
RelaDvisDc	Energy	and	Momentum	
Classically,	the	linear	momentum	of	an	object	is	given	by	the	product	
of	the	object’s	mass	and	velocity:	mu. 

The	requirement	that	the	laws	of	physics	be	the	same	in	inerDal		
reference	frames	related	by	a	Galilean	velocity	transformaDon	implies	
that	(classical)	linear	momentum	is	conserved	(I	won’t	prove	this,	or	
ask	you	to).	

The	requirement	that	the	laws	of	physics		do	not	change	with	Dme	
(translaDons	in	Dme)	requires	that	energy	be	conserved.		

The	requirement	that	the	laws	of	physics	not	depend	on	
rotaDons	of	the	coordinate	system	results	in	the	requirement	
that	angular	momentum	must	be	conserved.	

Noether’s	Theorem	states	that	every	
symmetry	in	nature	is	associated	with	
a	conservaDon	law,	and	vice	versa.	

Similarly:	
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ConservaDon	of	Momentum	

For	a	closed	system	of	parDcles,	if	the	system	is	isolated	there	can	be	
no	net	force	and	so		

   

!
P

total
= !

p
i

i
∑ =  m

i

!
u

i
 = 

i
∑ constant

It	is	straighnorward	to	show	that	if									is	conserved	in	one	(Galilean)	
inerDal	reference	frame	it	is	conserved	in	any	other	(apply	the	
Galilean	velocity	transformaDon	--	for	v	along	the	x	direcDon	we	can	
just	look	at	the	x	component):	

  
!
P

total

  
′P

total
=  m

i
′u
i
 

i
∑

  
′P

total
=  P

total
− v m

i
i
∑

								and									differ	by	a	constant	amount	(v	is	constant	and	the	masses	
do	not	change).	So	if	one	is	conserved,	so	is	the	other.	
  ′P

total
       P

total

  
= m

i
u

i
− v( )  

i
∑

  
= m

i
u

i
− m

i
v  

i
∑

i
∑
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For	the	moving	frame	S’	we	chose	a	
frame	moving	to	the	right	at	0.6c	so	
that	the	lem	hand	parDcle	in	the	S	
frame	(				)	is	at	rest	in	S’.	

RelaDvisDc	Momentum	
HOWEVER:	we	know	that	the	Galilean	velocity	transformaDon	that	
we	applied	is	NOT	valid	at	velociDes	v	close	to	c.	

What	happens	if	we	apply	a	relaDvisDc	velocity	transformaDon?	

This	is	Example	2.8	in	the	text.	For	the	collision	illustrated	below,	apply	
the	relaDvisDc	velocity	transformaDon	from	S	to	S’:	

Note	that	classically,	this	collision	
takes	place	the	centre-of-mass	frame	
(i.e.	equal	and	opposite	momenta).	

  

′u = u − v

1 − uv /c2( )  
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Classically	p	=mu	and	so	we	have	equal	and	opposite	momenta	in	the	
iniDal	state	and	so	must	also	in	the	final	state.	Now	use	the	(relaDvisDc)	
velocity	transformaDons	to	get	the	transformed	momenta	of	the	iniDal	
and	final	states	and	compare:	

  

Before:          
0.6c − 0.6c

1 − (0.6c) ⋅(0.6c)
c2

= 0                  
−0.8c − 0.6c

1 − (−0.8c) ⋅(0.6c)
c2

= −0.946c

4	 3	

  

After:        
−0.6c − 0.6c

1 − (−0.6c) ⋅(0.6c)
c2

= −0.882c        
0.8c − 0.6c

1 − (0.8c) ⋅(0.6c)
c2

= 0.385c

  

Before:    m
i
′u
i
= 4(0)+ 3(−0.946c) = −2.84c

i
∑

 After:    m
i
′u
i
= 4(−0.882c)+ 3(0.385c) = −2.38c

i
∑

Clearly	something	is	wrong.	If	we	trust	our	(relaDvisDc)	transformaDon	
then	we	are	lem	only	with	the	definiDon	of	linear	momentum.	

