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Harris 3.11

(a)

For small frequencies: e
hf

kBT ≈ 1+ hf
kBT

. Using this approximation in Planck’s spectral energy
density:

dU

df
=

hf

e
hf

kBT − 1

8πV

c3
f 2

≈ hf

1 + hf
kBT
− 1

8πV

c3
f 2

= kBT
8πV

c3
f 2

gives the classical result.

(b)

The classical formula grows as f 2 and diverges at high f . Planck’s formula has f 3 in the

numerator and e
hf

kBT − 1 in the denominator. The exponential in the denominator will grow
faster, and the limit of Planck’s formula as f → ∞ is 0 (can show this using L’Hopital’s
rule).

Harris 3.23

If 590nm is the cutoff at which no electrons are ejected from the metal plate, the energy of
the photons is equivalent to the work function of the metal. When light of one-third the
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wavelength strikes the plate:

KE =
hc

λ/3
− φ

KE =
3hc

λ
− hc

λ

(γ − 1)mec
2 =

2hc

λ

γ = 1 +
2h

λmec

γ = 1 +
2× 6.63× 10−34Js

590nm× 9.11× 10−31kg× 0.3Gm/s

β = 4.06× 10−3

v = 1.22Mm/s

We could also use the classical formula for kinetic energy. For β = 0.1, it gives < 1% error.

1

2
mev

2 =
2hc

λ

v =

√
4hc

λme

v =

√
4× 6.63× 10−34Js× 3× 108m/s

590nm× 9.11× 10−31kg

v = 1.22× 106m/s

Harris 3.29

The shortest wavelength results when all of the kinetic energy of an electron is used to
produce a photon:

1

2
mev

2 =
hc

λ

v =

√
2hc

λme

v =

√
2× 6.63× 10−34Js× 3× 108m/s

0.062nm× 9.11× 10−31kg

β = 0.280

v = 8.39× 107m/s
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Here, the classical approximation for an electron’s kinetic energy is not as accurate.

(γ − 1)mec
2 =

hc

λ

γ = 1 +
h

λmec

γ = 1 +
6.63× 10−34Js

0.062nm× 9.11× 10−31kg× 0.3Gm/s

β = 0.272

v = 8.15× 107m/s

Harris 3.31

Refer to Figure (3-8).

(a)

Using Equation (3-8), the direction of the scattered photon is:

λ′ − λ =
h

mec
(1− cos θ)

cos θ = 1− (λ′ − λ)mec

h

cos θ = 1− (0.061nm− 0.057nm)× 9.11× 10−31kg× 3× 108m/s

6.63× 10−34Js

θ = 130o

The photon scatters at an angle of 130o to the initial direction.

(b)

Rearrange the energy conservation equation (3-6) to find the speed of the electron:

hc

λ
+mec

2 =
hc

λ′
+ γmec

2

γ = 1 +
h

mec

(λ′ − λ)

λλ′

γ = 1.00279

β = 0.0746
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Then solve for the direction using (3-5):

sinφ =
h sin θ

γmeβcλ′

φ = 24.00

Harris 3.34

Refer to Figure (3-8). Start with the conservation of momentum (3-4,3-5) and energy (3-6)
equations. There are three equations and three unknowns: λ, λ′ and θ. We only need to find
λ, the wavelength of the source. To eliminate θ, first rearrange the momentum conservation
equations:

pλ − pe cosφ = pλ′ cos θ

pe sinφ = pλ′ sin θ

Then square both sides of each equation, add them together, and rearrange:

p2λ − 2pλpe cosφ+ p2e = p2λ′

p2λ − p2λ′ = 2pλpe cosφ− p2e

Rearrange the energy conservation equation:

hc

λ
+mec

2 =
hc

λ′
+ γmec

2

pλ +mec = pλ′ + γmec

pλ − (γ − 1)mec = pλ′

p2λ − 2pλ(γ − 1)mec+ (γ − 1)2m2
ec

2 = p2λ′

p2λ − p2λ′ = 2pλ(γ − 1)mec− (γ − 1)2m2
ec

2
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By equating the right sides of the previous two results, eliminate λ′ and the need to solve a
quadratic equation:

2pλpe cosφ− p2e = 2pλ(γ − 1)mec− (γ − 1)2m2
ec

2

pλ =
(p2e − (γ − 1)2m2

ec
2)

2(pe cosφ− (γ − 1)mec)

pλ =
(γ2β2m2

ec
2 − (γ − 1)2m2

ec
2)

2(γβmec cosφ− (γ − 1)mec)

pλ =
mec(γ

2β2 − (γ − 1)2)

2(γβ cosφ− (γ − 1))

λ =
2h(γβ cosφ− (γ − 1))

mec(γ2β2 − (γ − 1)2)

λ =
h(γβ cosφ− (γ − 1))

mec(γ − 1)

Substitute β = 0.15, me, h and cosφ = 0.5:

λ = 13.7pm

Harris 3.41

a

The momentum of the muon and antimuon is 0. A single photon cannot have 0 momentum.

b

To conserve momentum, the two photons must have opposite directions of motion and equal
wavelengths. Find their wavelengths by equating the total energies of the muons and photons:

2mµc
2 = 2

hc

λ

λ =
h

mµc

λ =
6.63× 10−34Js

1.88× 10−28kg× 0.3× 109m/s

λ = 11.8fm

Harris 4.11

The probability of detecting an electron is proportional to the square of the absolute value
of the wave function. Opening both slits is equivalent to doubling the wave function and the
number of electrons detected would quadruple to 40.
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Harris 4.21

a

For the neutron (m = 1.67× 10−27kg) at 300K:

λ =
h√

3mkBT
= 0.146nm

At 0.01c:

λ =
h

p
=

h

mv
= 0.132pm

b

For the electron (m = 9.11× 10−31kg) at 300K:

λ =
h√

3mkBT
= 6.23nm

At 0.01c:

λ =
h

p
=

h

mv
= 0.243nm

c

For this range of speeds, dimensions less than approximately 0.1nm - 0.1pm will reveal the
wave nature of the neutron, and 6nm - 0.2nm for the electron.

Harris 4.27

a

The wavelength of the electrons is:

p2

2m
= qV

λ =
h√

2mqV

λ = 0.275nm

d = 0.010mm is the distance between the slits and L = 10m the distance between the slits
and the detectors. Define θ as the angle between the paths to detector X and the center
detector and h as the distance between the two detectors. For destructive interference, the
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difference in the paths from the slits to detector X is one half of the wavelength. Using the
small angle approximation:

θ ≈ h

L
≈ λ/2

d

h =
Lλ

2d
h = 0.137mm

b

The amplitudes of the wave functions for each slit are proportional to the square root of the
number of electrons detected. At the center detector there is constructive interference. Sum
the amplitudes and square the result:

Ψ1 ∼
√

100 = 10

Ψ2 ∼
√

900 = 30

P1+2 ∼ |Ψ1 + Ψ2|2

P1+2 ∼ |10 + 30|2 = 1600

1600 electrons per second will be detected at the center detector.

c

At detector X there is destructive interference. Take the difference of the amplitudes and
square the result:

PX ∼ |Ψ1 −Ψ2|2

PX ∼ |10− 30|2 = 400

400 electrons per second will be detected at detector X.
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