PHY?293 Lecture #18

Linear Superposition of Solutions to the Schrodinger Equation

Yesterday saw solutions to the TDSE, that have definite energy and momentum
These are specific, or special solutions to the Schrodinger Equation
As with waves on a string, any linear combination of these special solutions will also be a solution

Suppose ¥, and W5, are both solutions of the Schrodinger equation for some U ()
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2. Non Stationary States

e Last time saw that any single energy level state was ’stationary’
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Such a linear combination, however, is not a stationary state

Consider a state which is the sum of two such solutions: ¥ (z,t) = % [V (2)e™ Ent/h 4 ap, (z)e

have well defined energy (ie. not equally F,, + E,, for all time)

It also does not have a probability density that is time independent

% [wn (x)ev',Ent/h_i_wm (.’L‘)eiEmt/h] [wn (x)e_iE"t/h-i-’(ﬂm(.T)e_iEmt/h] —

DN | =

This last term is just the cos of the argument (e?? + e~ = 2 cos 6) so finally get:

1
3 [wi (z) + w%(a?) + 29 (2)hn () cos(Ep, — En)t/h)]
e So the probability density becomes a function of time, with a frequency of |E,,, — E,|/h

e See for example https://phet.colorado.edu/en/simulation/bound-states

3. Interpreting the Probabilities

But both the terms in [ ] are separately O (since ¥, and W, are solutions to the TDSE for this potential).

So independent of ¢y or cs the entire sum is 0, as required: A linear combination of solutions is also a solution.

General solutions to a bound particle made up of linear superpositions of different energy level states

Consider a set of solutions W, (z,t) = 1, (z)e~*Frt/" with different n (need not be infinite well states... but could be)
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Convince yourself that each state is individually is a solution to the Schrodinger equation, but the combined state does not
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e Interpret U*(z,¢)U(x,t) as the probability density to find the particle at a particular point in space (z) at a particular time

(t), if we make a measurement

e In the sketch: A is most probable location, B is rather unlikely, the shaded region allows us to sum
the particle over a range of x — which is all we can actually do

up the probability to find


https://phet.colorado.edu/en/simulation/bound-states
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Can never measure a particle to be at ’exactly’ x, but only between = and x + dx where dx is consistent with the
precision of the momentum and the Heisenberg Uncertainty principle

Most widely used interpretation of quantum mechanics: Particle represented by ¥ (x, t) has no specific location prior to
measurement

Electron in H-atom doesn’t radiate — not travelling around in circles — ’shows up’ with the predicted probability when
measured

If measured at C, then it becomes a d(x — C) distribution
If we measure it a second time 'right afterwards’ it will still be at C'
After a measurement, previous wavefunction no longer valid — particle’s position is disturbed by measurement.

If we measure it some time later, since d-function wavefunction is not a stationary state, it will ’spread out’ again,
evolving according to solution of time dependent Schrodinger equation ... this need not be the original shape of |¥|?

This is referred to as the statistical or Copenhagen interpretation of QM.

e When we make a sum, like this, must constrain A,, so that total wavefunction is normalised (probability to find particle
anywhere = 100%)
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4. How does the wavefunction evolve with time?

Consider an infinite square well that suddenly doubles in size

If the particle was in the initial (narrow well) ground state, what happens to the wave-function after the well doubles?

New solution is no longer a stationary state (not of the shape sin[nmz/(2L)])

Instead must expand this as a combination possible solutions (basis states)

U(z,t) = 0 App(z)e ™ Ent/P with 4, (x) = sin[nma/(2L))]

This is not just true for square well, but any bound state will be a sum of eigenstates like this.

Then the e~ “#»*/" terms determine how each part of the spatial wavefunction evolves.

‘What about the normalisation?

Have already seen that the individual bound states have normalisation 1/2/L

When we make a sum, like this, must constrain A,, so that total wavefunction is normalised (probability to find particle
anywhere = 100%)
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5. Measurements (Expectation Values) in Quantum Mechanics

e Brief primer on statistics:

o
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[e]
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Given a distribution of ages (like the one in the figure)

Could ask a number of questions

(a) What is the total number of people (14) (N=14)

(b) What is probability to find a 14-year old? (1/14): P(j) = N(j)/N and P(j) = XN (j)/N =1
(c) What is the most probable age? 25, largest P(j)

(d) What is the median age? 23 (7 people are younger than 23 and 7 people are older than 23)

(e) What is the average (mean) age? < age >= E% =3j-P(j)=21

Note that (as in this case) no one has median, or mean age

In quantum mechanics refer to mean as “expectation value”... if you measured system N times this is the average result
you’d expect. It is not (necessarily) the most probable outcome of a measurement (here that would be 25).

