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November 28, 2017
. Wave Equations
e Waves on a String

: ’y(x,t ’y(=,t
Transverse waves on a string governed by: giﬁ ) = & g(t;‘ )

v depends on the mass density and string tensions and y is the amplitude of the transverse wave

Derived by applying F' = ma to a small segment of the string
Has the solution y(x,t) = Asin(kx — wt) withv = w/k
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e Electromagnetic Waves

o In the absence of charges or currents Maxwell’s equations are
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o These can be *promoted’ to wave equations by considering the quantities:
— — — = =d — — = _8§ 8 = g _1825
Vx(VXxE)=V(V-E)-V’E=Vx ——=-—(VxB) =
( ) ( ) ot at( ) 2 ot?
o And similarly for B
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The equations of waves for E and B travelling with velocity ¢

The solutions for these are E(z,t) = Asin(kz — wt)j and B(z,t) = Asin(kz — wt)2 withc = ¢

These are similar in form to the waves on a string, but there is no medium of propagation (ie. no ether)
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The presence of c in these equations, with no reference to any specific reference frame was one of the things that led
Einstein to formulate special relativity with ¢ the same for all inertial frames.

e Matter Waves

o

We have a slightly different wave equation for our “matter waves”

o

The Schrodinger equation, in the absence of external particles is (in one dimension)
h? 02 (x,t) 5 09 (z,1)
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We won’t derive this from first principles (didn’t really do that for EM waves either...)

Will see these two terms represent the particle’s kinetic energy, and total energy when we see first solutions for ¥(x, t)
Note that the equation is explicitly complex (with ¢ on the RHS).

Solutions (¥ (z,t)) are also complex, so we need to interpret the probability of finding a particle was |¥(z,t)|> = U* ¥
The probability to find a particle at z and ¢ is given by |¥(xz,#)[? = U* W
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. Solutions to the Schrodinger equation
e The explicit presence of an ¢ in the partial differential equation means that sin or cos wave solutions won’t work:

o2 hk?
—%@[Asm(kx—wt)] =5

[Asin(kz — wt)]

e While 9
zha[A sin(kx — wt)] = —ihw[A cos(kz — wt)]



e No way to ’align’ spatial/time dependence of sin (LHS) with cos (RHS) — let alone LHS is real and RHS is imaginary
e Could try Asin(kx — wt) + A cos(kxz — wt) as a solution instead:

o Still LHS real and RHS imaginary (not to mention the first/single time derivatives of sin and cos have opposite sign)
e In fact the only way out is to consider ¥ (z,t) = A cos(kx — wt) + Bsin(kx — wt)

e In fact find B = i A will work, and in fact this solution can also be written as Aei(kz—w?)

e Need a complex mix of sinusoidal components (out of phase by 90°) to solve the Schrodinger equation

e Convince yourselves that
R 02
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e This will be a solution iff — 2= (ik)? = ih(—iw) or 222 = he
e Recall that wehadp = h/\ = hk and E = hv = hw

e From these two expressions we can see that the solution to the Schrodinger equation is just another way of stating (classical/non-
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relativistic) energy conservation for a free particle: % = Jw is another way of saying p?/2m = E

e Non-relativistically a free particle’s total energy (its kinetic energy) is just p?/2m
e Wave function itself not directly detectable, have said |¥(x,t)|? should represent the probability to find particle at x and ¢
e What is the probability then for this solution?

1 (z,t))? = Aeilhz—wt) | go—ilkz—wt) _ 42

e The probability to find a particle at some point in space is constant (A?)
e This is a plane wave, not localised any where is space, the same probability everywhere

e Here momentum of the particle precisely known: hk, but no information about where in space — it has equal probability to
show up anywhere/everywhere.

3. Ch 4, Problem 36:

e A electron, with well defined momentum: 5 x 10~2% kg m/s moving along the x axis.

