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1. Particles Behaving as Waves?

• Last time saw that photons, even when passing one-by-one, through a two-slit apparatus exhibit interference

• Probability where photons end up described by a wavefunction – the EM wave amplitude from Maxwell’s equations

◦ At a given point, square of the wavefunction gives probability of finding the photon if one were to make a measurement
◦ Making the measurement collapses the wavefunction making any subsequent predictions meaningless
◦ Attempting to measure which slit the photon passes through, collapses wavefunction before interference can take place

• Key concept: Photon probability wave passes through both slits and interferes with itself, results in classical wave interfer-
ence pattern even when incident light so dim than only single photons present in the apparatus at any given time

2. Double slit experiment with Electrons

• Imagine first a double slit experiment with classical particles (grains of sand?)

• Particles pile up under the openings

• Electrons that pass through a ’wide’ slit produce bright spot roughly the same width as the slit

◦ This also happens with light if slit is very wide (ie. light through a doorway doesn’t diffract)
◦ Still need to define ’wide’ in the context of electrons.
◦ For light it is the width of slit relative to the wavelength of light

• Electrons passing through a single slit (either slit of a double slit apparatus (the other slit is covered)

◦ Just spread out “all over” the screen
◦ See what we mean by “all over” in a few minutes
◦ But already this is reminiscent of the diffraction of light in a single (narrow) slit

• Double slit experiment reproduces the results of light through a double-slit

◦ There are minima (absence of electrons) at places where electrons would arrive if only one slit was open
◦ Not expected classically – even if I’ve “set you up” to expect it by insisting on similarities between electrons and photons
◦ And this interference pattern emerges even if electrons pass the double-slit barrier one at a time.

3. Hitachi: Biprism Double Slit Experiment with Electrons

• The wire generates a magnetic field that bends electrons right or left (depending on their initial directions)

• They curve around and, potentially, interfere with each other before arriving at detector plane

• For more details see: http://www.hitachi.com/rd/portal/research/em/doubleslit.html

• So electrons also exhibit wavelike interference – until 1920’s no one thought to look on this scale

• Single electrons, incident on a double-slit (like) apparatus produces an interference pattern

• Conclusion similar to the one obtained from discussion of individual photons

◦ There is a wavefunction associated with each electron
◦ That wavefunction passes through both slits and interferes with itself
◦ Producing a probability distribution for the arrival location of the electron on the detector plane
◦ Interpret the square of the wavefunction |Ψ(x)|2 as the probability to find an electron at position x

• We know what an EM wave is – Can be observed with antennae etc. – provides electric and magnetic field amplitudes at any
point in space

• What are these matter waves? Can we see them? No one ever has

• What is oscillating? Again, no ether.

◦ Only answer: mathematical construct representing probability to an electron (or other particle) at any given point
◦ In the case of the Hitachi experiment it is the probability that an electron will show up at a certain point across the screen
◦ In an atom, it is the probability of finding an electron at a certain radius from the nucleus. This comes from the

wavefunction Ψ(~r) (see more than one-dimensional wavefunctions in PHY294)



4. Applications of Electron waves

• Used to study the crystal structure of materials
• Electron microscope produces a collimated beam of mono-energetic electrons
• A crystal lattice is similar to a two-slit grating
◦ Electrons can penetrate many layers (atomic planes) of the crystal
◦ Some reflect from each layer and the interference from different layers is a measure of the distance between layers
◦ Also provides information on the distance between neighbouring atoms in a single layer
◦ See for example the Bragg Condition 2d sin θ = nλ original derived for x-ray scattering off crystals but also applies to

electron diffraction
• But still haven’t figured out what the relevant wavelength is ...
• Already seen p = h/λ follows from quantisation of light (E = hν) and energy/momentum relationship for light (ie. E = pc)

5. DeBroglie (1924) hypothesis: p = h/λ for any object (not just light)

• Presented his conjecture in his thesis
• Davisson & Germer confirmed it with electron diffraction experiments in 1927
• DeBroglie won the Nobel Prize for his work in 1929
• Davisson and Thompson (independent observation) wont the 1937 Nobel prize
• So what wavelengths does this give?
• Compute this for a macroscopic object (baseball) and microscopic one (electron)
◦ For a baseball, say travelling at 100 km/h p = mv = (150 g)(27.8 m/s) = 4.17 kg m/s
◦ DeBroglie would predict a wavelength of λ = h/p = 6.63× 10−34/4.17 = 1.59× 10−34 m
◦ Even if we put this in nm ( 1.6× 10−25 nm) it is pretty small

• Typical atoms (that make up the baseball) are perhaps 0.1 nm across, so this wavelength is still 1024 times smaller
• Interference between baseballs would be very very small. Conversely we’d expect macroscopic objects like this to pile up

like classical particles if they pass through two slit apparatus – unless the slits were 10−25 nm across.
• To get a deBroglie wavelength comparable to the atomic scale need a particle with very low momentum
• Should have both very low mass and velocity
◦ An electron at room temperature has kinetic energy given by 3/2kbT

◦ At T = 293 K (room temperature) this gives E = 1.5 · 1.38× 10−23 · 293 = 6.07× 10−21 J
◦ Which in turn gives a momentum of p =

√
2mE =

√
2 · 9.1× 10−31 · 6.07× 10−21 = 1.05× 10−25 kg m/s

◦ Which finally gives λ = h/p = 6.63× 10−34/1.05× 10−25 = 6.31× 10−9m or about 6 nm
◦ This is 60x larger than the typical atomic dimensions (1 Angstrom or 0.1 nm)

• Room temperature neutrons/protons on the other hand have smaller wavelengths because they are much more massive
◦ p =

√
2mE =

√
2 · 1.7× 10−27 · 6.07× 10−21 = 4.5× 10−24 kg m/s

◦ This would give λ = h/p = 6.63× 10−34/(4.5× 10−24) ≈ 0.15 nm
◦ Just about the size/spacing of atoms in a crystal lattice
◦ Scattering of cold (room temperature) neutrons is a common tool for materials characterisation

6. The Davisson Germer experiment

• Used 54 eV electrons scattered off Nickel
• Condition for constructive interference is 2d sin θ = nλ

• What is the wavelength of the 54 eV electron?

λ = h/p = h/
√

2mE = 6.63× 10−34/
√

2 · 9.1× 10−3154 · 1.6× 10−19 = 1.2 nm

• Details of the 50 degree scattering angle⇒≈ 0.5 nm layer spacing in Nickel are less important.
• Clear that O(nm) layers spacings in Nickel only lead to constructive interference if electrons behave as waves, with λ O(nm).
• Davisson & Germer confirmed this experimentally.

7. What about when v → 0

• Then p→ 0 and λ = h/p→∞
• Discuss the QM uncertainty principle next time – can’t actually ever get p ≡ 0.
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