Relativistic Energy and Momentum

Classically, the linear momentum of an object is given by the product
of the object’s mass and velocity: mu.

The requirement that the laws of physics be the same in inertial
reference frames related by a Galilean velocity transformation implies
that (classical) linear momentum is conserved (I won’t prove this, or
ask you to). Similarly:

The requirement that the laws of physics do not change with time
(translations in time) requires that energy be conserved.

rotations of the coordinate system results in the requirement

The requirement that the laws of physics not depend on 9
that angular momentum must be conserved.

Noether’s Theorem states that every
symmetry in nature is associated with
a conservation law, and vice versa.




Conservation of Momentum

For a closed system of particles, if the system is isolated there can be
no net force and so

Ptomz - Zp i Emz-“i = constant
7

i

It is straightforward to show that if ]3toml is conserved in one (Galilean)
inertial reference frame it is conserved in any other (apply the
Galilean velocity transformation -- for v along the x direction we can
just look at the z component):

E mU = E m. (U — U) — E mu. — E m.uv
total 7 7 1 1 7
total = total - vz m

and P differ by a constant amount (v is constant and the masses

ttl total

do not change). So if one is conserved, so is the other.



Relativistic Momentum

HOWEVER: we know that the Galilean velocity transformation that
we applied is NOT valid at velocities v close to c.

What happens if we apply a relativistic velocity transformation?

This is Example 2.8 in the text. For the collision illustrated below, apply
the relativistic velocity transformation from Sto S’:

Before:
0.6(: 0.8¢ @

After:

0.6¢ 0.8c
(@ Gy

(a) Seen in frame S

Here the numbers in the circles
are the masses of each object

Note that classically, this collision
takes place the centre-of-mass frame

(i.e. equal and opposite momenta).

For the moving frame S’ we chose a
frame moving to the right at 0.6 ¢ so
that the left hand particle in the S

frame (@) is at rest in S’.
u—"v
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Classically p =mu and so we have equal and opposite momenta in the
initial state and so must also in the final state. Now use the (relativistic)
velocity transformations to get the transformed momenta of the initial
and final states and compare:

4 kg 3 kg
Before: 0.6¢c — 0.6¢ ~0 —0.8¢c —0.6¢ — _0.946¢
(0.6¢) - (0.6¢) (—0.8¢) - (0.6¢)
1- 2 1- 2
c c
After: —0.6c=06c ) ggo, 08¢ =06 _ ) g5,
(—0.6¢) - (0.6¢) (0.8¢)-(0.6¢)

1- 1-

2 2
C C

Before: 2 mu’ = 4(0)+ 3(-0.946¢) = —2.84¢

After: Y mu’ = 4(-0.882c) + 3(0.385¢) = —2.38¢

Clearly something is wrong. If we trust our (relativistic) transformation
then we are left only with the definition of linear momentum.

(i.e. as the source of the problem)
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Relativistic Momentum Cont’d

Relativistically, the correct expression for the momentum involves
(unsurprisingly, | think) the Lorentz boost factor:

D =Ymiu

This reduces to the classical expression in the non-relativistic limit
in which y = 1 (as required).

In light of this, note that in the example on the previous slide, the
collision is not (relativistically) taking place in the centre-of-mass
frame (more properly called the centre-of-momentum frame) since
the Lorentz boost factors are different for the two objects (so their
relativistic momenta are not equal and opposite).



Relativistic Energy

The most famous equation in physics is:

2
E=mc
Most physicists would write this as*:
_ 2
E=vym,c

Here m, is the mass of the object in a frame

in which it is at rest. [We will discuss massless
particles later on]

This is arguably the only frame in which it makes sense to define this
(as for a particle’s lifetime) since everyone can agree on this. | will just
write this as m from now on [to always mean rest mass].

A particle at rest (so a non-relativistic particle) thus has a (rest) energy
of E=mc?. This has no classical analogue.

* The more famous formulation relies on the idea of a relativistic mass, e.g. ym, which most physicists dislike (see pg 38),,4



Relativistic Energy Cont’d

The rest energy is the “internal” energy (of the particle or object),
whatever form this might take. This, however, can be converted into
kinetic energy (as we shall see).

