PHY293 Lecture #10

November 14, 2017

1. Photon Energies

- A laser pointer (Green) emits 5mW of laser power at 532nm
- How many photons are being emitted at that wavelength and power?
 - $E = h\nu$, so each photon has $E = hc/\lambda = 1240 \text{eVnm}/532 \text{nm} = 2.33 \text{ eV}$
 - Power = Energy/time so number of photons (1/s) = Power/Energy = 5mW/2.33eV
 - $\circ~$ Need to convert MKS units to atomic units: 1 eV = $1.6 \times 10^{-19}~{\rm J}$
 - So $5mW = 5 \text{ mJ/s} / 1.6 \times 10^{-19} \text{ eV/J}$ is $3.1 \text{ x} 10^{16} \text{ eV/s}$
 - $\circ~{\rm Giving~finally}~1.3\times10^{15}~{\rm photons~per~second}$
 - Easy to see how many photons are coming out that visible light could be mistaken for a continuous phenomenon.
 - Existence of photons remained a topic of debate even in to the 1920s

2. X-ray Production

- X-rays first discovered by Roentgen (1895) Won first Nobel Prize in 1901
- Classically known that an accelerating electric charge emits EM radiation
- Produce X-rays by smashing electrons into a metal target abrupt deceleration
- The kinetic energy of electrons is turned in to EM energy (photons) in the keV range
- What about the distribution of photon energies (frequencies, or wavelengths)?
 - Should the minimum wavelength (maximum frequency) depend on number/intensity of electrons?
 - The energy of the electrons?
 - No cutoff at all This was the classical prediction
- Experimentally, see no energy emitted at wavelengths below some cutoff
 - Cutoff depends on kinetic energy of electrons (voltage on X-ray tube)
 - Textbook uses 25 keV electrons, yielding a 0.05nm cutoff
 - Another example (see figures) shows 0.035nm for 35 kV tube
 - Also some prominent peaks due to deep shell electrons, and depend on material
- Quantum solution: EM energy is quantised in photons then a maximum energy the energy of electron in X-ray tube (35kV)
- This follows from the 'fact' that each electron can produce no fewer than one, complete, photon (could, in principle, produce 2 or more, but they would be lower energy, lower frequency and hence longer wavelength).
 - Can predict this cutoff from the formulae we've already seen

 $E_{max} = hc/\lambda_{min} \Rightarrow \lambda_{min} = hc/E_{max} = 1240 \text{eVnm}/35 \times 10^3 \text{eV} = 0.035 \text{nm}$

• Absorption of X-rays depends on density of material (denser objects appear 'whiter' – fewer X-rays pass through to be recorded)

3. Compton Scattering

- This is the study of light, scattering off electrons
 - This is typically how we study atomic and subatomic matter
 - Use some kind of probe and 'scatter it' off of target to understand target structure
 - Compton was investigating how light (and other kinds of EM radiation) was scattered from carbon targets
 - Classically, expected that electrons would oscillate in EM field (it was thought to be a wave, classically)
 - As they oscillated, they would emit EM radiation in all directions (re-scattering the incoming light)
 - Since oscillating at frequency of incoming radiation, the re-scattered radiation would be at that same frequency.
- Compton (1923) used X-rays scattered off carbon to understand what happened
 - \circ The electrons are very loosely (on the scale of the X-ray energy) bound to the carbon atoms

- Atomic binding energy is O(100 eV)
- \circ Compton used Molybdenum X-rays ($\lambda = 0.0708$ nm)
- Found that some radiation was scattered backwards at a different wavelength
- Found a proportionality between the scattering angle and the wavelength of light emitted
- At the same time the photon energies are large enough to produce relativistic electrons

* $\lambda = 0.0708$ nm $\Rightarrow E = hc/\lambda = 1240$ eVnm/0.0708nm = 17.5 keV