12	
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RelaDvisDc	Momentum	Cont’d	

RelaDvisDcally,	the	correct	expression	for	the	momentum	involves	
(unsurprisingly,	I	think)	the	Lorentz	boost	factor:	

  
!
p = γm

!
u

This	reduces	to	the	classical	expression	in	the	non-relaDvisDc	limit	
in	which	γ à	1	(as	required).	

In	light	of	this,	note	that	in	the	example	on	the	previous	slide,	the	
collision	is	not	(relaDvisDcally)	taking	place	in	the	centre-of-mass	
frame	(more	properly	called	the	centre-of-momentum	frame)	since	
the	Lorentz	boost	factors	are	different	for	the	two	objects	(so	their	
relaDvisDc	momenta	are	not	equal	and	opposite).	
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RelaDvisDc	Energy	

The	most	famous	equaDon	in	physics	is:	

E = mc2

E = γm0c
2

Most	physicists	would	write	this	as*:	

*	The	more	famous	formulaDon	relies	on	the	idea	of	a	relaDvisDc	mass,	e.g. γm,	which	most	physicists	dislike	(see	pg	38)		

Here	m0	is	the	mass	of	the	object	in	a	frame	
in	which	it	is	at	rest.		

This	is	arguably	the	only	frame	in	which	it	makes	sense	to	define	this	
(as	for	a	parDcle’s	lifeDme)	since	everyone	can	agree	on	this.	I	will	just	
write	this	as	m	from	now	on	[to	always	mean	rest	mass].	

A	parDcle	at	rest	(so	a	non-relaDvisDc	parDcle)	thus	has	a	(rest)	energy	
of	E=mc2. This	has	no	classical	analogue. 

[We	will	discuss	massless		
parDcles	later	on]	
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RelaDvisDc	Energy	Cont’d	

The	rest	energy	is	the	“internal”	energy	(of	the	parDcle	or	object),	
whatever	form	this	might	take.	This,	however,	can	be	converted	into	
kineDc	energy	(as	we	shall	see).	

The	kineDc	energy	of	a	parDcle	is	its		total	energy	minus	the	rest	energy	

  
K.E. = γmc2 −mc2 = γ − 1( )mc2

Consider	the	energy	of	a	non-relaDvisDc	object	(so	u	<<	c)	

  
γmc2 = mc2 1 − u2

c2

⎛

⎝⎜
⎞

⎠⎟

−1/2

and	the	classical	expression	for	the	kineDc	energy	is	obtained.	

[This	approximaDon	is	just	via	the	binomial	expansion]	

  
≈ mc2 1 + − 1

2
⎛
⎝⎜

⎞
⎠⎟

− u2

c2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= mc2 + 1

2
mu2

  
1 + x( )m = 1 + m(m − 1)(m − 2).....(m − n + 1)

n !n=1

∞

∑ xn    x < 1
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KinemaDc	quanDDes	as	a	funcDon	of	velocity	(β=u/c)	

Massless	parDcles	travel	at	the	speed	of	light,	c.	

Massive	parDcles	are	limited	to	speeds	u	<	c.	

Energy	and	momentum	both	grow	steeply	as	a	funcDon	of	u	as	this	
approaches	c.	

Note	that																																																			provides	a	measure	of	how	
relaDvisDc	a	parDcle	is.	We	used	this	when	discussing	cosmic-ray	
muons	in	Lecture	3.	

  E /mc2  (= γmc2 /mc2 = γ )
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ParDcle	Colliders	
Convert	the	(some	or	all	of)	the	kineDc	energy	of	high-energy	beam	
parDcles	into	rest	energy	of	parDcles	in	the	final	state.	

Example:	The	Large	Hadron	Collider:	collisions	between	very	high	
energy	protons.	

