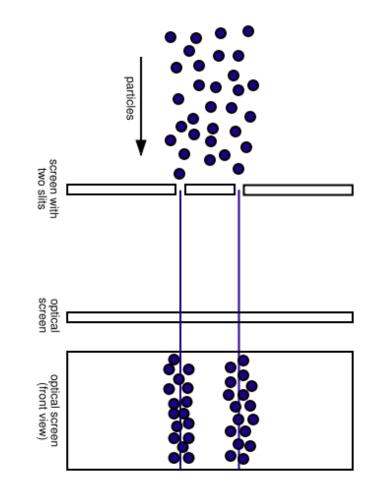
PHY293 Lecture #13

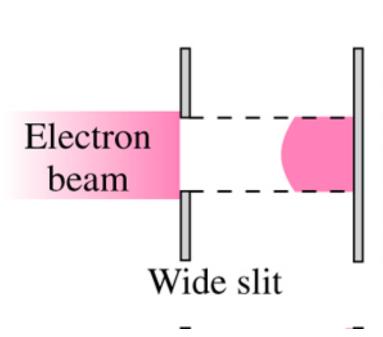
1. Particles Behaving as Waves?

- Last time saw that photons, even when passing one-by-one, through a two-slit apparatus exhibit interference
- Probability where photons end up described by a wavefunction the EM wave amplitude from Maxwell's equations
 - At a given point, square of the wavefunction gives probability of finding the photon if one were to make a measurement
 - Making the measurement collapses the wavefunction making any subsequent predictions meaningless
 - Attempting to measure which slit the photon passes through, collapses wavefunction before interference can take place
- Key concept: Photon **probability wave** passes through both slits and interferes with itself, results in classical wave interference pattern **even when incident light so dim than only single photons present in the apparatus at any given time**
- 2. Double slit experiment with Electrons
 - Imagine first a double slit experiment with classical particles (grains of sand?)
 - Particles pile up under the openings
 - Electrons that pass through a 'wide' slit produce bright spot roughly the same width as the slit
 - This also happens with light if slit is very wide (ie. light through a doorway doesn't diffract)
 - $\circ~$ Still need to define 'wide' in the context of electrons.
 - For light it is the width of slit relative to the wavelength of light
 - Electrons passing through a single slit (either slit of a double slit apparatus (the other slit is covered)
 - Just spread out "all over" the screen
 - See what we mean by "all over" in a few minutes
 - But already this is reminiscent of the diffraction of light in a single (narrow) slit
 - Double slit experiment reproduces the results of light through a double-slit
 - There are minima (absence of electrons) at places where electrons would arrive if only one slit was open
 - Not expected classically even if I've "set you up" to expect it by insisting on similarities between electrons and photons
 - And this interference pattern emerges even if electrons pass the double-slit barrier one at a time.
- 3. Hitachi: Biprism Double Slit Experiment with Electrons
 - The wire generates a magnetic field that bends electrons right or left (depending on their initial directions)
 - They curve around and, potentially, interfere with each other before arriving at detector plane
 - For more details see: http://www.hitachi.com/rd/portal/research/em/doubleslit.html
 - So electrons also exhibit wavelike interference until 1920's no one thought to look on this scale
 - Single electrons, incident on a double-slit (like) apparatus produces an interference pattern
 - Conclusion similar to the one obtained from discussion of individual photons
 - There is a wavefunction associated with each electron
 - That wavefunction passes through both slits and interferes with itself
 - Producing a probability distribution for the arrival location of the electron on the detector plane
 - Interpret the square of the wavefunction $|\Psi(x)|^2$ as the probability to find an electron at position x
 - We know what an EM wave is Can be observed with antennae etc. provides electric and magnetic field amplitudes at any point in space
 - What are these matter waves? Can we see them? No one ever has
 - What is oscillating? Again, no ether.
 - Only answer: mathematical construct representing probability to an electron (or other particle) at any given point
 - In the case of the Hitachi experiment it is the probability that an electron will show up at a certain point across the screen
 - In an atom, it is the probability of finding an electron at a certain radius from the nucleus. This comes from the wavefunction $\Psi(\vec{r})$ (see more than one-dimensional wavefunctions in PHY294)

