Room Temperature Equilibrium Bose-Einstein Condensation

We have demonstrated that charge carrier (electron-hole) dynamics in a semiconductor quantum well can be significantly modified by the electromagnetic environment of a Photonic Band Gap [Physical Review Letters 99, 046801 (2007)]. Unlike the situation in a simpler one-dimensional optical cavity, bound electron-hole pairs (excitons) in a 3-D Photonic Crystal can have very long lifetimes with respect to radiative recombination, allowing time for thermodynamic equilibrium to be established. The effective mass of the exciton can be reduced by four orders of magnitude through dressing by photonic band edge photons and the energy range over which this effect persists can exceed the room-temperature-scale This may lead to novel quantum effects such as Bose-Einstein condensation at room temperature and new types of exciton-polariton lasers [Nature Scientific Reports 4, 7432 (2015)Nature Scientific Reports 4, 7432 (2015)].