2012:		4000	GeV	protons	

27km	circumference	

17	



LHC	Beam	Energy	

  
γ = E /m

p
c2 = 4000[GeV]/ 0.989[GeV]≈ 4000

 γ = (1 − β 2)−1/2 ≈ 4000  ⇒   β = .99999997

  

27 × 103m
3 × 108m / s

= .00009s   ⇒   11,000 orbits / s
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ParDcle	Colliders	(The	LHC)	

19	



Nuclear	Power	
Nuclear	reactors	work	on	a	similar	principle.	But	these	convert	rest-
energy	into	kineDc	energy	(which	e.g.	heats	water	that	turns	turbines).	

In	fact,	the	radioacDve	processes	used	to	generate	nuclear	power	
convert	only	a	small	amount	of	rest	energy	into	kineDc	energy.		

If	we	could	really	access	all	the	energy	in	some	object,	energy	
would	not	be	a	problem.	For	instance,	a	penny	weights	about	2g.	
How	much	energy	does	this	correspond	to?	

  
E = mc2 = 2 × 10−3kg( ) 3 × 108ms −1( )2 = 18 × 1013kg ⋅m2 / s2 = 1.8 × 1014J

A	Wab	is	a	Joule/s,	so	a	kilowab-hour	(kwh)	is		
  
103J / s( ) ⋅ 3600s( ) = 3.6 × 106J

  

1.8 × 1014J
3.6 × 106J /kwh

= 50 × 106kwh

So	the	energy	stored	in	the	penny	is	equivalent	to	

A	kg	of	235U	releases		7.2	x	1013	J 
20	



The	energy-momentum	four-vector	

This	must	(by	definiDon)	transform	in	the	same	way	as	the	posiDon-
Dme	four-vector,	so	:	

  
p

x
,p

y
,p

z,
,
E
c

⎛
⎝⎜

⎞
⎠⎟

  
′p
x
= γ p

x
− β E

c
⎛
⎝⎜

⎞
⎠⎟
,  

′E
c

= γ E
c
− βp

x

⎛
⎝⎜

⎞
⎠⎟
,  ′p

y
= p

y
,  ′p

z
= p

z

What	is	the	associated	Lorentz	invariant	?	

  
A

t
2 −A

x
2 −A

y
2 −A

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p
x
2 − p

y
2 − p

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p2

The	four-vector	that	is	most	useful	for	solving	problems	in	relaDvisDc	
dynamics	is	the	energy	momentum	four-vector.		
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The	energy-momentum	four-vector	

  
p

x
,p

y
,p

z,
,
E
c

⎛
⎝⎜

⎞
⎠⎟

:   
  
A

t
2 −A

x
2 −A

y
2 −A

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p
x
2 − p

y
2 − p

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p2

We	had	that																																						so	this	becomes:	  E = γmc2,p = γmu

  

E
c

⎛
⎝⎜

⎞
⎠⎟

2

− p2 = γ 2m2c2 − γ 2m2u2

  
= γ 2m2c2 1 − (u /c)2( )   

= γ 2m2c2 1 − β 2( )   = m2c2

Here	m	is	the	mass	of	the	parDcle	described	by	the	four-vector,	or	
the	invariant	mass	of	the	system	of	parDcles	(if	that	is	what	is	
described).	

The	invariant	mass	is	a	very	useful	quanDty	because	it	is	the	same	
before	or	amer	any	interacDon	(parDcle	decay,	collisions).	
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A	note	on	massless	parDcles	

We	will	discuss	photons	in	more	detail	when	we	begin	discussing	
quantum	mechanics	next	week.	But	for	the	Dme	being:	

  

E
c

⎛
⎝⎜

⎞
⎠⎟

2

− p2 = m2c2On	the	previous	slide	we	had																														.		

Rearranging	this	we	obtain																															which	is	referred	to	
as	the	relaDvisDc	energy-momentum	relaDonship.	

