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1. Linear Superposition of Solutions to the Schrodinger Equation

• Yesterday saw solutions to the TDSE, that have definite energy and momentum

• These are specific, or special solutions to the Schrodinger Equation

• As with waves on a string, any linear combination of these special solutions will also be a solution

• Suppose Ψ1 and Ψ2 are both solutions of the Schrodinger equation for some U(x)
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• Show that a linear combination: c1Ψ1 + c2Ψ2 is also a solution:
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• But both the terms in
[ ]

are separately 0 (since Ψ1 and Ψ2 are solutions to the TDSE for this potential).

• So independent of c1 or c2 the entire sum is 0, as required: A linear combination of solutions is also a solution.

2. Non Stationary States

• Last time saw that any single energy level state was ’stationary’

Ψ∗Ψ = ψ∗eiEt/h̄ψe−iEt/h̄ = ψ∗ψ

• General solutions to a bound particle made up of linear superpositions of different energy level states

• Such a linear combination, however, is not a stationary state

• Consider a set of solutions Ψn(x, t) = ψn(x)e−iEnt/h̄ with different n (need not be infinite well states... but could be)

• Consider a state which is the sum of two such solutions: Ψ(x, t) = 1√
2

[
ψn(x)e−iEnt/h̄ + ψm(x)e−iEmt/h̄

]
• Convince yourself that each state is individually is a solution to the Schrodinger equation, but the combined state does not

have well defined energy (ie. not equally Em + En for all time)

• It also does not have a probability density that is time independent
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• This last term is just the cos of the argument (eiθ + e−iθ = 2 cos θ) so finally get:
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• So the probability density becomes a function of time, with a frequency of |Em − En|/h̄
• See for example https://phet.colorado.edu/en/simulation/bound-states

3. Interpreting the Probabilities

• Interpret Ψ∗(x, t)Ψ(x, t) as the probability density to find the particle at a particular point in space (x) at a particular time
(t), if we make a measurement

• In the sketch: A is most probable location, B is rather unlikely, the shaded region allows us to sum up the probability to find
the particle over a range of x – which is all we can actually do

https://phet.colorado.edu/en/simulation/bound-states


◦ Can never measure a particle to be at ’exactly’ x, but only between x and x + dx where dx is consistent with the
precision of the momentum and the Heisenberg Uncertainty principle

◦ Most widely used interpretation of quantum mechanics: Particle represented by Ψ(x, t) has no specific location prior to
measurement

◦ Electron in H-atom doesn’t radiate – not travelling around in circles – ’shows up’ with the predicted probability when
measured

◦ If measured at C, then it becomes a δ(x− C) distribution
◦ If we measure it a second time ’right afterwards’ it will still be at C
◦ After a measurement, previous wavefunction no longer valid – particle’s position is disturbed by measurement.
◦ If we measure it some time later, since δ-function wavefunction is not a stationary state, it will ’spread out’ again,

evolving according to solution of time dependent Schrodinger equation ... this need not be the original shape of |Ψ|2

◦ This is referred to as the statistical or Copenhagen interpretation of QM.

• When we make a sum, like this, must constrain An so that total wavefunction is normalised (probability to find particle
anywhere = 100%) ∫ ∞

−∞
Ψ∗(x, t)Ψ(x.t)dx = 1 [1]

4. How does the wavefunction evolve with time?

• Consider an infinite square well that suddenly doubles in size

• If the particle was in the initial (narrow well) ground state, what happens to the wave-function after the well doubles?

• New solution is no longer a stationary state (not of the shape sin[nπx/(2L)])

• Instead must expand this as a combination possible solutions (basis states)

Ψ(x, t) = Σ∞n=1Anψ(x)e−iEnt/h̄ with ψn(x) = sin[nπx/(2L)]

• This is not just true for square well, but any bound state will be a sum of eigenstates like this.

• Then the e−iEnt/h̄ terms determine how each part of the spatial wavefunction evolves.

• What about the normalisation?