- 4. Applications of Electron waves
 - Used to study the crystal structure of materials
 - Electron microscope produces a collimated beam of mono-energetic electrons
 - A crystal lattice is similar to a two-slit grating
 - Electrons can penetrate many layers (atomic planes) of the crystal
 - Some reflect from each layer and the interference from different layers is a measure of the distance between layers
 - Also provides information on the distance between neighbouring atoms in a single layer
 - See for example the Bragg Condition $2d \sin \theta = n\lambda$ original derived for x-ray scattering off crystals but also applies to electron diffraction
 - But still haven't figured out what the relevant wavelength is ...
 - Already seen $p = h/\lambda$ follows from quantisation of light $(E = h\nu)$ and energy/momentum relationship for light (ie. E = pc)
- 5. DeBroglie (1924) hypothesis: $p = h/\lambda$ for **any** object (not just light)
 - Presented his conjecture in his thesis
 - Davisson & Germer confirmed it with electron diffraction experiments in 1927
 - DeBroglie won the Nobel Prize for his work in 1929
 - Davisson and Thompson (independent observation) wont the 1937 Nobel prize
 - So what wavelengths does this give?
 - Compute this for a macroscopic object (baseball) and microscopic one (electron)
 - For a baseball, say travelling at 100 km/h p = mv = (150 g)(27.8 m/s) = 4.17 kg m/s
 - $\circ~$ DeBroglie would predict a wavelength of $\lambda=h/p=6.63\times10^{-34}/4.17=1.59\times10^{-34}~{\rm m}$
 - $\circ~{\rm Even}$ if we put this in nm (1.6×10^{-25} nm) it is pretty small
 - Typical atoms (that make up the baseball) are perhaps 0.1 nm across, so this wavelength is still 10^{24} times smaller
 - Interference between baseballs would be **very very** small. Conversely we'd expect macroscopic objects like this to pile up like classical particles if they pass through two slit apparatus unless the slits were 10^{-25} nm across.
 - To get a deBroglie wavelength comparable to the atomic scale need a particle with very low momentum
 - Should have both very low mass and velocity
 - An electron at room temperature has kinetic energy given by $3/2k_bT$
 - At T = 293 K (room temperature) this gives $E = 1.5 \cdot 1.38 \times 10^{-23} \cdot 293 = 6.07 \times 10^{-21}$ J
 - Which in turn gives a momentum of $p = \sqrt{2mE} = \sqrt{2 \cdot 9.1 \times 10^{-31} \cdot 6.07 \times 10^{-21}} = 1.05 \times 10^{-25}$ kg m/s
 - Which finally gives $\lambda = h/p = 6.63 \times 10^{-34}/1.05 \times 10^{-25} = 6.31 \times 10^{-9}$ m or about 6 nm
 - This is 60x larger than the typical atomic dimensions (1 Angstrom or 0.1 nm)
 - Room temperature neutrons/protons on the other hand have smaller wavelengths because they are much more massive
 - $p = \sqrt{2mE} = \sqrt{2 \cdot 1.7 \times 10^{-27} \cdot 6.07 \times 10^{-21}} = 4.5 \times 10^{-24} \text{ kg m/s}$

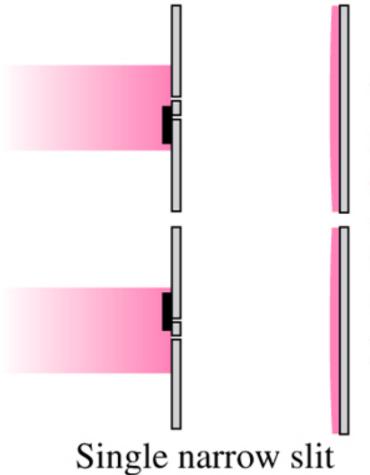

$$\sim$$
 This would give $\lambda = h/p = 6.63 \times 10^{-34}/(4.5 \times 10^{-24}) \approx 0.15$ nm

- Just about the size/spacing of atoms in a crystal lattice
- Scattering of cold (room temperature) neutrons is a common tool for materials characterisation
- 6. The Davisson Germer experiment
 - Used 54 eV electrons scattered off Nickel
 - Condition for constructive interference is $2d\sin\theta = n\lambda$
 - What is the wavelength of the 54 eV electron?


$$\lambda = h/p = h/\sqrt{2mE} = 6.63 \times 10^{-34}/\sqrt{2 \cdot 9.1} \times 10^{-31}54 \cdot 1.6 \times 10^{-19} = 1.2 \text{ nm}$$

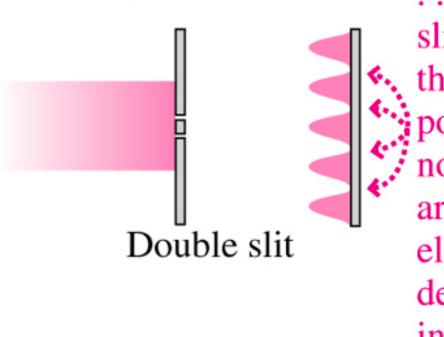
- Details of the 50 degree scattering angle $\Rightarrow \approx 0.5$ nm layer spacing in Nickel are less important.
- Clear that O(nm) layers spacings in Nickel only lead to constructive interference if electrons behave as waves, with λ O(nm).
- Davisson & Germer confirmed this experimentally.
- 7. What about when $v \to 0$
 - Then $p \to 0$ and $\lambda = h/p \to \infty$
 - Discuss the QM uncertainty principle next time can't actually ever get $p \equiv 0$.

Interference of grains of sand



Electrons (Wide Slit)

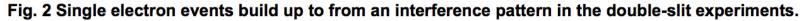
Electrons passing through a wide slit arrive at a screen one by one and produce a bright region essentially the same width as the slit.