  E
2 = p2c2 +m2c 4

For	m=0	this	becomes																			or															.	  E
2 = p2c2

  
E = !p c

But	what	about																																												.	Note	that	for	m=0,	if	the		
  

E = γmc2 = mc2

1 − u2 /c2

velocity	u	=	c	this	is	0/0	(so	undefined).	This	is	just	an	observaDon.	
Don’t	make	too	much	of	it.	But	there	are	no	inconsistencies	here,	as	
long	as	massless	parDcles	travel	at	the	speed	of	light.		
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Classically	what	quanAAes	are	conserved	in	this	collision	process	?	

InteracAons	(in	a	generic	form)	
Different	classes	of	processes	(interacAons):	look	classically,	then	
relaAvisAcally:	 Consider	the	process			A+B	à	C+D				

8	

Consider	three	“types”	of	processes:	

•  Mass:		MA	+	MB	=	MC	+	MD	

•  Momentum:																																									(i.e.	three-momentum)	
•  KineAc	energy	may	be	conserved	(elasAc	collision).	

  

� 

! p A +
! p B =

! p C +
! p D



Conserved	QuanAAes	in	Collisions	
The	quanAAes	conserved	in	relaAvisAc	processes,	are	somewhat	
different	than	those	conserved	in	the	classical	case	since	rest	energy	
can	be	converted	into	kineAc	energy,	and	vice	versa.	

a)  Energy	and	momentum	are	always	conserved	

b)  KineAc	energy	may	be	conserved	(elasAc	collision)	

c)  Mass	is	always	conserved	

Classically:	

a)  Energy	and	momentum	are	always	conserved	

b)  KineAc	energy	MAY	or	MAY	NOT	be	conserved	

c)  Mass	MAY	or	MAY	NOT	be	conserved	

RelaAvisAcally:	

} In	a	given	process,	these	are	
either	both	conserved	or	
both	violated	

Collisions	where	kineAc	energy	is	conserved	are	referred	to	as	“elasAc”.	
Those	where	it	is	not	are	referred	to	as	“inelasAc”.		
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Example:	RelaAvisAc	collision	

M	 2	1	 (3/5)c	 (3/5)c	

ConservaAon	of	energy:	

� 

E1 + E2 = EM = 2Em

ConservaAon	of	Momentum:	   

� 

! p 1 = −
! p 2

m m

The	final	energy	is		

� 

E = Mc 2

The	iniAal	energy	is		

� 

2Em = 2γmc 2

� 

}
� 

M = 2γm

� 

M = 2m
1− (3/5)2

= 2m
16 /25

= 5
2
m which	is	>	2m	(as	it	must	be)	

Two	parAcle	of	mass	m	and	equal	and	opposite	velociAes	of	0.6c	
collide	to	form	an	object	at	rest	(net	momentum	is	zero	before	and	
aQer	the	collision).	

What	is	the	mass	M	of	the	final	state?	

[So	final	state	momentum	is	0]	

How	do	I	solve	for	M?	

10	

The	kineAc	energy	in	the	iniAal	state	has	been	
turned	into	mass	energy	in	the	final	state	

[Note:	1,2	here	are	just	object	indices]	



RelaAvisAc	Processes	(ParAcle	Decay)	

M	 m	m	

  

M 2

4m2
= 1

1 − u2 /c2

ConservaAon	of	energy:																											  Mc2 = 2γmc2

  

⇒ M = 2γm = 2m

1 − u2 /c2

  
1 − u2 /c2 = 4m2

M 2
  
u2 /c2 = 1 − 4m2

M 2

thus,		
  
u = c 1 − 4m2

M 2
= c 1 − 2m

M
⎛
⎝⎜

⎞
⎠⎟

2
Note	that	this	makes	
sense	only	for	M	>	2m	

In	this	example	we	instead	have	a	parAcle	of	mass	M	decaying	to	two	
lighter	parAcles	of	mass	m.	These	will	be	emiPed	with	equal	and	
opposite	momenta	(and	hence	velocity).		

