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1. Wave Equations

• Waves on a String

◦ Transverse waves on a string governed by: ∂2y(x,t)
∂x2 = 1

v2

∂2y(x,t)
∂t2

◦ v depends on the mass density and string tensions and y is the amplitude of the transverse wave
◦ Derived by applying F = ma to a small segment of the string
◦ Has the solution y(x, t) = A sin(kx− ωt) with v = ω/k

• Electromagnetic Waves

◦ In the absence of charges or currents Maxwell’s equations are

~∇ · ~E = 0 ~∇× ~E = −∂
~B

∂t
~∇ · ~B = 0 ~∇× ~B =

1

c2
∂ ~E

∂t

◦ These can be ’promoted’ to wave equations by considering the quantities:

~∇× (~∇× ~E) = ~∇(~∇ · ~E)−∇2 ~E = ~∇× −∂
~B
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−1

c2
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◦ And similarly for B

~∇× (~∇× ~B) = ~∇(~∇ · ~B)−∇2 ~B = ~∇× 1

c2
∂ ~E

∂t
=

1

c2
∂
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◦ Given that ~∇ · ~E = 0 (and same for ~B) these reduce to:

∇2 ~E =
1

c2
∂2 ~E

∂t2
∇2 ~B =

1

c2
∂2 ~B

∂t2

◦ The equations of waves for ~E and ~B travelling with velocity c
◦ The solutions for these are ~E(x, t) = A sin(kx− ωt)ŷ and ~B(x, t) = A

c sin(kx− ωt)ẑ with c = ω
k

◦ These are similar in form to the waves on a string, but there is no medium of propagation (ie. no ether)
◦ The presence of c in these equations, with no reference to any specific reference frame was one of the things that led

Einstein to formulate special relativity with c the same for all inertial frames.

• Matter Waves

◦ We have a slightly different wave equation for our “matter waves”
◦ The Schrodinger equation, in the absence of external particles is (in one dimension)

− h̄2

2m

∂2Ψ(x, t)

∂x2
= ih̄

∂Ψ(x, t)

∂t

◦ We won’t derive this from first principles (didn’t really do that for EM waves either...)
◦ Will see these two terms represent the particle’s kinetic energy, and total energy when we see first solutions for Ψ(x, t)

◦ Note that the equation is explicitly complex (with i on the RHS).
◦ Solutions (Ψ(x, t)) are also complex, so we need to interpret the probability of finding a particle was |Ψ(x, t)|2 = Ψ∗Ψ

◦ The probability to find a particle at x and t is given by |Ψ(x, t)|2 = Ψ∗Ψ

2. Solutions to the Schrodinger equation

• The explicit presence of an i in the partial differential equation means that sin or cos wave solutions won’t work:

− h̄2

2m

∂2

∂x2
[A sin(kx− ωt)] =

h̄2k2

2m
[A sin(kx− ωt)]

• While
ih̄
∂

∂t
[A sin(kx− ωt)] = −ih̄ω[A cos(kx− ωt)]



• No way to ’align’ spatial/time dependence of sin (LHS) with cos (RHS) – let alone LHS is real and RHS is imaginary

• Could try A sin(kx− ωt) +A cos(kx− ωt) as a solution instead:

• Still LHS real and RHS imaginary (not to mention the first/single time derivatives of sin and cos have opposite sign)

• In fact the only way out is to consider Ψ(x, t) = A cos(kx− ωt) +B sin(kx− ωt)
• In fact find B = iA will work, and in fact this solution can also be written as Aei(kx−ωt)

• Need a complex mix of sinusoidal components (out of phase by 90o) to solve the Schrodinger equation

• Convince yourselves that

− h̄2

2m

∂2

∂x2
[Aei(kx−ωt)] = ih̄

∂

∂t
[Aei(kx−ωt)]

⇒ − h̄2

2m
(ik)2[Aei(kx−ωt)] = ih̄(−iω)[Aei(kx−ωt)]

• This will be a solution iff − h̄2

2m (ik)2 = ih̄(−iω) or h̄2k2

2m = h̄ω

• Recall that we had p = h/λ = h̄k and E = hν = h̄ω

• From these two expressions we can see that the solution to the Schrodinger equation is just another way of stating (classical/non-
relativistic) energy conservation for a free particle: h̄2k2

2m = h̄ω is another way of saying p2/2m = E

• Non-relativistically a free particle’s total energy (its kinetic energy) is just p2/2m

• Wave function itself not directly detectable, have said |Ψ(x, t)|2 should represent the probability to find particle at x and t

• What is the probability then for this solution?

|Ψ(x, t)|2 = Aei(kx−ωt) ·Ae−i(kx−ωt) = A2

• The probability to find a particle at some point in space is constant (A2)

• This is a plane wave, not localised any where is space, the same probability everywhere

• Here momentum of the particle precisely known: h̄k, but no information about where in space – it has equal probability to
show up anywhere/everywhere.