Write an expression for the matter wave associated with this electron with all numerical values:

This is a plane wave solution (well defined momentum =- no information about x position)
\I/(J,‘, t) — Aei(kr—wt)

Determine k from momentum: hk = 1.05x 10734k = 5x 1072° = k = 4.76 x 10° wavelengths/m or 4.76 wavelengths/nm.

Determine w from Schrodinger constraint: fiw = p?/2m = w = (5 x 1072%)2/[2(9.1 x 10731)(1.05 x 10734)] =
1.30 x 10 radians/s or 1.30 radians/ps.

e So the full solution with numerical values is:

U(z,t) = Aet*762—1.300) x innm, ¢ in fs
e Note that units for = and ¢ make sense for a single electron (wavelengths in nm and oscillations in fs), not m or s.

4. Ch 4, Problem 27:
e A free particle is represented by a plane wave by:
U(x,t) = Aet(1-582=79.10) x in pm, ¢ in fs
e Note I've already done the conversion to appropriate units for atomic particles

e Find the particle’s momentum, kinetic energy and mass

e Again this is the solution to the ’free particle’ Schrodinger equation so p = hk and E = hw



We can just read these off the wavefunction: p = 1.05 x 10734 . 1.58 x 102 = 1.66 x 10~22 kg m/s
e F=hw=105x10"3*.79.1 x 10> =8.31 x 107 1®7J
Andm = p?/2E = (1.66 x 1022)2/2(8.31 x 10'8) = 1.66 x 10~2" kg

This is the mass of the proton... as if by accident.

5. Introducing Potential Energy to the Schrodinger Equation

e So far we’ve only looked at free particle solutions to the Schrodinger equation

Not the most interesting physics — to understand the Hydrogen atom (or how things interact) need to also consider the
potential energy

e Suppose we have a simple mechanical example — higher energy barrier between two regions of constant (and equal) potential
o Start with free particle: Eyo; = 1/2muv?

In the region of the barrier: Eyo; = 1/2m(v')? + U(x)

o On the right side we have free particle again: Eyo; = 1/2mov?

o

o Whether the ’free particle’ ends up on the left or the right will depend on whether 1/2mv? > U, 00 (7).

Could also consider a bound state with two atoms that are mechanically attached by a spring

o Such bound states interesting to show phenomena like quantisation of energy levels (ie. the H-atom yesterday)

o Consider first the potential energy associated with a simple mass on a spring
+ Note the turning points are where the potential energy has absorbed all of the kinetic energy
* Classically the mass is free to move anywhere between the turning points and will oscillate

o Consider slightly more complicated case (two different masses, coupled by some unknown force)
* Take heavy atom to define the origin of coordinate system (consider in frame where heavy atom is at rest)
* For small z force is repulsive — creates a turning point where smaller atom cannot approach any closer to atom “1”
* For large x force is attractive — creates a turning point beyond which atom “2” can’t escape any further
+ This is similar to the potential energy we saw yesterday for the electron in a *potential’ generated by the proton
x If kinetic energy of atom 2 is large enough, then it can overcome the attractive potential and ’escape’ from Atom 1.

Only one turning point at, small x where it cannot approach closer to Atom 1.
e Potentials in the Schrodinger Equation

We already have two terms in Schrodinger equation representing kinetic energy (h2 k2 /2m) and total energy fiw
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It makes some sense to just add the potential energy to the LHS of the Schrodinger equation:

02 0*(a,t)

L 0U(x,t)
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+ U(z)¥(z,t) = 5

o

This is referred to at the “Time Dependent Schrodinger Equation”

x Perhaps a bit confusing because we always had /9t in the first version

+ But without a potential we found time-independent — free particle wave solutions

* When we introduce a potential we can find solutions that give different probabilities as a function of time
In classical mechanics we solve F = ma (ie. to analyse a mass on a spring)
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In non-relativistic quantum mechanics we solve the TDSE for a particular choice of potential (U (z))
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Waves on a String
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Cynamics of a short segment of string: neglecting gravity, the
only forces are the tension forces 7 acting on the ends.
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Two Atom Molecule



Potential Energy of Mass on Spring
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