What	is	the	final	state	velocity	u?	
u u 

11	

In	this	case,	the	energy	in	the	iniAal	state	is	all	in	the	form	of	mass	energy,	while	the	
final	state	has	both	mass	energy	and	kineAc	energy.	



Invariant	Mass	(Reminder)	

For	a	single	parAcle,	the	M	corresponds	to	the	parAcle’s	mass.	For	a	
system	of	parAcles	this	represents	the	invariant	mass	of	the	system.	

  
P = p

x
,p

y
,p

z,
,
E
c

⎛
⎝⎜

⎞
⎠⎟

:   

  
P 2 = P ⋅P = P

t
2 − P

x
2 − P

y
2 − P

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p
x
2 − p

y
2 − p

z
2 = E

c
⎛
⎝⎜

⎞
⎠⎟

2

− p2 = M 2c2

For	a	parAcle	or	system	of	parAcles		the	energy	momentum	four-
vector	is:	

The	“square”	of	this,																							(as	defined	previously)	is	a	Lorentz	
invariant			

  P
2 = P ⋅P

If	a	parAcle	of	mass	M	decays	into	a	final	state	consisAng	of	N	parAcles,	
the	invariant	mass	of	the	N-parAcle	system	equals	the	mass	of	the	
decaying	parAcle.	
	 12	

Note	that	this	is	not	really	discussed	in	the	textbook	



The	Use	of	Lorentz	Invariants		

M	 m	m	
u u 

In	four-vector	notaAon,	we	can	write	the	total	four-momentum	P	in	the	
iniAal	and	final	states	and	make	use	of	the	fact	that	the	invariant	P2		is	
the	same	before	and	aQer.	By	P2	here,	I	mean	the	Lorentz-invariant	we	
defined	using	the	energy-momentum	four-vector:	

IniAal	state:			(0,0,0,Mc)									P2	=	M2c2	

Final	state:					(0,0,0,	2γmc)				p2	=	4γ2m2c2	

� 

} M2c2	=	4γ2m2c2			yields	M=2γm	as	before	

 
!p,γ mc( ) + − !p,γ mc( )⎡⎣ ⎤⎦e.g.	

This	is	not	a	great	simplificaAon	relaAve	to	the	calculaAon	that	we	did	
before.	However,	consider	the	case	where	the	two	final	state	parAcles	
have	different	masses.	For	example,	let’s	consider	the	decay	of	a	pion	
(π)	into	a	muon	(μ)	and	a	neutrino.		

Recall	the	following	problem:		
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Pion	Decay	KinemaAcs		

π	 ν	μ	
p p For	the	masses	we	have	mπ	>	mμ	

and	mν=0.	Find	the	momentum	p.	

In	the	iniAal	state	we	have:		  Ptot
= Pπ = 0,0,0,mπc( )

In	the	final	state	we	have		
   

P
tot

= Pµ + Pν    Pµ = − !p,
Eµ

c

⎛

⎝
⎜

⎞

⎠
⎟ ,Pν = !

p,
Eν

c

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ConservaAon	of	energy	and	momentum	means	that			 Pπ = Pµ + Pν

or																								.	Squaring	both	sides	(and	using																				)	we	get	
 
Pµ = Pπ − Pν   PX

2 = m
X
2c2

  
Pµ

2 = Pπ
2 + Pν

2 − 2Pπ ⋅Pν

  
mµ

2c2

  mπ
2c2

  mν
2c2 = 0

   
−2 mπc( ) pν( ) − !pπ ⋅

!
pν

⎡⎣ ⎤⎦ = −2mπpνc

 

Eν

c
=

pνc

c
= pν

  
= −2mπpµc

⎫

⎬
⎪

⎭
⎪   

pµ = pν =
mπ

2 −mµ
2

2mπ

c

Try	doing	this	problem	without	the	use	of	Lorentz	invariants		

   
!
pπ = 0
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see	the	discussion	of	massless	parAcles	from	last	Ame	




