Magnetism and Superconductivity

The microscopic mechanism for high temperature superconductivity is still an unsolved problem in theoretical physics. We have suggested the concept of spin-flux as a possible microscopic starting point for a first principles theory of non-Fermi liquid behavior in the normal state of these superconductors. This proposal suggests that a fundamental Law of Nature remains to be fully recognized before a clear microscopic understanding of high Tc superconductivity is possible. This Law of Nature is the existence of a new quantum number in a correlated electron system that manifests itself when an electron undergoes a somersault in its internal coordinate system as it traverses a closed loop in external coordinate space. This classical somersault trajectory can be described in terms of a "flux" that couples directly to the spin of the electron rather than its charge. This leads to the appearance of quantized spin-flux, a new degree of freedom in a many-electron system. In our many-electron state exhibiting spin-flux, charge carriers added to the antiferromagnetic normal state are naturally clothed by vortex textures in the antiferromagnetic background. We have shown that these charged solitons are bosonic collective modes and can explain non-Fermi liquid behavior and d-wave charge carrier pairing in a purely repulsive, interacting electron system. Remarkable agreement is found between this theory and numerous independently observed electronic, magnetic, and optical properties of the high temperature superconductors. For a brief review see [A Microscopic Model for D-Wave Charge Carrier Pairing in High Tc Superconductors: What Happens when Electrons Somersault?]. Further quantitative comparison with detailed experimental measurement of the magnetic structure factor is found in [Physical Review B 69, 224515 (2004) Incommensurate magnetic neutron scattering in cuprate high Tc superconductors: Evidence for charged meron-vortices].