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1. Units in Atomic/Quantum Physics

• When dealing with very small/light objects (single protons or electrons) convenient to use commensurate units

• Most common unit in atomic, nuclear and particle physics is the electron-volt (eV)

• The amount of kinetic energy an electron (charge 1 object) received passing through a potential difference of 1V

◦ Atomic physics: atomic electron binding energies are measured in eV
◦ Nuclear physics: neutron and proton binding energies in nucleii are measured in keV
◦ Particle physics: the amount of energy required to make new particles: Muon: 100 MeV, Proton 1 GeV, Higgs boson

125 GeV
◦ Given that E = mc2 for a particle of mass m at rest it is conventional to quote particle masses in units of eV/c2 (or

MeV/c2 or GeV/c2 for most of the fundamental particles)
∗ The electron mass is 511 keV/c2

∗ The proton mass is 0.938 GeV/c2

2. Blackbody radiation

• A “blackbody” is in thermal equilibrium with its surroundings. It absorbs all incoming radiation and emits radiation with a
characteristic set of wavelengths that depends only on its temperature

• Everything radiates (human beings, stove elements, even the sun) but at different wavelengths

• Humans are in infra red, stove elements visible and infra-read, sun in broad spectrum including UV and higher

• Classically the amount of radiation at high frequencies (short wavelengths) grows without bound

◦ Classical statistical mechanics + E&M: dUdf ∝ kBTf
2 (Raleigh Jeans law)

◦ Is unbounded at large frequencies (or at low wavelengths as per the figure appended at the end of these notes)
◦ Works OK, if you cut it off at arbitrary wavelengths (see fig) – could re-scale things to get a pretty good approximation

to the dashed curve.

• Planck showed that problem could be resolved if the only energies that could be associated with EM radiation was limited to
integer multiples of hf

◦ h became known (is still known) as Planck’s constant: 6.63× 10−34 J s
◦ For any frequency there is a minimum energy hf (ie. 1 times hf )
◦ This cuts off the power distribution with the form dU

df ∝
hf

ehf/kBT−1
f2

◦ Goes to 0 as f goes to infinity, gives Raleigh-Jeans expression for low frequencies
◦ Physical conclusion is that for any given wavelength there is a minimum energy – light is quantised
◦ Planck won Nobel Prize in 1918 for this work

• Note the most probable wavelength decreases with increasing temperature (actually as 1/λ)

• While the most probable frequency increases, linearly with/proportional to, temperature

• Coblentz (1916) extracted h = 6.57× 10−34 J s (less than 1% away from modern value)

3. The Photo-electric effect

• Metals emit electrons when exposed to light – experimental observations well before 1900

• Classically lightwaves would impart energy to electrons in the metal continuously

◦ Expect that for lower intensities (light wave amplitudes) or lower energies (frequencies according to Planck) predict
fewer electrons ejected

◦ In both cases there is less energy available to eject electrons (“eject” means emerge with some kinetic energy)
◦ Might also expect some time lag for sufficiently low amplitude (dim) light – time to build up enough energy to eject first

electron (ie. some sort of resonant behaviour which builds up and ’breaks’ the electron/nucleus binding in the atom.
◦ Might expect that increasing the intensity (brightness) of the light could extract electrons from the metal even at lower

frequencies.



◦ Not what is seen experimentally
◦ Consider online simulation (http://phet.coloradoedu/en/simulation/photoelectric)
∗ Play with light intensity, light colour (ie wavelength of 1/frequency) and stopping voltage
∗ Look at some of the graphs (I vs. intensity, I vs. wavelength and electron energy vs. frequency)
∗ Can also try 3 or 4 different metals + a mystery metal

◦ What is seen experimentally is that below some incident frequency no electrons are emitted (independent of intensity or
duration of exposure)

◦ Einstein explained this by saying light came in discrete packets: Photons, each with energy hν
◦ This was what he actually won his Nobel Prize for (paper in 1905, prize in 1921).
◦ Milikan (Nobel Prize in 1923 for ’oil drop’ experiment – quantisation of charge) verified Einstein’s conjecture experi-

mentally.
◦ Ejection of an electron from a metal requires enough energy to overcome the ’work function” (binding energy of electron

in metal).
◦ Einstein hypothesized that this happened when a single photon of energy hν had more energy than the work-function.
∗ The single photon transfers all its energy (or doesn’t). If it is more than the work function then
∗ The kinetic energy of the ’free electron’ after it emerges from the metal is: Ekinetic = hν − Φ

∗ There is no dependence on the brightness of the light source – except that a brighter source has more photons. But
if the frequency is too low, then you can’t make up for it by using a brighter light – no electrons will be emitted
unless hν > Φ.

∗ Here Φ is the energy lost to the work-function (extracting the electron with kinetic energy = 0)
◦ Try to calculate the velocity of electron given the wavelengths in the diagram
◦ NB. Electrons are pretty non-relativistic – why? (Consider the energies involved and the mass of the electron).

• Calculations like these with photons often convenient to have conversion factor (from Js to eV nm ... as an example).

• Problem 3.27 in the text book (maybe assigned in PS6?) asks you to show that hc = 1240 eV nm

• These are the right units for photons since E = hν = hc
λ so if you are given energy in eV or wavelength in nm you can

easily predict the other. hc is often the ’constant of nature’ that comes up in quantum mechanical phenomena/problems.

• Photoelectric effect graph: slope gives h (Planck’s constant)

• From Milikan data conclude h = 4.1× 10−15 eV s (current value 4.136)

• The known work function for sodium is 2.28 eV which gives a cutoff frequency of 5.5× 1014 Hz

4. Applications of the Photo-electric effect

• Photomultipliers – detect single photons (and multiply the resulting electrons to make a measurable signal)

• Widely used in atomic, nuclear and particle physics.

• Night vision goggles – photo-cathode is followed by micro-channel plate electron multiplication and the fluorescent (green)
screen
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