3. Ch 4, Problem 36:

• A electron, with well defined momentum: 5× 10−25 kg m/s moving along the x axis.

• Write an expression for the matter wave associated with this electron with all numerical values:

• This is a plane wave solution (well defined momentum⇒ no information about x position)

Ψ(x, t) = Aei(kx−ωt)

• Determine k from momentum: h̄k = 1.05×10−34k = 5×10−25 ⇒ k = 4.76×109 wavelengths/m or 4.76 wavelengths/nm.

• Determine ω from Schrodinger constraint: h̄ω = p2/2m ⇒ ω = (5 × 10−25)2/[2(9.1 × 10−31)(1.05 × 10−34)] =
1.30× 1015 radians/s or 1.30 radians/ps.

• So the full solution with numerical values is:

Ψ(x, t) = Aei(4.76x−1.30t) x in nm, t in fs

• Note that units for x and t make sense for a single electron (wavelengths in nm and oscillations in fs), not m or s.

4. Ch 4, Problem 27:

• A free particle is represented by a plane wave by:

Ψ(x, t) = Aei(1.58x−79.1t) x in pm, t in fs

• Note I’ve already done the conversion to appropriate units for atomic particles

• Find the particle’s momentum, kinetic energy and mass

• Again this is the solution to the ’free particle’ Schrodinger equation so p = h̄k and E = h̄ω



• We can just read these off the wavefunction: p = 1.05× 10−34 · 1.58× 1012 = 1.66× 10−22 kg m/s

• E = h̄ω = 1.05× 10−34 · 79.1× 1015 = 8.31× 10−18 J

• And m = p2/2E = (1.66× 10−22)2/2(8.31× 10−18) = 1.66× 10−27 kg

• This is the mass of the proton... as if by accident.

5. Introducing Potential Energy to the Schrodinger Equation

• So far we’ve only looked at free particle solutions to the Schrodinger equation

• Not the most interesting physics – to understand the Hydrogen atom (or how things interact) need to also consider the
potential energy

• Suppose we have a simple mechanical example – higher energy barrier between two regions of constant (and equal) potential

◦ Start with free particle: Etot = 1/2mv2

◦ In the region of the barrier: Etot = 1/2m(v′)2 + U(x)

◦ On the right side we have free particle again: Etot = 1/2mv2

◦ Whether the ’free particle’ ends up on the left or the right will depend on whether 1/2mv2 > Umax(x).

• Could also consider a bound state with two atoms that are mechanically attached by a spring

◦ Such bound states interesting to show phenomena like quantisation of energy levels (ie. the H-atom yesterday)
◦ Consider first the potential energy associated with a simple mass on a spring
∗ Note the turning points are where the potential energy has absorbed all of the kinetic energy
∗ Classically the mass is free to move anywhere between the turning points and will oscillate

◦ Consider slightly more complicated case (two different masses, coupled by some unknown force)
∗ Take heavy atom to define the origin of coordinate system (consider in frame where heavy atom is at rest)
∗ For small x force is repulsive – creates a turning point where smaller atom cannot approach any closer to atom “1”
∗ For large x force is attractive – creates a turning point beyond which atom “2” can’t escape any further
∗ This is similar to the potential energy we saw yesterday for the electron in a ’potential’ generated by the proton
∗ If kinetic energy of atom 2 is large enough, then it can overcome the attractive potential and ’escape’ from Atom 1.

Only one turning point at, small x where it cannot approach closer to Atom 1.

• Potentials in the Schrodinger Equation

◦ We already have two terms in Schrodinger equation representing kinetic energy (h̄2k2/2m) and total energy h̄ω
◦ It makes some sense to just add the potential energy to the LHS of the Schrodinger equation:

− h̄2

2m

∂2Ψ(x, t)

∂x2
+ U(x)Ψ(x, t) = ih̄

∂Ψ(x, t)

∂t

◦ This is referred to at the “Time Dependent Schrodinger Equation”
∗ Perhaps a bit confusing because we always had ∂/∂t in the first version
∗ But without a potential we found time-independent – free particle wave solutions
∗ When we introduce a potential we can find solutions that give different probabilities as a function of time

◦ In classical mechanics we solve ~F = m~a (ie. to analyse a mass on a spring)
◦ In non-relativistic quantum mechanics we solve the TDSE for a particular choice of potential (U(x))
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Potential Energy of Bound Atoms


