energy stored in an inductor can be derived by first

determining the instantaneous power in the inductor:

• Hence the total stored energy is:
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Time-Dependent Signal Sources
Convention for indicating time-dependent signal sources:

Generalized time-dependent sources Sinusoidal source

+_v(t) i (t) +_v (t), i( t)

(from Rizzoni Figure 4.18)
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• Periodic time-dependent
signals appear frequently in
practical applications and are
useful approximations of many
phenomena.

• A periodic signal satisfies the
equation:

where T = period of x(t).

• Signal or waveform generators
can provide periodic voltages
(or currents) of variable period
and amplitude.
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(from Rizzoni Figure 4.19)

Periodic Signal Waveforms

32,1,n)nTt(x)t(x =+=
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Sinusoidal Waveforms
• Sinusoidal waveforms are the most important type of time-

dependent signals.  General equation:
where A = amplitude, ω = radian frequency (=2πf), φ = phase.

(radians) 
T
t2

)tcos(A)t(x2

∆π=φ

φ+ω=

)tcos(A)t(x1 ω=

Arbitrary sinusoid

t

A T

_ A
Reference cosine

t

A

_ A

T
t∆

)tcos(A)t(x φ+ω=



8

PHY305F - Electronics Laboratory I, Fall Term (K. Strong)

Average and RMS Values
Two ways to quantify strength of a time-varying electrical signal:

(1) Time-averaged (or DC) value

• Measurement of mean voltage or current over some time period.

• Defined as where T=period of integration

• Average value of a sinusoidal signal is always zero, but average
power is not!  Need another way to quantify AC signal strength.

(2) Root-mean-square (or RMS) value

• Accounts for fluctuations of the signal about its average value.

• Defined as

→ square root of the average (mean) of the square of the AC signal

• RMS of a sinusoidal signal is always 0.707 times its peak value.
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Circuits with Dynamic Elements
Consider this circuit containing a capacitor.

• Apply KVL:

• Hence:

• Integrate:

• We could also apply KCL:

• Solution of either of these differential equations will determine all
voltages and currents in the circuit.
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Sinusoidal Forcing of Circuits - 1
• Consider the same circuit with a sinusoidal

voltage source:

• Substitute this in the previous diff’l equation:

• The forcing function is sinusoidal, so assume the solution is too:

• Substituting this into the equation for vc(t), grouping coefficients of
like terms, and noting that the coefficients of cos & sin must = 0:

v  (t)s

v R

v C
C

R
i R

i C

i R i C=Note:

)tcos(V)t(vS ω=

tcosV
RC
1v

RC
1v

dt
d

CC ω=+

)tcos(CtcosBtsinA)t(vC φ+ω=ω+ω=

22

22

)RC(1
VB

)RC(1
RCVA

ω+
=

ω+
ω= v(t) (V)

time (ms)

v  (t)s
v  (t)c

5

3.33
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Sinusoidal Forcing of Circuits - 2
• This solution method works for simpler circuits but can require

solution of higher-order differential equations if many circuit
elements are present, particularly capacitors and inductors.

• However, it leads to the following summary of the key points in
AC circuit analysis.

In a sinusoidally forced linear circuit, all branch voltages and
currents are sinusoids at the same frequency as the forcing
signal.

The amplitudes of these voltages and currents are a scaled
version of the excitation amplitude

The voltages and currents may be shifted in phase with respect to
the forcing signal.
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• It is possible to represent sinusoidal functions using only the
frequency, amplitude, and phase, with help of complex numbers.
→ Allows complex algebra to replace solution of differential equations.

• Euler’s Identity is the basis for this notation:
It defines the complex exponential
ejθ as a point in the complex plane
that can be represented by real
and imaginary components:

→ this identity is just a trig. relation
in the complex plane (equates polar
and rectangular forms of a complex number)

→ vector of magnitude

Euler’s Identity

θ+θ=θ sinjcosej

1sincose 22j =θ+θ=θ

Im
j

_ j

_ 1 1 Re

1sin  

cos 

e j = cos + j sin 
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Phasors
• Apply Euler’s Identity to a generalized sinusoid:

• This follows from:

• So we can express a generalized sinusoid as the real part of a
complex number whose argument or angle is given by (ωt+φ) and
whose length or magnitude is the peak amplitude of the sinusoid.

• The complex phasor that corresponds to sinusoidal signal
   is defined as the complex number Aejφ:

• This definition is a simplification, as it removes the operator “Re”
and the term ejωt from the full expression above.

[ ] [ ]φωφ+ω ==φ+ω jtj)t(j eAeReAeRe)tcos(A

[ ] [ ] )tcos(A)tsin(jA)tcos(AReAeRe )t(j φ+ω=φ+ω+φ+ω=φ+ω

)tcos(A φ+ω
φ∠=φ+ω=φ A)tcos(A for notation phasorcomplex Aej
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Phasor Methodology
(1) Any sinusoidal signal may be mathematically represented in one

of two ways:
→ a time-domain form:
→ a frequency-domain or phasor form:

Note the jω in the notation V(jω), which indicates the ejωt

dependence of the phasor.  Bold uppercase indicates phasor
voltages or currents.

(2) A phasor is a complex number, expressed in polar form,
consisting of a magnitude equal to the peak amplitude of the
sinusoidal signal and a phase angle equal to the phase shift of
the sinusoidal signal referenced to a cosine signal.

(3) When using phasor notation, it is important to note the frequency
ω of the sinusoidal signal, as this is not explicit in the phasor eqn.

φ∠==ω φ AAe)j( jV
)tcos(A)t(v φ+ω=
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Superposition of AC Signals - 1
Example: superposition of two sinusoidal sources of
different phase and amplitude but of the same frequency.
Given:

Write the voltages in phasor form:

Convert to rectangular form:

Add:
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Superposition of AC Signals - 2
• The previous approach cannot be used in the case of two

sinusoidal signals that are not at the same frequency.
• Consider a load forced by two current

sources in parallel, with

• Load current:

• Here we cannot use addition of phasors
because the term ejωt is implicitly present.  This is clear from the full
expresssions for the phasor currents

• The equation for iL(t) is the only unambiguous eqn. for load current.
• To analyse a circuit with multiple sinusoidal sources at different

frequencies using phasors, the circuit must be solved separately
for each signal.  Then the results for each source are added.
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Impedance
• Impedance is a parameter defined for

resistors, capacitors, and inductors that
can be regarded as a complex resistance.

• It allows theorems for DC circuits to be
extended to AC circuits.

• The concept of impedance is equivalent to
stating that capacitors and inductors act
as frequency-dependent resistors, i.e., as
resistors whose resistance is a function of
the frequency of the sinusoidal excitation.

• Generalizing Ohm’s Law to AC circuits
gives:
where Z is the impedance (unit = Ohms).

)t,(i)(Z)t,(v ωω=ω
�

�

+~–v S ( t )

+~–v S ( t )

+~–v S ( t )

+~–S ( j )

i ( t) R

i ( t) L

i ( t) C

( j )

AC  circuits

AC  circuits in
phasor/impedance form

Z is the 
impedance
of each
circuit
element

(from Rizzoni Figure 4.33)