Electrons (Narrow Slit)

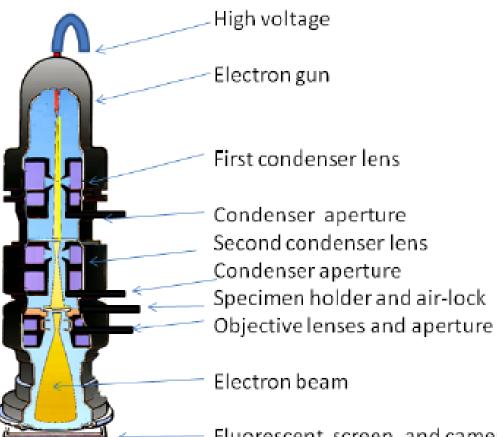
With a single narrow slit, electrons arrive one by one all over the screen. They don't avoid any points . . .

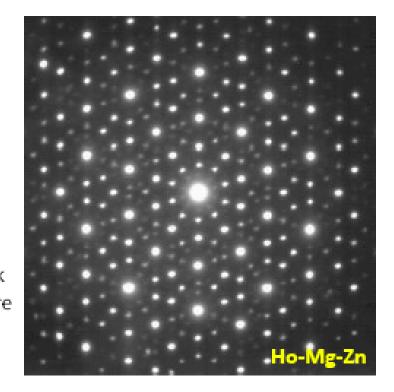
hut when two

Electrons (Double Slit)


out when two slits are open, there are certain points at which no electron ever arrives. Each electron wave is destructively interfering with itself.

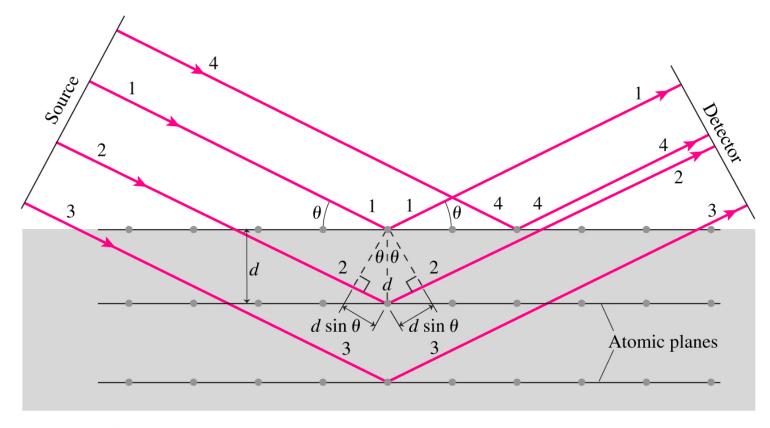
Electron Biprism Aparatus


Electron Arrival Pattern



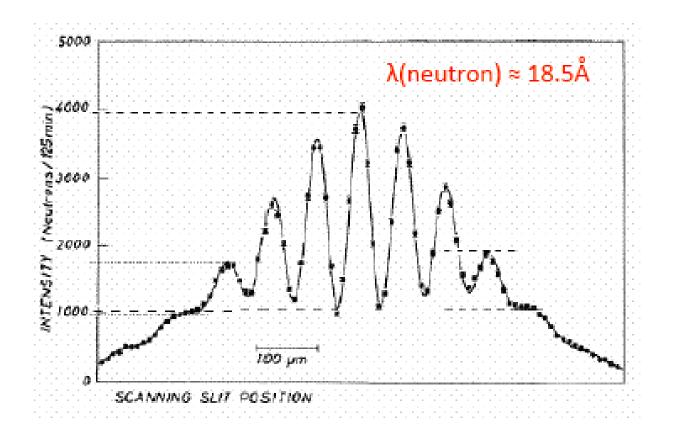
The number of electron accumulated on the screen. (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 160,000. The total exponsure time from the beginning to the stage (d) is 20 min.

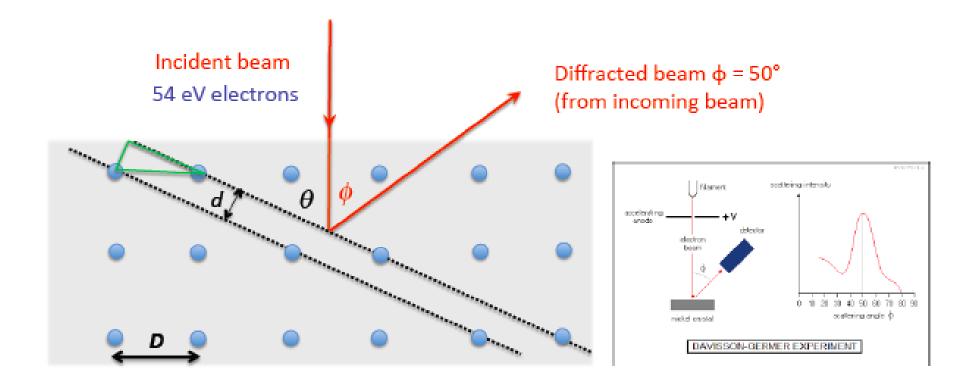
Electron Microscope



Fluorescent screen and camera

Transmission Electron Microscope


Electron Beam Diffraction


© 2008 Pearson Education, Inc.

Neutron Scattering

Single- and double-slit diffraction of neutrons Zeilinger et al., Reviews of Modern Physics, Vol. 60, No. 4, October 1988

Davisson and Germer