The kinetic energy of a particle is its total energy minus the rest energy
K.E.=ymc’—mc’ = (}/ — 1)mc2

Consider the energy of a non-relativistic object (so u << ¢)

2 2 u _1/2 2 _ 1 U _ > 1y
yme =mce’ | 1-—| =mc’|1+| —= || —— ||=mc +—-mu
C 2 c’ 2

[This approximation is just via the binomial expansion]

(1+:1;)m :1+gm(m—1)(m—i)! ..... (m—-n+1) ,

and the classical expression for the kinetic energy is obtained.



Kinematic quantities as a function of velocity (B=u/c)
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Massless particles travel at the speed of light, c.

Massive particles are limited to speeds u < c.

Energy and momentum both grow steeply as a function of « as this
approaches c.

Note that £ / mc® (= ymc® / mc® = y) provides a measure of how
relativistic a particle is. We used this when discussing cosmic-ray
muons in Lecture 3.



Particle Colliders

Convert the (some or all of) the kinetic energy of high-energy beam
particles into rest energy of particles in the final state.

.,‘.f}.'»__ ” ol ’:: ’—;:- B4 & *
/7,\4?\
XAy — - ~ ALICE I'H C Nm LHCb
| " U ATLAS SP5 NGS \.
76 Gran Sasso
2012: 4000 GeV protons )\/w -
27km circumference —
i LINAC 2/ ‘e

eutrons
N LINAC 3
Tons
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LHC Beam Energy

y =E/m ¢ =4000[GeV]/0.989[GeV]= 4000
y=01-p)""=4000 = B =.99999997

27 x10°m
3x10°m /s

=.00009s = 11,000 orbits / s



Particle Colliders (The LHC)

A EXPERIMENT

Run Number: 152166, Event Number: 810258
Date: 2010-03-30 14:56:29 CEST




Nuclear Power

Nuclear reactors work on a similar principle. But these convert rest-
energy into kinetic energy (which e.g. heats water that turns turbines).

In fact, the radioactive processes used to generate nuclear power
convert only a small amount of rest energy into kinetic energy.

If we could really access all the energy in some object, energy
would not be a problem. For instance, a penny weights about 2g.
How much energy does this correspond to?

2
E =mc” =(2x107kg)(3x10°ms™ | =18x10"kg-m* /s> =1.8x10"J

A Watt is a Joule/s, so a kilowatt-hour (kwh) is (103J/s)-(36oos) =3.6x10°J
So the energy stored in the penny is equivalent to

1.8x10"J 6 735 13
= 50 x 10° kwh A kg of >°U releases 7.2 x 10+°J
3.6x10°J / kwh




The energy-momentum four-vector

The four-vector that is most useful for solving problems in relativistic
dynamics is the energy momentum four-vector.

E
vapyap%a:

This must (by definition) transform in the same way as the position-
time four-vector, so :

pﬁ?f(px—ﬁ ] =Y(:—ﬁpxj, p,=p, p.=Dp

Z

C C :

What is the associated Lorentz invariant ?

2 2
E E

C



The energy-momentum four-vector

E B\ EY
[px,py,pz,,;): Af—Af—Aj—Af=(—j —pj—pj—pf{;] -p’

C

We had that £ = ymc®, p = ymu so this becomes:

2
(E] _p? = y2m202 _ y2m2u2 _ Q/szcz (1_ (u/C)Q) _ }/2m262 (1 . ﬁQ) — 22
C

Here m is the mass of the particle described by the four-vector, or
the invariant mass of the system of particles (if that is what is

described).

The invariant mass is a very useful quantity because it is the same
before or after any interaction (particle decay, collisions).



A note on massless particles

We will discuss photons in more detail when we begin discussing
guantum mechanics next week. But for the time being:

2
On the previous slide we had LE] - p’ =m’c’.

Rearranging this we obtain E* = p°c* + m°c* which is referred to
as the relativistic energy-momentum relationship.

For m=0 this becomes E° =p°c® or E= ]1‘5‘ .

2
mc

But what about F = ymc¢® =
\/1 —u’/c’
velocity u = ¢ this is 0/0 (so undefined). This is just an observation.

Don’t make too much of it. But there are no inconsistencies here, as
long as massless particles travel at the speed of light.

. Note that for m=0, if the



Interactions (in a generic form)

Different classes of processes (interactions): look classically, then
relativistically: Consider the process A+B = C+D

Classically what quantities are conserved in this collision process ?

* Mass: M, +M; =M.+ M,
* Momentum: p,+pz=pc+p, (i.e.three-momentum)

* Kinetic energy may be conserved (elastic collision).