Could also ask: What is the average value of the square of all the ages? < j2 >= Ef# = %52 P(j5)
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Or, in general, the average value of any function of these ages < f(j) >= X =% = Xf(j) - P(j)

Note that average of the squares is not the same as square of averages...

Consider the two distributions in figure. They have same mean, median, most probable value and number of entries



e Left distribution is sharply peaked and right is very spread out, characterised by the “width” of the distribution
e Consider Aj = j— < j >, the average of which is zero by definition

e But 032- =< (Aj)? > is not zero and referred to as the Standard deviation of a distribution (often in lab this will be taken as
a one-sigma uncertainty on a measurement)

e Can also be written as: 05 =< (j— < j >)* >=<j>> -2<j><j> - <j>*=<j>> - <j>?
e Quantum mechanics is “built” to make predictions like these P(j) = |¥|?

e Only difference is this is now a continuous distributions (so sums are replaced by integrals)

e We can determine the average position — expectation value of position — or a particle from:
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e Could also determine the expectation value for z:

o0
<z?>= / 22| (z, t)Pdx

e But the standard deviation of = is V< 22 > — < z >2
e Example 5.5 in text computes < x >, < z2 > and o, for a particle in the ground state of an infinite square well

e Can do the same for momentum. One additional ingredient: The function for “momentum”

o It turns out the ’function’ for momentum is p, = fih% [comes from identifying p?/2m with (K2 /2m) %
o When the momentum “operator” p, operates on the wavefunction it produces the momentum 7k
o You will see more examples of quantum mechanical *operators’ in PHY294 (angular momentum, Energy, etc.)
o But using just this one for now we can get:
o ° oV (x,t
<p>= / U* (2, )pU(z, t)da = —m/ v (3, ) 2@
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o And o2
<p? > / U (2, )20z, £)da = —hz/ W*(m,t)%dm
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o This allows them to compute, for the ground state in an infinite square well of width L
Axr =0, =0.18L Ap=o, =7h/L

o Which in turn gives AxAp = 0.59h > h/2
o These definitions, in the case of an infinite square well are consistent with the Heisenberg Uncertainty Principle
o They are true more generally, and in PHY294 you will see some additional examples.

6. Extra Proof of Normalisation being Time Independent (not discussed in class)

e When we make a sum, like this, must constrain A,, so that total wavefunction is normalised (probability to find particle
anywhere = 100%)

/00 U*(z, t)U(x.t)de =1 [1]
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e This must remain 100% at all times so require time variation of normalisation condition must vanish
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U (z, t)V(x.t)de = / %[\IJ*(x,t)\Il(:c.t)]dac =0

e Use the product rule to get
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e But the Schrodinger equation gives us %\Il(m,t) = %8‘9—;{/ — i/hU(x)¥ and %\I/*(x,t) = S %\I!* + /U (z)P*
[NB: changes of sign for ¢ terms in equation]




We can substitute this in to the expression above (note that U (x) terms cancel — assuming U (z) is real) to get
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But we can plug this back into the spatial (normalisation integral — eqn [1] above) and that just *wipes out’ the spatial
derivative:
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But if the wave function is going to be normalisable ¥(x,t) — 0 as © — oo so this vanishes

The normalisation of the wavefunction (because it is a solution to the Schrodinger equation) is preserved for all time — even
if the solution is not a stationary (time independent) state.

Even if full solution is a random combination of states, if normalised initially, it will evolve according to sum of states, and
stay normalised
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Probability after Measurement




Square-well Solution: Doubling Well size
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Age Distribution
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FIGURE 1.4: I-Iiétogram showing the number of people, N(j), with age j, for the
distribution in Section 1.3.1. [Griffiths: Introduction to Quantum Mechanics]
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FIGURE 1.5: Two histograms with the same median, same average, and same most
probable value, but different standard deviations.

[Griffiths: Introduction to Quantum Mechanics]