- * This is a few % of the mass of an electron (511 keV)
- Compton explained this as a 'billiard ball' collision
 - Between an incoming photon with $E_{\gamma} = p_{\gamma}c = h\nu = hc/\lambda \rightarrow p_{\gamma} = h/\lambda$
 - An electron initially at rest (orbiting carbon atom with momentum that corresponds to $E_{kinetic} \approx 100$ eV, small compared to X-ray energy coming in)
 - After collision photon emerges at some angle θ , with some different energy: $E'_{\gamma} = p'_{\gamma}c = hc/\lambda' \rightarrow p'_{\gamma} = h/\lambda'$
 - The electron gets a kick emerging with some momentum, along direction ϕ : $E'_e = \gamma m_e c^2$ $\vec{p}_e = \gamma m_e \vec{u}_e$
 - Separately conserve energy and momentum. Momentum conserved both parallel to direction of initial photon and perpendicular to that direction (in the final state).
 - x direction: $\frac{h}{\lambda} = \frac{h}{\lambda'} \cos \theta + \gamma m_e u \cos \phi$
 - y direction: $0 = \frac{h}{\lambda'} \sin \theta \gamma m_e u \sin \phi$
 - Energy: $\frac{hc}{\lambda} + m_e c^2 = \frac{hc}{\lambda'} + \gamma m_e c^2$
 - Can solve (problem 3.38 suggests an approach to solving this) to get:

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

- The fact that this requires the relativistic form of the electron energy and momentum (not to mention the quantised energy/momentum of the photon) is further evidence that SR is 'right' and that light behaves as a particle.
- Wavelength shift is independent of the wavelength of the incident EM radiation,
- Get a feel for 'size' of this effect at various wavelengths
 - Consider the wavelength shift $\lambda' \lambda = \frac{h}{m_e c} O(1) \approx \frac{hc}{m_e c^2}$
 - $\circ~$ This is easy to compute: $\frac{1240 eVnm}{511 \times 10^3 eV} = 0.0024 nm$
 - Depending on the angle of scattering this could be a factor of 2 larger, or much smaller (all the way down to 0 shift for photons emitted in direction of incident photon ($\theta = 0$)
 - \circ But it's a pretty small shift, and will be hard to 'observe' for visible light (ie. 500nm \rightarrow 500.002 nm)
- Use incident EM radiation with $\lambda \approx 0.02$ nm (or less) so relative shift is sizeable (10% of incident wavelength) X-rays
- For 'long wavelengths' the light scattered in all directions will be about the same as incident wavelength
 - If we start with 500 nm visible light then we'll see
 - 500.002 nm at $\pm 90^{\circ}$, 500.004 nm at $\theta = 180^{\circ}$, and 500 nm at $\theta = 0$
 - Another example of "Correspondence principle":
 - * If we start with long wavelength light, then the scattered photons go in all directions with \approx the same wavelength
 - This was the classical expectation for EM waves scattering off atoms.
 - The quantum prediction merges smoothly into the classical prediction for larger wavelengths (ie. the classical regime)
- To summarise: Compton's measurements and the QM interpretation assume that the interaction of photons and electrons are just those of two individual particles, following the laws of (relativistic) momentum and energy conservation
- With the added assumption that there exists a photon with energy $E = h\nu$ and $p = h/\lambda$
- I strongly recommend Example 3.3 in the textbook.
 - The mechanical conservation laws should be familiar to you.
 - But details of what to put in for the photon energy, momentum (and even the relativistic electron energy) are new. You should practice these.

Planck Quote

"In sum, one can say that there is hardly one among the great problems in which modern physics is so rich to which Einstein has not made a remarkable contribution. That he may sometimes have missed the target in his speculations, as, for example, in his hypothesis of light-quanta, cannot really be held too much against him, for it is not possible to introduce really new ideas even in the most exact sciences without sometimes taking a risk. "

Max Planck

X-Ray Tube

© 2008 Pearson Education, Inc.

Wavelength Distribution of X-rays

Wavelength (λ)

35 kV – Molybdenum target

Dental x-ray tube

Photon - Electron Scattering

Before collision: A photon of wavelength λ approaches an electron at rest.

After collision: The electron scatters at speed u, angle ϕ . A photon of wavelength λ' scatters at angle θ .

© 2008 Pearson Education, Inc.

Second Series

May, 1923

Vol. 21, No. 5

THE

PHYSICAL REVIEW

A QUANTUM THEORY OF THE SCATTERING OF X-RAYS BY LIGHT ELEMENTS

BY ARTHUR H. COMPTON

ABSTRACT

A quantum theory of the scattering of X-rays and γ -rays by light elements.

Compton won the 1927 Nobel prize for this work

Fig. 5. The wave-length of scattered γ -rays at different angles with the primary beam, showing an increase at large angles