• Have already seen that the individual bound states have normalisation
√

2/L

• When we make a sum, like this, must constrain An so that total wavefunction is normalised (probability to find particle
anywhere = 100%) ∫ ∞

−∞
Ψ∗(x, t)Ψ(x.t)dx = 1 [1]

5. Measurements (Expectation Values) in Quantum Mechanics

• Brief primer on statistics:

◦ Given a distribution of ages (like the one in the figure)
◦ Could ask a number of questions

(a) What is the total number of people (14) (N=14)
(b) What is probability to find a 14-year old? (1/14): P (j) = N(j)/N and ΣP (j) = ΣN(j)/N = 1

(c) What is the most probable age? 25, largest P (j)

(d) What is the median age? 23 (7 people are younger than 23 and 7 people are older than 23)

(e) What is the average (mean) age? < age >= Σ j·N(j)
N = Σj · P (j) = 21

◦ Note that (as in this case) no one has median, or mean age
◦ In quantum mechanics refer to mean as “expectation value”... if you measured system N times this is the average result

you’d expect. It is not (necessarily) the most probable outcome of a measurement (here that would be 25).

• Could also ask: What is the average value of the square of all the ages? < j2 >= Σ j2·N(j)
N = Σj2 · P (j)

• Or, in general, the average value of any function of these ages < f(j) >= Σ f(j)·N(j)
N = Σf(j) · P (j)

• Note that average of the squares is not the same as square of averages...

• Consider the two distributions in figure. They have same mean, median, most probable value and number of entries



• Left distribution is sharply peaked and right is very spread out, characterised by the “width” of the distribution

• Consider ∆j = j− < j >, the average of which is zero by definition

• But σ2
j =< (∆j)2 > is not zero and referred to as the Standard deviation of a distribution (often in lab this will be taken as

a one-sigma uncertainty on a measurement)

• Can also be written as: σ2
j =< (j− < j >)2 >=< j2 > −2 < j >< j > − < j >2=< j2 > − < j >2

• Quantum mechanics is “built” to make predictions like these P (j) ≡ |Ψ|2

• Only difference is this is now a continuous distributions (so sums are replaced by integrals)

• We can determine the average position – expectation value of position – or a particle from:
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• Example 5.5 in text computes < x >,< x2 > and σx for a particle in the ground state of an infinite square well

• Can do the same for momentum. One additional ingredient: The function for “momentum”

◦ It turns out the ’function’ for momentum is p̂x = −ih̄ ∂
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◦ When the momentum “operator” p̂x operates on the wavefunction it produces the momentum h̄k

◦ You will see more examples of quantum mechanical ’operators’ in PHY294 (angular momentum, Energy, etc.)
◦ But using just this one for now we can get:
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◦ This allows them to compute, for the ground state in an infinite square well of width L

∆x ≡ σx = 0.18L ∆p ≡ σp = πh̄/L

◦ Which in turn gives ∆x∆p = 0.59h̄ > h̄/2

◦ These definitions, in the case of an infinite square well are consistent with the Heisenberg Uncertainty Principle
◦ They are true more generally, and in PHY294 you will see some additional examples.

6. Extra Proof of Normalisation being Time Independent (not discussed in class)

• When we make a sum, like this, must constrain An so that total wavefunction is normalised (probability to find particle
anywhere = 100%) ∫ ∞

−∞
Ψ∗(x, t)Ψ(x.t)dx = 1 [1]

• This must remain 100% at all times so require time variation of normalisation condition must vanish
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• We can substitute this in to the expression above (note that U(x) terms cancel – assuming U(x) is real) to get
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• But we can plug this back into the spatial (normalisation integral – eqn [1] above) and that just ’wipes out’ the spatial

derivative:
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• But if the wave function is going to be normalisable Ψ(x, t)→ 0 as x→ ±∞ so this vanishes

• The normalisation of the wavefunction (because it is a solution to the Schrodinger equation) is preserved for all time – even
if the solution is not a stationary (time independent) state.

• Even if full solution is a random combination of states, if normalised initially, it will evolve according to sum of states, and
stay normalised



Probability from Wavefunction
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Square-well Solution: Doubling Well size
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