Light Localization and Photonic Band Gap Materials

Electromagnetism is the fundamental mediator of interactions in condensed matter and atomic physics. It is extraordinary that such a basic interaction can be tailored within an artificial material, leading to a variety of new physical phenomena. This began with the study of classical wave localization in disordered media, eventually focusing on electromagnetic waves. It was then theoretically predicted and later experimentally demonstrated that in a new class of dielectrics (see movie clip) light can exhibit strong localization. These dielectric materials are the photonic analogs of semi-conductors and have important technological applications. We are studying the implications of light-trapping in both classical and quantum-electrodynamics. This has applications for optical communications, information technology, lighting, solar energy harvesting, and medical diagnostics to name a few.