Consider three “types” of processes:

@ - @— o0 .
“elastic”
llsﬁcky."
o—@ —o

“explosive” . .



Conserved Quantities in Collisions

The quantities conserved in relativistic processes, are somewhat
different than those conserved in the classical case since rest energy
can be converted into kinetic energy, and vice versa.

Classically:

a) Energy and momentum are always conserved
b) Kinetic energy may be conserved (elastic collision)
c) Mass is always conserved

Relativistically:

a) Energy and momentum are always conserved

b) Kinetic energy MAY or MAY NOT be conserved In a given process, these are
either both conserved or

c) Mass MAY or MAY NOT be conserved both violated

Collisions where kinetic energy is conserved are referred to as “elastic”.
Those where it is not are referred to as “inelastic”.



Example: Relativistic collision

Two particle of mass m and equal and opposite velocities of 0.6¢
collide to form an object at rest (net momentum is zero before and
after the collision).

@ _(3/5)c o @ < BBk @ What is the mass M of the final state?
m

m [Note: 1,2 here are just object indices]
Conservation of energy: E,+E,=F, =2FE

Conservation of Momentum:  p, =—p,  [So final state momentum is 0]

How do | solve for M?
M =2ym

The final energy is E = Mc”
The initial energy is 2E = 2}/mc2

M 2m _ 2m 5 _— :
— \/1—(3/5)2 = Ties Em which is > 2m (as it must be)

The kinetic energy in the initial state has been
turned into mass energy in the final state




Relativistic Processes (Particle Decay)

In this example we instead have a particle of mass M decaying to two

lighter particles of mass m. These will be emitted with equal and
opposite momenta (and hence velocity).

u U
. < ‘ — > . What is the final state velocity u?

Conservation of energy: Mc* =2yme® = M =2ym = 2m
\/1 —u’/c’
]\42 ]_ 4 2 4 2
2: > > 1_u2/62: m u2/62:1— m
4m 1—'U, /C M2 M2

2
4m? 2m Note that this makes
thus, u©w =-c4|l— =c,|1—| —
M2 M sense only for M >2m

In this case, the energy in the initial state is all in the form of mass energy, while the
final state has both mass energy and kinetic energy.
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Invariant Mass (Reminder)

For a particle or system of particles the energy momentum four-

vector is: P
P = (px’py’pz,’;j :

The “square” of this, P> = P- P (as defined previously) is a Lorentz
invariant

2 2
b )
P2:P'P:Pt2_P2_P2_P2:(_] _p2_p2_p2:(_] _p2:M2C2
x Y z C T Y z C
For a single particle, the M corresponds to the particle’s mass. For a
system of particles this represents the invariant mass of the system.

If a particle of mass M decays into a final state consisting of N particles,
the invariant mass of the N-particle system equals the mass of the

decaying pa rticle. Note that this is not really discussed in the textbook



The Use of Lorentz Invariants

Recall the following problem: (m) - @ LN (m)

In four-vector notation, we can write the total four-momentum P in the
initial and final states and make use of the fact that the invariant P? is
the same before and after. By P? here, | mean the Lorentz-invariant we
defined using the energy-momentum four-vector:

I . 2 — 2 ~2
Initial state: (0,0,0,Mc) pe=M¢-c } M?c? = 4y°m?c? yields M=2ym as before

Final state:  (0,0,0, 2ymc) p? = 4y’m?c?

e.g. [ (ﬁ,ymc)+(—]3,)/mc) ]

This is not a great simplification relative to the calculation that we did
before. However, consider the case where the two final state particles
have different masses. For example, let’s consider the decay of a pion
(rt) into @a muon (p) and a neutrino.



Pion Decay Kinematics

P @ D For the masses we have m_ > m,
W @ and m=0. Find the momentum p.

In the initial state we have: P =P = (O, (_), 0, mﬂc)

E E
In the final state we have Ptot = PH + Pv P = (—p’,—“],Pv — (@’,_V]
C C

Conservation of energy and momentum means that F = F +F,

or P =P —P . Squaring both sides (and using P = m_ c" ) we get

P*=P*+P*-2P -P

u T
m,—m,
2.2 pos peg = =
mZCQ m_c mch =0 —2[(mﬂc)(pv) —%pv] =—2m p c > P, =D, o c

EV p,c
—:—:pv
c

J

C \
see the discussion of massless particles from last time

Try doing this problem without the use of Lorentz invariants





