Skip to Content

Freeze-in, glaciation, and UV sensitivity from light mediators

Dark matter (DM) freeze-in through a light mediator is an appealing model with excellent detection prospects at current and future experiments. Light mediator freeze-in is UV-insensitive insofar as most DM is produced at late times, and thus the DM abundance does not depend on the unknown early evolution of our universe.  However the final DM yield retains a dependency on the initial conditions for the DM abundance, which is usually assumed to be exactly zero. We point out that in models with light mediators, the final DM yield will also depend on the initial conditions assumed for the light mediator population. We describe a class of scenarios we call “glaciation” where DM freezing in from the SM encounters a pre-existing thermal bath of mediators, and study the dependence of the final DM yield on the initial temperature of this dark radiation bath. We quantify the dependence of the DM yield on the initial dark temperature and find that it can be sizable in regions near the traditional (zero initial abundance) freeze-in curve.  We generalize the freeze-in curve to a glaciation band, which can extend as much as an order of magnitude below the traditional freeze-in direct detection target, and point out that the DM phase space distribution as well as the yield can be strongly dependent on initial conditions.

Host: David Curtin and Rodolfo Capdevilla
Event series  THEP Events